Infrared, Single Crystal Raman, and SERS Spectra of $CH_3NH_3NaSeO_4 \cdot 6X_2O$ and $NaNH_4SeO_4 \cdot 2X_2O$ (X = H,D) Daizy Philip and G. Aruldhas¹ Department of Physics, University of Kerala, Kariavattom, Trivandrum-695 581, India and # T. Osaka and A. Miyazaki Department of Applied Physics, Faculty of Science, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162, Japan Received February 25, 1993; in revised form October 12, 1993; accepted October 22, 1993 IR and polarized Raman spectra of $CH_3NH_3NaSeO_4 \cdot 6H_2O$ (MASS), $NaNH_4SeO_4 \cdot 2H_2O$ (SAS), and their deuterated analogues are recorded and analyzed. In both the crystal symmetry of SeO_4^{2-} is lower than T_d . The symmetry of $CH_3NH_3^+$ is lower than $C_{3\nu}$ and hydrogen bonding is strong in MASS. NH_4^+ is not rotating freely in the crystal lattice of SAS. SERS spectra are recorded in two types of silver colloids. Colloid 1 adsorbs MASS through the nitrogen atom of CH_3NH_3 group. There are two different adsorption sites for MASS in colloid 2. SAS is chemisorbed by colloid 2 through the oxygen atom of SeO_4^{2-} . Shifting and splitting observed for the internal modes of SeO_4^{2-} on adsorption are due to the reduced local symmetry of the ion. O_1^{1994} Academic Press, Inc. #### INTRODUCTION At room temperature methyl ammonium sodium selenate hexahydrate (MASS), $CH_3NH_3NaSeO_4 \cdot 6H_2O$, is pyroelectric whereas sodium ammonium selenate dihydrate (SAS), $NaNH_4SeO_4 \cdot 2H_2O$ is ferroelectric (1). Dielectric studies on phase transitions in MASS have been carried out earlier (1). There are several reports (2–7) on the vibrational spectra of compounds containing ($CH_3NH_3^+$). In most of them phase transitions are governed by this group. Some physical properties of the crystal group $NaNH_4XO_4 \cdot 2H_2O$ (X = S, Sc) have also been investigated (8–11). Surface enhanced Raman scattering (SERS) spectra of inorganic acid radicals adsorbed on silver colloids have been reported by Greaves and Griffith (12). They observed rapid sol aggregation on addition of an aqueous solution of $K_3PO_4 \cdot H_2O$ or $Na_2HAsO_4 \cdot 7H_2O$. The color of the colloid changed from yellow through brown to blue with the Ag-O stretching band at 237 cm⁻¹. Also, an additional band appeared in the electronic spectrum at 560 nm. Although there is a recent report (13) on the SERS spectrum of SO₄²⁻ adsorbed on silver surface, the related selenate group is not yet studied. SERS spectral studies of MASS and SAS are expected to give information regarding the nature of adsorption and orientation of the adsorbed species on the metal surface. To elucidate the vibrational energy levels of MASS and SAS, their IR and polarized Raman spectra are also recorded and analyzed. #### EXPERIMENTAL Single crystals of MASS are synthesized by the chemical reaction of CH₃NH₂, H₂SeO₄, and Na₂SeO₄ in the stoichiometric ratio (1). Crystals of SAS are grown by the evaporation of an aqueous solution of sodium selenate and ammonium selenate (8). The 5145-Å line of a Spectra Physics model 165 Ar⁺ laser (power 100 mW) is used to record the polarized Raman