The Crystal Structure of Li₂TiSiO₅

A. Ziadi,*,† G. Thiele,* and B. Elouadi‡,1

*Institut für Anorganische und Analytische Chemie der Albert-Ludwigs-Universität Freiburg, Albertstraße 21, D-7800 Freiburg/Br, Germany; †Unité de Chimie des Matériaux, Centre National de Coordination et de Planification de la Recherche Scientifique et Technique, 52, Charia Omar Ibn Khattab, Agdal B.P. 8027, Rabat, Morocco; and ‡Applied Solid State Chemistry Laboratory, Faculty of Science, Charia Ibn Batota Rabat, Morocco

Received October 13, 1992; in revised form July 2, 1993; accepted July 8, 1993

The crystal structure of Li₂TiSiO₅ was solved at 20°C in the tetragonal space group P4/nmm with unit cell parameters a=6.444(3)Å, c=4.399(2)Å, V=182.67 Å³, $D_c=3.09$ g cm⁻³ and Z=2. The structure parameters were refined to a final R value of 1.95% for 339 independent reflections with I>3 $\sigma(I)$. The crystal structure can be regarded as a layered one with infinite sheets of SiO₄ tetrahedra and TiO₅ square pyramids linked by common corners, connected by layers of Li cations. © 1994 Academic Press, Inc.

I. INTRODUCTION

Lithium titanosilicate, Li₂TiSiO₅, has been reported by Kim and Hummel as a distinct compound within the ternary system Li₂O-SiO₂-TiO₂(1). Although the structures of equivalent compositions, $Na_2M^{IV}XO_5(M^{IV} = Ti, X =$ Si, Ge; $M^{IV} = Zr$, X = Si), were solved two decades ago, no sound structural data concerning the title compound were available in the literature at the beginning of the present study (2-4). Only lattice parameters are known (1, 5). Furthermore, no member of the chemical families $A_2^1 M^{1V} X O_5 (A^1 = \text{monovalent cation}, M^{1V} = \text{tet-}$ ravalent cation) other than Li₂TiSiO₅, Na₂TiSiO₅, Na₂Ti GeO₅, and Na₂ZrSiO₅, is so far identified. The purpose of the present work is to investigate the crystal structure of the title compound, in order to get a better insight into the crystal chemistry of these compounds. The ultimate goal is to determine the effect of the nature and size of the cations A^{\dagger} and $M^{\dagger V}$ on the thermochemical stability, structure type, and physical properties of these phases (6).

II. EXPERIMENTAL

(a) Growth of Crystals

Single crystals suitable for X-ray structure analysis were grown from a melt of Li₂MoO₄ and LiVO₃ (molar ratio 4: 1), with a fixed ratio (solute weight/flux weight) = 0.10. The mixture of appropriate amounts of reagent grade starting materials Li₂CO₃, TiO₂, SiO₂, V₂O₅, and MoO₃ is ground before being submitted to the following heat treatment:

- -slow heating to 870°C,
- -melting at 870°C over a 48-hr period,
- —slow cooling (5°C/hr) to 300°C before quenching to room temperature.

Single crystals of quartz and Li₂TiSiO₅ are extracted by dissolving the flux in distilled water.

(b) X-Ray Crystallography

Preliminary cell constants and the space group were determined from precession and Weissenberg photographs. The space group was uniquely assigned as P4/ nmm (No. 129) on the basis of the tetragonal Laue symmetry P4/minn and the reflection conditions hk0: h + k =2n. Accurately determined angles of 25 centered reflections with 2 $\theta > 26^{\circ}$ and with values of χ between 10 and 60° were used for the refinement of the lattice parameters. In accord with the parameters in Table 1, intensity data were collected on an Enraf-Nonius diffractometer CAD4 with graphite monochromatized MoK_n radiation. The program SHELXTLPC was used for solution and refinement of the crystal structure (7). After a correction for absorption by a face method (8) and data reduction to a set of 339 independent reflections, a Patterson map showed the positions of Ti and Si; following isotropic refinement a

¹ To whom correspondence should be addressed at: Laboratoire de Matériaux Minéraux, Ecole Nationale Supérieure de Chimie de Mulhouse, 3, Rue Alfred Werner, 68093 Mulhouse Cedex, France.

