Infrared and Raman Spectra of K₄H₂(S₂I₂O₁₄) N. Santha and V. U. Nayar Department of Physics, University of Kerala, Kariavattom, 695 581, Trivandrum, Kerala, India Received February 25, 1993; in revised form June 8, 1993; accepted June 16, 1993 The infrared and Raman spectra of $K_4H_2(S_2I_2O_{14})$ were recorded and analyzed. Band assignments were made on the basis of the characteristic vibrations of SO_4^{2-} and IO_3^{-} ions and OH group frequencies. Bands indicate that the symmetry of the SO_4^{2-} ion in the crystal is less than its free ion symmetry. The trio bands, characteristic of strong hydrogen bonded systems, are observed in the infrared spectrum. The IO_3^{-} ions exist almost independently in the crystal. © 1994 Academic Press, Inc. ### INTRODUCTION The iodatosulfate $K_4H_2(S_2I_2O_{14})$ is of considerable interest because of the existence of a finite heteropolyanion $(S_2I_2O_{14})^{-6}$ (1). It crystallizes in the monoclinic system $P2_3/n$ with two formula units per unit cell (1). The centrosymmetric anion $(S_2I_2O_{14})^{-6}$ having six oxygen atoms in common is constituted of two sulfate tetrahedra and two octahedra of much distorted IO_6 which share each of the apices with the two sulfate tetrahedra. In this work, infrared and Raman spectroscopic techniques have been used as a probe to determine the nature of the sulfate and iodate ions and the role of hydrogen in the crystal. ## **EXPERIMENTAL** Samples were prepared by dissolving stoichiometric amounts of KHSO₄ and KIO₃ in minimum water and allowing the solution to evaporate at room temperature for some days (1). Infrared spectrum was recorded on a Perkin-Elmer 577 spectrophotometer with samples as KBr pellets. The crystallographic axes were found using a polarizing microscope. The crystal unique axis is b. A well polished crystal with sides parallel to the a, b, and c was used for the polarized Raman study. Raman spectra were recorded on a Spex Ramalog 1401 double monochromator equipped with a Spectra Physics model 165 Ar⁺ ($\lambda = 514.5$ nm) laser. The spectra were obtained for the orientations $a(ba)c[A_g]$, $a(bb)c[A_g]$, $a(cb)c[B_g]$, and $a(ca)c[B_g]$ with a spectral resolution of 2 cm⁻¹ and a laser power of 40 mW. Unfortunately, the results of these polarization measurements were inconclusive, since most of the bands appear at the same wave number in the A_g and B_g symmetries. Attempts to repeat the experiment with another single crystal have not been successful due to the nonavailability of good quality crystals of sufficient size after repeated trials of growth procedure. Therefore the polarization data are not taken into consideration in the analysis of this spectra. #### DISCUSSION The factor group analysis of K₄H₂(S₂I₂O₁₄) predicts 141 modes and they are distributed as $$\Gamma_{141} = 36A_g + 36B_g + 35A_u + 34B_u.$$ Band assignments (Table 1) have been carried out on the basis of the characteristic vibrations of SO_4^{2-} and IO_3^- ions and OH group frequencies. Internal Modes of the Sulfate Ion The free SO_4^{2-} ion has T_d symmetry with four fundamentals at the following frequencies: $\nu_1 = 981 \text{ cm}^{-1} (A_1)$, $\nu_2 = 451 \text{ cm}^{-1} (E)$, $\nu_3 = 1104 \text{ cm}^{-1} (F_2)$ and $\nu_4 = 613 \text{ cm}^{-1} (F_2)$. All the modes are Raman active while ν_1 and ν_2 are infrared inactive. The Raman bands observed for the four orientations and the infrared bands are given in Figs. 1 and 2. There are four SO₄ units in the