spectra of MASS (Fig. 1) for the four orientations a'(cc)a, b(cb)a, b(ab)a, and b(ac)a. Polarized Raman spectra of SAS (Fig. 2) are recorded for the four orientations z(yy)x, z(yz)x, z(xz)x, and z(xy)xwhere x, y, and z coincide with the crystallographic axes a, b, and c. A Spex Ramalog instrument with a double monochromator 1401 has been used throughout. IR spectra are recorded using a PE 882 (4000-400 cm⁻¹) and PE 983 (4000-200 cm⁻¹) spectrophotometers with the samples in KBr and nujol. IR and Raman spectra of deuterated samples obtained by repeated recrystallization from D₂O are also recorded. A silver colloid for SERS measurements has been prepared by two different methods. A greenish-yellow colloid (colloid 1) having a sharp absorption band at 400 nm is prepared (14) by adding a 1 mM solution of AgNO₃ drop- ¹ To whom correspondence should be addressed. FIG. 1. (A), (B), (C), and (D) Raman spectrum of MASS single crystal and (E) deuterated MASS. wise to a 2 mM solution of NaBH₄ with vigorous stirring until the volume ratio is 1:3. This colloid is stable and does not show precipitation or color change on standing for three months. A greenish-gray colloid (colloid 2) hav- ing a somewhat broad absorption band around 430 nm has been prepared (15) by adding 10 ml of a 1% solution of sodium citrate to a boiling solution of AgNO₃ (90 mg in 500 ml). This colloid is stable for two weeks. Chemicals FIG. 2. (A), (B), (C), and (D) Raman spectrum of SAS single crystal and (E) deuterated SAS. 94 PHILIP ET AL. are procured from Sigma, St. Louis, MO, and deionized water has been used throughout. Absorption spectra of silver colloids, MASS, SAS, and adsorbed MASS and SAS have been recorded on a UV-240 Shimadzu UV-Visible recording spectrophotometer. When MASS and SAS are adsorbed onto colloid I, the color changes to light pink, the absorption band at 400 nm becomes broadened and shifts to 410 nm. Further, an additional very broad band for SAS and shoulder for MASS appears around 490 nm. In the case of colloid 2, the color changes to gray and the broad band around 430 nm becomes more broadened with center around 450 nm (SAS)/485 nm (MASS). To record the SERS spectra, equal volumes of 10^{-3} M MASS (or SAS) and colloid 1 are mixed. The resulting solution is taken in a rectangular quartz cell and the Raman spectra have been recorded on a Dilor GMBH Z24 spectrometer with 40 mW laser power. In the case of colloid 2, a 1:2 mixture of 10^{-3} M MASS (or SAS) and the colloid are taken. #### FACTOR GROUP ANALYSIS MASS crystallizes in the hexagonal system P6mm (C_{6v}^1) having two formula units in the unit cell (1). The tetramolecular unit cell (8) of SAS is orthorhombic $P2_12_12_1(D_2^4)$. The factor group analysis (16) predicts the distribution of irreducible representations at k=0 as $$\overline{\text{MASS}} = 20A_1(R,IR) + 11A_2(IA) + 21B_1(IA) + 11B_2(IA) + 31E_1(R,IR) + 32E_2(R)$$ and $$\overline{|SAS|} = 51A(R) + 50B_1(R,IR) + 50B_2(R,IR) + 50B_3(R,IR)$$ (R, Raman active; IR, infrared active; IA, inactive). TABLE 1 Correlation Scheme for the Internal Vibrational Modes of $CH_3NH_3^+$ in MASS | f^{t} | Free ion symmetry C_{3v} | Site