TABLE 1 Crystal Data for Li2TiSiO5

Formula weight	169.845
Space group	P/4nmm (No. 129)
Crystal system	Tetragonal
a(Å)	6.444(3)
c(Å)	4.399(2)
$V(Å^3)$	182.6
Z	2
$D_{\rm calc}$ (g/cm ³)	3.09
Radiation	MoK_{α} , $\lambda = 0.71069 \text{ Å}$
μ (cm ⁻¹)	23.92
Crystal size (mm)	$0.39 \times 0.39 \times 0.05$
Temperature (°C)	20
Collection range	$+h, \pm k, \pm I$
2 θ range (°)	$2 < \theta < 38$
Scan method	$\omega - 2\theta$
Scan width	$0.8 \pm 0.35 \tan \theta$
No. of reflections measured	2270
No. of reflections unique	339
No. of variables	20
Transmission coefficient, max/min	0.89/0.52
Absorb cor	Face method
Weighting scheme	$w = .838/(\sigma^2 (F) + 10^{-5} F^2)$
Largest difference peak/hole (eÅ -3)	0.45/0.58
Extinction cor	$F_{\rm corr} = F_{\rm c}[1 + 10^{-5}F_{\rm c}^2/\sin\theta]$
$R(F)^a$	0.0195
$R_{\mathbf{W}}(F)^b$	0.0210
**	

difference Fourier map gave the positions of remaining O and Li atoms. Full anisotropic refinement yielded the final structure shown in Fig. 1, while Table 2 gives positional parameters, and Table 3 contains relevant bond distances and angles.

Further details of the structure determination (e.g., structure factors) have been deposited and can be ordered from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, F.R.G., as Collection No. CSD-57905.

FIG. 1. Three-dimensional view of Li₂TiSiO₅ structure (see Table 4 for numerical data of octahedral bonds and angles).

III. DESCRIPTION OF THE STRUCTURE

Figure 1 represents a three-dimensional view of the lattice, providing evidence for a layer structure. SiO₄ tetrahedra share all their apices with the four adjacent TiO₅ square pyramids so as to develop infinite sheets (Fig. 2) parallel to (001). The layered [TiSiO₅]²⁻ anions are bound by planes of Li⁺ cations. The structure can also be viewed as chains consisting of linear O-bridged TiO6 octahedra of ReO₃ type as shown in Fig. 1. The chains of strongly (5 + 1)-distorded TiO₆ octahedra running parallel to [001] are linked together in a three-dimensional network by SiO₄ tetrahedra. The silicon is located in an almost regular tetrahedron with identical Si-O bond lengths of 1.633(1)Å

TABLE 2 Atomic Coordinates and Thermal Parameters for Li₂TiSiO₅

Atom	Χ	Υ	Z	U_{11}	U ₂₂	U_{33}	U ₁₂	U_{13}	U ₂₃	$U_{ m eq}{}^a$
Ti	0.25	0.25	0.5966(1)	0.0054(1)	U_{11}	0.0066(2)	0	0	0	0.0058(1)
Si	0.75	0.25	0.5	0.0040(2)	$U_{11}^{"}$	0.0062(3)	0	0	0	0.0047(2)
O1	0.5441(2)	0.25	0.7165(2)	0.0057(3)	0.0102(4)	0.0089(3)	0	0	-0.004(2)	0.0083(3)
O2	0.25	0.25	0.2107(5)	0.0170(6)	U_{11}	0.0083(7)	0	0	0	0.0141(6)
Li	0	0	0	0.022(2)	$U_{\Pi}^{''}$	0.021(2)	0.008(2)	0.010(1)	U13	0.022(2)

 $^{^{}a}U_{\text{eq}} = (U_{11} + U_{22} + U_{33})/3.$

^a $R = \Sigma \Delta / \Sigma F_o$. ^b $R_W = (\Sigma [\Delta \sqrt{w}]) / \Sigma [F_o \sqrt{w}]$, with $\Delta = ||F_o| - |F_c||$.