Bravais cell of this iodatosulfate and they occupy C_1 sites. Table 2 gives the relationship between various symmetry species of T_d , C_1 , and C_{2h} groups. The band observed at 968 cm⁻¹ in the Raman spectrum is assigned to the symmetric stretching mode ν_1 . This infrared inactive mode (under T_d symmetry) appears in the infrared spectrum with medium intensity. The asymmetric stretching mode ν_3 splits into five bands in the IR spectrum. Degeneracy of this mode is lifted in the Raman spectra also. With the lifting of the degeneracies of ν_2 (in one orientation), ν_3 and ν_4 modes, additional bands are observed in the IR spectrum for the ν_3 mode and the FIG. 1. Raman spectra of K₄H₂(S₂I₂O₁₄). appearance of the IR inactive ν_1 and ν_2 modes in the IR spectrum suggest that both the site symmetry effect and correlation field effect are strong in the crystal. The symmetric stretching band ν_1 splits into two (968 and 920 cm⁻¹) and this can be considered as a spectroscopic indication of hydrogen bonding (2) and the SO_4^{2-} and HSO_4^{-} entities can thus be distinguished. The lowest frequency 920 cm⁻¹ is assigned to the vibrations of HSO₄ ion by analogy with the spectra of hydrogen sulfates MHSO₄ (2). Due to the hydrogen atom being attached to the oxygen atom of the SO₄ group, one of the S-O bonds is expected to be elongated, normally up to 1.6 Å (3). In the present case, the maximum value of the S-O bond length is 1.499 Å and this is in correlation with the high value of the lowest Raman ν_1 band. The S-(OH) bond appears to be shortened with increase in the hydrogen bond strength as has been observed in Na₃H(SO₄)₂ (2). The Raman spectra of K₄H₂(S₂I₂O₁₄) show no bands equivalent of OH stretching modes. But the trio bands, characteristic of strong hydrogen bonded systems (4) appear at \sim 2780 cm⁻¹, \sim 2380 cm⁻¹, and \sim 1600 cm⁻¹ in the infrared spectrum. The y OH vibrations are observed at ~740 cm⁻¹ in the IR. The in-plane δ OH bending vibrations of hydrogen bonds are expected in the region 1200-1300 cm⁻¹. This band is identified in the infrared spectrum and in two orientations in the Raman spectra. ## 10⁻ Vibrations The structure of $K_4H_2(S_2I_2O_{14})$ shows two kinds of I-O bonds, three short ones of 1.837 Å and the three long ones of 2.704 Å forming a distorted IO_6 ion (1). The free ion symmetry of IO_3^- ion is C_{3v} . In this crystal, all the iodate ions are at general positions. The correlation of C_{3v} with C_{2h} factor group through C_1 site group is shown in Table 3. The high frequency band near 820 cm⁻¹ in the Raman FIG. 2. IR Spectrum of $K_4H_2(S_2I_2O_{14})$. $TABLE\ 1$ Vibrational Spectral Data and Band Assignments (cm $^{-1}$) of $K_4H_2(S_2I_2O_{14})$ | | | | Raman | | | | |--|------|----------------|-------------------|----------------|----------------|--| | Assignments | IR | $a(ca)c$ B_g | $a(cb)c \\ B_{g}$ | $a(bb)c$ A_g | $a(ba)c$ A_g | | | | | 55 | 55 | 55 | 55 | | | | | _ | | 65 | 60 | | | | | 70 | 70 | 70 | _ | | | | | 78 | 80 | 78 | 76 | | | | | 87 | 90 | 90 | 90 | | | | | 95 | 95 | 97 | 97 | | | external mode | | 105 | 105 | 103 | 105 | | | | | _ | 108 | 108 | 108 | | | | | | | 133 | _ | | | | | 145 | 145 | 145 | 145 | | | | | 155 | 155 | 158 | 158 | | | | 210 | 215 | | 215 | _ | | | | 230 | | | | _ | | | | 240 | | _ | _ | - | | | $\nu_4({\rm IO}_3)$ | 305 | 306 | 306 | 306 | 306 | | | | 340 | 348 | 348 | 345 | 345 | | | $\nu_2(\mathrm{IO}_3)$ | 355 | 380 | 380 | 380 | 380 | | | $\nu_2(\mathrm{SO_4})$ | 445 | 445 | 413