symmetry
C _{3v} | Factor group
symmetry
C _{6v} | a_{ξ} | | |---------|--|-------------------------------------|---|-----------|----------| | 10 | 5A ₁ | $A_1 \subset$ | | 5 | $(5A_1)$ | | | | | A_2 | 1 | $(1A_2)$ | | | | | $>>$ B_1 | 5 | $(5A_1)$ | | 2 | A ₂ | A_2 | | | | | | • | | B_2 | 1 | $(1A_2)$ | | | 4 P | F | $_{}E_1$ | 6 | (6E) | | 24 | 6E | E === | E_2 | 6 | (6E) | | | $\frac{\text{ntramol.}}{\text{NH}_3^+} = 5.$ | $A_1 + A_2 + 5B_1 +$ | $-B_2 + 6E_1 + 6E_2$ | | | TABLE 2 Correlation Scheme for the Internal Modes of SeO₄²⁻ in MASS | f' | Free ion symmetry T_d | Site
symmetry
C _{3v} | Factor group symmetry $C_{6\nu}$ | a_{ξ} | | |---------|-------------------------|-------------------------------------|----------------------------------|-----------|---------------------------| | | 4 | A | | 3 | $(A_1 + \frac{2}{3} F_2)$ | | 2 | A ₁ | A ₁ | B_1 | 3 | $(A_1 + \frac{2}{3}F_2)$ | | | r / | / | E_1 | 3 | $(E+\tfrac{4}{3}F_2)$ | | 4
12 | $2F_2$ | $E \subseteq E$ | E_2 | 3 | $(E+\frac{4}{3}F_2)$ | | intra | _ | ו זרו מרו | 2 5 | | | | SeO | $= 3A_1$ | $+3B_1+3E_1+$ | 3E ₂ | | | (CH₃NH₃⁺), SeO₄² and Na atoms occupy C_{3v} site in MASS. Water molecules are in two different C_s sites. In SAS, all the atoms are in general sites. Therefore, the effects of lower site symmetry such as activation of inactive modes and splitting of degenerate modes are expected. Correlation schemes for the internal vibrational modes of CH₃NH₃⁺, SeO₄², H₂O in MASS and NH₄⁺, SeO₄², H₂O in SAS are given in Tables 1-5. ### IR AND POLARIZED RAMAN SPECTRA OF MASS Unambiguous assignment of bands above 3000 cm⁻¹ is difficult as the vibrational frequencies of CH_3 , NH_3^+ , and H_2O occur in this region. Both correlation field splitting and Fermi resonance with overtones of δH_2O and δNH_3^+ may also add to this complexity. However, water bands could be separated by comparing with the spectra of the deuterated sample (Table 6). The bending modes of NH_3^+ observed at 1570 and 1510 cm⁻¹ in IR have not shown an isotopic shift on deuteration which leads to the assumption that the NH_3^+ portion of MASS is unaffected by deuteration. The bands above 3100 cm⁻¹ in both Raman (Fig. TABLE 3 Correlation Scheme for the Internal Vibrational Modes of H₂O in MASS | f^r | Molecular symmetry $C_{2v} \xrightarrow{\sigma(yz)}$ | Site symmetry $C_s \xrightarrow{\sigma_v}$ | Factor group symmetry $C_{6\nu}$ | a_{ξ} | | |------------------|--|--|----------------------------------|-----------|-----------------| | | <u> </u> | | A ₁ | 4 | $(4A_1)$ | | 24 | 2A ₁ | -A'= | A_2 | 2 | $(2B_1)$ | | | | | B_1 | 4 | $(4A_1)$ | | 12 | В: | -A'' | B_2 | 2 | $(2B_1)$ | | | -, | | E_1 | 6 | $(8A_1 + 4B_1)$ | | | | | E_2 | 6 | $(8A_1 + 4B_1)$ | | H ₂ (| intramol. | $A_1 + 2A_2 + 4B_1$ | $B_1 + 2B_2 + 6E_1 + 6$ | $6E_2$ | | TABLE 4 Correlation Scheme for the Internal Vibrational Modes of NH_4^+/SeO_4^{2-} in SAS | f | Free ion symmetry T_d | Site symmetry C_1 | Factor group
symmetry
D ₂ | a_{ξ} | | |--------------|-------------------------|---------------------------------------|---|------------------|--| | 4
8