TABLE 3
Selected Bond Distances (Å) and Angles (°)
for Li,TiSiO₅

		<u>_</u>
Ti-O1	1.968(2) 4x	O1-Ti-O1 85.88(1)
Ti-O2	1.698(2)	O1-Ti-O2 105.55(3)
Ti-O2'	2.701(3)	O1-Ti-O2' 74.45(3)
01-01	2.681(2) 4x	
O1-O2	2.923(2) 4x	
O1-O2'	2.885(2) 4x	
Si-O1	1.633(1) 4x	
01-01'	2.653(2)	O1-Si-O1' 108.64(7)
01-01"	2.673(2)	O1-Si-O1" 109.89(3)
Li-O1	2.057(1) 4x	O1-Li-O1 81.34(5)
Li-O2	2.460(1) 2x	O1-Li-O2 78.82(6)

and O-Si-O angles of 109.9 and 108.6° (Table 3). The octahedral sites of lithiums are relatively distorted, with two short bonds Li-O = 2.057(1)Å and four longer bonds Li-O = 2.460(1) Å. Titanium sites are the most distorted ones in the lattice: four oxygens are located at 1.968(2)Å, one at 1.698(3)Å, and a sixth at 2.701(3)Å.

IV. DISCUSSION

The crystal structure of $\text{Li}_2\text{TiSiO}_5$ has been found to be common to various chemical families: silicates or germanates (Na₂ $MOXO_4$ with X = Si, Ge; M = Ti), phosphates ($MOPO_4$ with M = V, Nb, Mo), molybdates

 $(VOMoO_4)$, and sulfates $(VOSO_4)$ (2, 4, 9–15). The chemical analogy between all these compounds becomes evident when the former formulae are written in their most general form: $A_2^1M^{1V}OXO_4$ ($A^1 = \text{monovalent cation}$; M^{IV} = tetravalent cation; X = Si, Ge). The structural data collected in Table 4 allow the following conclusions: (1) the lattice parameter a_0 , compared to c_0 , appears to be nearly independent of the stoichiometry with an average value of ca. 6.43 Å. However, its value for MoOPO₄ seems to be too small although Mo-O(1) distances are identical to M'-O(1) lengths (M' = Nb, V, Ti). The highest value recorded for Na₂TiOGeO₄ is probably due to the size of Ge. Larger than Si, the latter is expected to induce larger XO₄ tetrahedra and TiO₆ octahedra, which results in an expansion of the unit cell parameters. (2) the lattice parameter c_0 is closely related to the distorsion of the octahedra $M^{\rm IV}O_6$ and $M'O_6$ since $c_0 = M^{\rm IV}-O(2) + M^{\rm IV}-O(2')$ or $c_0 = M'-O(2) + M'-O(2')$. It is also sensitive to the size of the cations intercalated between the sheets made of tetrahedra XO_4 and square pyramids $M^{IV}O_5$ (or $M'O_5$) as shown in Fig. 1. The distance between these layers and the cationic planes increases significantly with increasing size of the cations inserted: Ti-O(2) is much higher for Na₂TiOSiO₄ than for Li₂TiOSiO₄. Nonetheless, Ti-O(2) and M'-O(2) lengths do not vary in the same proportions. This could be attributed to the fact that the oxygens O(2)are also linked to XO₄ tetrahedra which cannot expand as much as $M^{IV}O_6$ and $M'O_6$ octahedra owing to the high covalent X-O bond.

FIG. 2. Structure of Li₂TiSiO₅ projected on (001).