445 | 449 | —
449 | | | | 525 | | _ | 520 | 520 | | | | 590 | 595 | 595 | 595 | 595 | | | $\nu_4(\mathrm{SO_4})$ | 610 | 623 | 623 | 623 | 623 | | | | 630 | 630 | 632 | 632 | 632 | | | 2 ν ₂ (lO ₃), γ _{OH} | 730 | _ | | _ | _ | | | | 740 | _ | _ | _ | - | | | $\nu_1({\rm IO}_3)$ | 795 | 786 | 786 | 786 | 786 | | | $\nu_3(\mathrm{IO_3})$ | 820 | 823 | 823 | 823 | 823 | | | ν _{S-OH} | | 920 | 920 | 920 | 920 | | | $v_1(SO_4)$ | 968 | 968 | 968 | 968 | 968 | | | | 1020 | _ | 1035 | - | 1033 | | | | 1060 | _ | _ | _ | | | | $\nu_3(\mathrm{SO_4})$ | 1105 | 1100 | 1100 | 1100 | 1100 | | | • | 1120 | _ | _ | | _ | | | | 1145 | 1145 | 1145 | 1145 | 1145 | | | δ _{OH} in plane
bending | 1230 | 1270 | 1220 | _ | _ | | | 23,141118 | 1600 | | | | | | | trio bands | 2380 | | | | | | | | 2780 | | | | | | $TABLE\ 2$ Correlation of the Internal Vibrational Modes of SO_4^{2-} Ion in $K_4H_2(S_2I_2O_{14})$ | | Free ion symmetry $T_{\rm d}$ | Site symmetry C_1 | Factor group symmetry C_{2h} | |--|-------------------------------|---------------------|---| | $[\nu_1: (x^2 + y^2 + z^2)]$ $[\nu_1: (x^2 + y^2 - 2z^2, x^2 - y^2)]$ $[\nu_3, \nu_4) (xy, xz, yz)]$ | A_1 E $2F_2$ | 9A | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | Free ion symmetry C_{3v} Site symmetry C_{1} Factor group symmetry C_{2h} $[(\nu_1, \nu_2): (x^2 + y^2, z^2)]$ $2A_1$ $-6A_g(x^2, y^2, z^2, xy)$ $-6B_g(xz, yz)$ $-6A_g(x^2, y^2, z^2, xy)$ x^2, x$ TABLE 3 Correlation of the Internal Vibrational Modes of IO_3^- Ion in $K_4H_2(S_2I_2O_{14})$ and IR spectra is assigned to ν_3 . The unambiguous assignment of ν_1 mode is difficult due to the possible occurrence of the overtone $2\nu_2$ (5). However, the band at 786 cm⁻¹ in the Raman spectrum is assigned to ν_1 since only one band is observed in the region 700–800 cm⁻¹ and it is the most intense band in the Raman spectrum. The Raman band at 750 cm⁻¹, typical of octahedrally coordinated I, (6), is absent in the Raman spectra. So it can be inferred that the iodine atoms are not octahedrally coordinated in this compound. The X-ray structural investigations also report that the long I–O bonds are weak. The stretching and bending frequencies of the iodate ion in this crystal are close to that of a free IO $_3$ ion (5), except for the lifting of the degeneracy of the ν_4 mode. This indicates that IO $_3$ ions exist almost independently in $K_4H_2(S_2I_2O_{14})$. It is difficult to assign the external modes of SO_4^{-2} and IO_3^- ions and the metal-oxygen stretching modes which fall below 400 cm^{-1} , as there can be interactions between these ions, even though they are weak, which can modify the translational and librational modes. #### **ACKNOWLEDGMENTS** The authors are thankful to M. T. Averbuch-Pouchot, CNRS, France, for providing the samples used in this study. N. S. is grateful to the Council of Scientific and Industrial Research, New Delhi, for the award of a Senior Research Fellowship. #### REFERENCES - 1. M. T. Averbuch-Pouchot, J. Solid State Chem. 41, 262 (1982). - A. Damak, M. Kamoun, A. Daoud, F. Romain, A. Lautie, and A. Novak, J. Mol. Struct. 130, 245 (1985). - K. Viswanathan, V. Ramakrishnan, V. U. Nayar and G. Aruldhas, Indian J. Pure Appl. Phys. 25, 185 (1987). - C. N. R. Rao, "Chemical Applications of Infrared Spectroscopy," pp. 25 and 186. Academic Press, New York, 1963. - 5. W. E. Dasent and T. C. Waddington, J. Chem. Soc. A 2429 (1960). - 6. E. Salje, Acta. Crystallogr. Sect. A 32, 233 (1976).