24 | A ₁ | > ^€ | $ \begin{array}{c} A_1 \\ B_1 \\ B_2 \\ B_3 \end{array} $ | 9
9
9
9 | $(A_1 + E + 2F_2)$
$(A_1 + E + 2F_2)$
$(A_1 + E + 2F_2)$
$(A_1 + E + 2F_2)$ | | | intramol | 4 ₁ + 9B ₁ + 9B | $B_2 + 9B_3$ | | | 1) and IR show a decrease in intensity and a new band appears at $2550\,\mathrm{cm^{-1}}$ in Raman on deuteration. Therefore, the bands above $3100\,\mathrm{cm^{-1}}$ are assigned to stretching modes of water. The ν_{as} NH₃⁺ in this region could not be located in the deuterated spectrum. The highest symmetry $(CH_3NH_3)^+$ can have is $C_{3\nu}$. Of the 18 internal vibrational modes, $5A_1 + A_2 + 6E$, the A_1 and E species are active in both Raman and IR and A_2 is inactive. Assignments are done by comparing with earlier reports on (CH₃NH₃)⁺ vibrations (2-7). Stretching modes of CH₃ group usually occur in the region 2850–3000 cm⁻¹. In the present case as the methyl group is attached to a nitrogen atom the C-H bands may appear much below the expected region (17). Hence the IR band at 2700 cm⁻¹ and Raman bands at 2825 and 2817 (a'(cc)a) orientation) are assigned to νCH_3 . Also, $\delta_s CH_3$ may get shifted to higher values from the usually observed range 1370-1385 cm⁻¹. The splittings observed in the a'(cc)a orientation (Table 6) for the vibrational modes $\nu_{as}CH_3(\nu_8)$, $\rho NH_3^+(\nu_{11})$ and $\rho CH_3(\nu_{12})$ which belong to the E species indicate the symmetry of $CH_3NH_3^+$ is lower than $C_{3\nu}$ in the crystal. The presence of librational modes of water appearing at 620 and 640 cm⁻¹ in IR which get shifted/reduced in TABLE 5 Correlation Scheme for the Internal Vibrational Modes of H₂O in SAS | f' | Molecular
symmetry
C _{2v} | Site symmetry C_1 | Factor group symmetry D ₂ | a_{ξ} | | |------------------|--|---------------------|--------------------------------------|-----------|---------------| | | | | A ₁ | 6 | $(4A_1+2B_1)$ | | 16 | $2A_1$ —— | | B_1 | 6 | $(4A_1+2B_1)$ | | 8 | B_1 ——— | | В2 | 6 | $(4A_1+2B_1)$ | | | | | B_3 | 6 | $(4A_1+2B_1)$ | | j | intramol. | | | | | | H ₂ C | = 6 | $A_1 + 6B_1 + 6B$ | $1. + 6B_0$ | | | intensity on deuteration shows that hydrogen bonding is fairly strong between the water molecules and NH₃⁺ and oxygen atoms of SeO₄². The presence of four Raman bands in the spectrum of the polycrystalline sample and six in the single crystal a'(cc)a orientation are possibly due to the factor group splitting (Table 3). The polarized Raman band around 835 cm⁻¹ in Raman (Fig. 1) and the strong IR band at 850 cm⁻¹ are assigned to the $\nu_1(A_1)$ -symmetric stretching mode of SeO₄²⁻. The splitting of 4 cm^{-1} observed in the b(ac)a orientation for this nondegenerate mode is due to a correlation field effect. The $\nu_2(E)$ -symmetric bending mode cannot split due to the lower site symmetry C₃₀ of the ion as can be seen from the correlation scheme (Table 2). Therefore, its splitting at about 45 cm⁻¹ in both Raman [b(ac)a] and IR is also due to the correlation field effect. This comparatively large correlation field splitting may be due to strong hydrogen bonding (18). $\nu_3(F_2)$ -asymmetric stretching and $\nu_4(F_2)$ asymmetric bending modes may split into