TABLE 4 Structural Data of Some Oxometalates $A_2\text{TiO}XO_4$ (A = Li, Na; X = Si, Ge) and $MOXO_4$ (M = V, Nb, Mo; X = P, S, Mo)

Compound	Space group	Lattice parameters		Octahedral bond distances and angles ^a							
		$a_0(\mathring{A})$	c _o (Å)	$V(\mathring{A}^3)$	$d_1(\mathring{A})$	d ₂ (Å)	d _{2'} (Å)	α ₁ (°)	 α ₂ (°)	$X-O(\mathring{A})^b$	References
Li ₂ TiOSiO ₄	P4/nmm	6.44	4.40	182.7	1.97	1.70	2.70	105.6	85.9	1.63	This work
Na ₂ TiOSiO ₄	P4/nmm	6.48	5.11	214.4	1.99	1.70	3.41	107.5	84.9	1.64	(4)
Na ₂ TiOGeO ₄	P4/nmm	6.67	5.16	229.6	2.0	1.72	3.44	109.4	84.9	1.74	(2)
NbOPO ₄	P4/n	6.39	4.10	167.4	1.97	1.78	2.32	98.7	88.7	1.73	(10)
VOMoO ₄	P4/n	6.61	4.26	186.2	1.97	1.68	2.59	102.4	87.3	1.76	(11)
MoOPO ₄	P4/n	6.18	4.29	163.8	1.97	1.66	2.63	103	87	1.53	(10, 12)
α-VOPO ₄	P4/n	6.01	4.45	160.9	1.86	1.58	2.85	101.6	87.7	1.54	(13)
α-VOSO ₄	P4/n	6.26	4.10	160.8	2.04	1.63	2.47	101	88	1.46	(14)

^a See Fig. 1 for bond length and angles.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. One of us, A. Z., is grateful for Deutscher Akademischer Austauschdienst's financial support.

REFERENCES

- 1. K. H. Kim and F. A. Hummel, J. Am. Ceram. Soc. 42, 286 (1959).
- 2. V. Ya. Verkhovskii, E. A. Kuz'min, V. V. Ilyukhin, and N. V. Belov, Sov. Phys. Crystallogr. (Engl. Transl.) 15, 7 (1970).
- E. N. Treushnikov, V. V. Ilyukhin, and N. V. Belov, Sov. Phys. Crystallogr. (Engl. Transl.) 15, 9 (1970).
- H. Nyman, M. O'Keeffe, and J.-O. Bovin, Acta Crystallogr. Sect. B 34, 905 (1978).

- 5. Powder Diffraction File, JCPDS No. 13-268, International Centre for Diffraction Data, Swarthmore, Pennsylvania, USA.
- A. Ziadi, Doctorat d' Etat ès Sciences, Faculty of Science, Rabat, 1994.
- SHELXTL PC Programs for crystal structure determination, Siemens Analytical X-Ray, Instruments Inc. Madison, WI 53719, 1989.
- 8. G. Sheldrick, SHELX76 Programs, Cambridge, 1976.
- A. F. Wells, "Structural Inorganic Chemistry," 5th ed. Oxford Press, Oxford, 1990.
- 10. J. M. Longo and P. Kierkegaard, Acta Chem. Scand. 20, 72 (1966).
- 11. H. A. Eick and L. Kihlborg, Acta Chem. Scand. 20, 722 (1966).
- P. Kierkegaard and M. Westerlund, Acta Chem. Scand. 18, 2217 (1964).
- 13. B. D. Jordan and C. Calvo, Acta Crystallogr. Sect. B 32, 2899 (1976).
- 14. J. M. Longo and R. J. Arnott, J. Solid State Chem. 1, 394 (1970).
- A. V. Nikitin, V. V. Ilyukhin, B. N. Litvin, O. K. Mel'nikov, and N. V. Belov, Sov. Phys. Crystallogr. (Engl. Transl.) 9, 625 (1965).

^b XO₄ tetrahedra are almost regular (see corresponding reference).