two each due to lower site symmetry and into a maximum of four components due to both site symmetry and correlation field effects (Table 2). In the IR spectrum (Table 6), ν_3 mode is split into three components. The deuteration study does not show any decrease in intensity/shift of these components. These are therefore not due to the liberational modes of water. For the ν_4 mode no splitting is observed in IR. ### IR AND POLARIZED RAMAN SPECTRA OF SAS In the spectra of SAS also the assignment of bands above 3000 cm⁻¹ is difficult as the vibrations of both NH₄ and H₂O appear in this region. The assignments are given based on the spectra of the deuterated sample and the results (19) of the isostructural NaNH₄SO₄·2H₂O. The bands above 3100 cm⁻¹ show either a decrease in intensity or a shift in frequency on deuteration (Table 6). In the bending mode region the band at 1690 disappears on deuteration. The assignment of the IR bands at 670 and 720 cm⁻¹ to libration modes of water is justifiable as they disappear on deuteration. The downward shift of the stretching modes along with the appearance of a rocking mode of water shows that water molecules are hydrogen bonded. $\nu_1 \text{SeO}_4^{2-}$ is split into a maximum of four components (Raman) in SAS (Fig. 2), whereas in MASS into two only. These are the maximum number of split components expected by correlation field effect. The ν_3 mode is split into three components in IR similar to that of MASS. These bands do not show a shift on deuteration. Therefore, they are the split components of ν_3 . The assignments are given in Table 6. In both the compounds, activation of inactive modes, if any, is due to lower site symmetry of the ion (Tables 2 and 4). TABLE 6 Vibrational Spectral Data (cm $^{-1}\mbox{)}$ and Band Assignments $^{\rm a}$ | | | | † | | | | | | | চ ⊋ | | | | | |------|--------|--|--------------------------------------|--------------------------------|-----------------------------------|------------------------|--------------------------|------------------|---------------------------------------|---|----------------------------|--|--|---| | | | Assignment | "H20/D20 | y and v₃ NH | $\nu_7 - \nu_{as} NH_3^{\dagger}$ | $\nu_1 - \nu_s NH_3^+$ | $\nu_8 - \nu_{as} C H_3$ | $v_2 - v_3 CH_3$ | v(N) CH ₃ ,
combination | $v_2 + v_6 N H_4^4$
combinations of v_4 , v_1 , $v(C - N)$
of $CH_3 N H_3^4$
and $2v_5 SeO_2^{2-}$ | 2,NH;
8H2O/D2O | $v_9 - \delta_{as}NH_3^{\dagger}$ | $v_3 - \delta_4 N H_3^+$ $v_4 N H_4^+$ | ν ₁₀ - δ _{α5} CH ₃ | | | IR | Powder
deuterated Hydrated Deuterated | 3380vwbr
2490w
2265w
2240wr | 3100s | 2935m | | | | | | 1235m
1650wbr | | 1525wbr
1470sh
1385vs | | | | | Hydrated | 3240s | 3100s | 2880т | | | | | 2220mbr
2040mbr | 1690m
1670m
1630w | | 1540w
1450vs
1410s
1390sh | | | | | Powder
deuterated | 3390vwbr | 3100w | 2978w | | | | | | | | 1480w | | | SAS | | Powder
hydrated | 3393wbr
3038wbr | 3140w | 2860w | | | | | | | | | | | | Raman | x(xx)2 | 3425wbr
3325wbr | 2885w | 2850w | | | | | 2065w
2035w | 1770w | | 1425wbr
1405w | | | Ra | x(2x)2 | | | | | | | | | | | 1520wbr
1485wbr
1430wbr
1400wbr | | | | | | r(zá)r | 3200-
3100wbr | 3100- | 3000wbr
2827w
2814w | | | | | | 1768w
1699w
1668w | | 1592w
1565w
1560w
1550w | | | | | z(yy)x | 3530wbr
3290wbr
3112w | 2945w | 2872vw
2845vw
2827vw | | | | | | 1662vw
1640vw
1620vw | | 1596vw
1465vw | | | | IR | Hydrated Deuterated | | 3140m | | 3050s | 2980s | 2935т | 2700w | | 1235m
1155w | 1560mbr | 14856 | | | | | Hydrated | 3460sbr | 3140sh | | 3050s | 2900sbг | | 2700m | 2580w
2450w
2170s
1730wbr | 1675s
1640s
1620sh | 1570ш | 1510s | 1450s | | | | Powder
deuterated | 3461wbr
2550wbr | | | 3048w | 2988m | | | | 1200vw | | | 1486w | | MASS | | Powder
hydrated | 3459mbr
3400sh
3283w
3142w | | | 3053w | 2989s | 2919w | 2838w | | 1640vw | | | 1477w | | | Raman | b(ac)a | 3400wbr | 3072w | | | 2998vw | | | | 1630vw | | | | | | Ra | b(ab)a | 3450wbr 3450wbr 3400wbr | 3090w | | | | 2930vw | | | | | | | | | | b(cb)a | 3450wbr | 3245w
3142wbr 3190wbr 3090w | | | 2960w | | | | 1636w | | 1520w | | | | | a'(cc)a | 3490w
3460w
3400w
3335w | 3245w
3142wbr | 3102w | 3040w | 2997w
2973m | 2968w | 2825w
2817w | | 1668w | | | 1460w | | $v_4 - \delta_5 CH_3$ | $ u_{11} - \rho \mathrm{NH_3^4} $ combination | v (C-N)
combination | $ u_{12} - \rho \text{CH}_3 $ | *3eO}- | ν ₁ SeO ² - | кн ₂ о | ~4SeO ² - | v₂SeO4~
v6NH∤ | External modes | |-----------------------|--|----------------------------------|-------------------------------|----------------------|-----------------------------------|------------------------------|-----------------------|----------------------|----------------------| | | | 1150w
1110w
1085sh
985w | | 915vs
855vs | 835m | w009 | 410vs | 395vs | 235ш | | | | 1150w | | 920s
900m
880m | 845s | 720m
670m | 425s | 390m
350m | 240w | | | | 1012w | | 920m
887s | 847vs | | 435mbr | 368s | | | | | | | 873т | 824vs | | 407m | 333s | 156w | | | | 1119w | | 910w | 825w | | | 340mbr | 292w | | | | | | 885w | 835w | 575w
525w
490w
477w | 430w
420w | 349w | 181æ | | | 1266w
1262w
1251vw
1212w
1208w | 1049w
1006w | | 849w | 833w
830w
820w
808w | 577vw
558vw | 416vw
410w
403w | 341w | 252w
245w
150w | | | | | | 872w | 843 w
832 vs
829 vs | 675w
660w
531w
505w | 432w
413w | 348w
336w
327w | 248w
161w
110w | | 1390s | | 1235m
1115m
1105m
1085w | ₩066 | 915vs
865vs | 835m | w009 | 410sh
400vs | | 240sh
225m | | 1375s | | 1250m
1120m
1100m | | 930s
910s
870m | 850vs | 640vw
620m | 420m | 385s
340sh | | | | | 1200vw
1021w | | 924s
890vs | 859vs | | 475s
446w
420w | 376s | 140w | | | 1264vw | 1002 w | | 920w
890s | 839vs | | 445wbr
407m | 358s | 127w | | | | 1120vvs | | 860w | 837sh
833m | | 408m | 400w
355w | , | | | | | w166 | 884w | 835w | | 443vw | 335vw | | | | | 1120vs
1054w | m966 | 857m | 833s | | | | 235w
120w | | 1410w | 1364w
1345w
1329w | 1198w
1120vs
1020w | 996m
970w
942w | 889w
863m | 833vs | | 442w
438w | | 235w
118w
79w | Relative intensities: vs, very strong; s, strong; m, medium; w, weak; vw, very weak; sh, shoulder; br, broad. 98 PHILIP ET AL. FIG. 3. (A) Raman spectrum of saturated aqueous solution of MASS. (B) SERS spectrum of MASS in colloid 1. (C) SERS spectrum of MASS in colloid 2. (D) SERS spectrum of SAS in colloid 2. From a detailed analysis of the IR spectra of NH₄ in crystals. Oxton et al. (20) have established that the ammonium ion does not rotate if the spectrum contains medium intense bands due to combination modes involving the torsional mode (ν_6) with ν_2 and ν_4 . These usually occur (21) in the regions 1900-2000 cm⁻¹ ($\nu_2 + \nu_6$) and $1700-1800 \text{ cm}^{-1} (\nu_4 + \nu_6)$. The torsional mode (ν_6) of NH₄ is usually IR inactive and shows up as combinations or overtones such as $\nu_2 + \nu_6$ or $\nu_4 + \nu_6$ or $2\nu_6$. In different compounds ν_6 is found to have values ranging from 200 to 390 cm⁻¹ (19). In SAS, it is difficult to identify the torsional mode ν_6 as $\nu_2 \text{SeO}_4^{2-}$ also occurs in the same region. On deuteration, the band at 350 cm⁻¹ and the combination bands around 2050 cm⁻¹ disappear (Table 6). Therefore, the band at 350 cm⁻¹ in IR is due to ν_6 of NH_4^+ . The presence of the ν_6 and its combination with ν_2 indicates that the ion is in a locked in position in the lattice. # SERS SPECTRA The first step in identifying a metal-molecule complex formation is to look for low frequency bands in the SERS spectrum. For molecules forming an Ag-N bond, a band in the 170 cm⁻¹ region is commonly seen whereas for Ag-O bond one appears around 250 cm⁻¹ (22-25). The SERS spectrum of MASS in colloid 1 shows a band at 160 cm⁻¹ (Fig. 3) indicating a Ag-N chemisorbed system. The most intense band observed at 840 cm⁻¹ in the spectrum of saturated solution is replaced by two medium intense bands at 860 and 880 cm⁻¹. An additional weak broad band appears around 1400 cm⁻¹ which could be due to δNH_3^+ or δCH_3 . Appearance of this band supports the inference that chemisorption has taken place through the N atom. In other words, the CH_3NH_3 group is close to the metal surface. The splitting and shifting observed for the stretching mode of SeO_4^{2-} are due to the reduced local symmetry of the ion on chemisorption. MASS in colloid 2 shows two strong sharp bands (Fig. 3) at 128 and 262 cm⁻¹. These are respectively the Ag-N and Ag-O stretching modes. The value 128 cm⁻¹ is unusually low. In other words, in colloid 2, there are two adsorption sites and hence bands due to both CH₃NH₃⁺ and SeO₄² will be affected. The two bands at 791 and 965 cm⁻¹ are assigned to the stretching modes of SeO₄². This large shift from free state values is due to the lowering of the free ion symmetry of SeO₄² on adsorption through its oxygen atom. A similar shift is also observed for the bending mode (Table 7). The metal-molecule stretching band at 244 cm⁻¹ observed (Fig. 3) for SAS in colloid 2 shows that adsorption occurs through the oxygen atom of SeO₄². The enhanced band at 1010 cm⁻¹ may be due to a combination mode. This assignment is justifiable as combination bands can appear in SERS spectra (26). ### CONCLUSIONS - (i) In both the crystals the symmetry of the SeO_4^{2-} is lower than T_d . - (ii) The symmetry of $CH_3NH_3^+$ is lower than C_{3v} and hydrogen bonding is strong in MASS. - (iii) NH₄⁺ is not rotating freely in the crystal lattice of SAS. - (iv) Bands due to SeO₄²⁻ are enhanced in the SERS spectra of both compounds. TABLE 7 SERS Spectral Data (cm⁻¹) and Band Assignments | MASS
solution | MASS in colloid 1 | MASS in colloid 2 | SAS in colloid 2 | Assignment | |------------------|-------------------|-------------------|------------------|---| | - | | 1520 | · <u> </u> | δNH ₃ +,
δCH ₃ | | | 1400 | 1401 | | | | | | | 1595
1400 | δNH_4^+ | | 1000 | | | 1010 | combination
νC-N | | 840 | 880
860 | 965
791 | | νSeO ₄ ²⁻ | | 404
349 | | 450 | 450 | δSeO_4^{2-} | | | | 262 | 244 | νAg-O | | | 160 | 128 | | νAg–N | #### ACKNOWLEDGMENTS Daizy Philip thanks the CSIR, New Delhi for the award of a Research Associateship. The authors are grateful to Professor R. Kaleysa Raj of the Department of Biochemistry and Dr. T. S. Anirudhan of the Department of Chemistry, University of Kerala for their help in the progress of the work. #### REFERENCES - A. Miyazaki, T. Ikeda, T. Osaka, M. Komukae, and Y. Makita, J. Phys. Soc. Jpn. 58, 4496 (1989). - I. A. Oxton, O. Knop, and J. L. Duncan, J. Mol. Struct. 38, 25 (1977). - 3. I. A. Oxton and O. Knop, J. Mol. Struct. 37, 59 (1977). - 4. M. Couzi, A. Daoud, and R. Perret, Phys. Status Solidi 41, 27 (1977). - 5. D. M. Adams and D. C. Stevens, J. Phys. C 11, 617 (1977). - M. Mylarajan and T. K. K. Srinivasan, J. Raman Spectrosc. 16, 412 (1985). - 7. P. S. R. Prasad, Ph.D. thesis, IIT, Kanpur, India, 1990. - E. Corrazza, C. Sabelli, and G. Giuseppetti, Acta Crystallogr. 22, 683 (1967). - K. S. Aleksandrov, I. P. Aleksandrova, L. I. Zherebtsova, A. I. Rostuntseva, T. A. Leibovich, and M. P. Zaitseva, Sov. Phys. Solid State 11, 1639 (1979). - M. P. Zaitseva, A. I. Krupnyi, Yu. I. Kokorin, and V. S. Krasikov, Bull. Acad. Sci. U.S.S.R. Phys. Ser. 39, 52 (1975). - 11. T. Osaka, J. Phys. Soc. Jpn. 45, 571 (1978). - 12. S. J. Greaves and W. P. Griffith, *J. Raman Spectrosc.* **19**, 503 (1988). - 13. Y. Sasaki and Y. Nishina, Surf. Sci. 242, 549 (1991). - J. A. Creighton, C. G. Blatchford, and M. G. Albrecht, J.Chem. Soc. Faraday Trans. 2 75, 790 (1979). - 15. P. C. Lee and D. Meisel, J. Phys. Chem. 86, 3391 (1982). - W. G. Fately, F. R. Dollish, N. T. McDevitt, and F. F. Bentley, "Infrared and Raman Selection Rules for Molecular and Lattice Vibrations—The Correlation Method," Wiley-Interscience, New York, 1972. - C. N. R. Rao, "Chemical Applications of Infrared Spectroscopy," Academic Press, New York, 1963. - P. M. A. Sherwood, "Vibrational Spectroscopy of Solids," Cambridge Univ. Press, London/New York, 1972. - 19. P. Kumara Acharya, Ph.D. thesis, I. I. Sc., Bangalore, India, 1973. - 20. I. A. Oxton, O. Knop, and M. Falk, Canad. J. Chem. 54, 892 (1976). - K. Nakamoto, "Infrared and Raman spectra of Inorganic and Coordination Compounds," Wiley, New York, 1978. - R. E. Clavijo, B. Mutus, R. Aroca, J. R. Dimmock, and O. A. Philips, J. Raman Spectrosc. 19, 541 (1988). - Sun Kai, Wan Chaozhi, and Xu Guangzhi, J. Raman Spectrosc. 20, 267 (1989). - Wan Chaozhi, He Tianjing, Gao Xiaoping, Li Jungquing, Xin Houwen, and Liu Fan Chen, J. Mol. Struct. 140, 227 (1986). - M. Pagannone, B. Fornari, and G. Mattei, Spectrochim. Acta Part A 43, 621 (1987). - M. Takahashi, M. Gotto, and M. Itoh, Chem. Phys. Lett. 121, 458 (1985).