Magnetic Susceptibility and Electron Paramagnetic Resonance Study of KUO₃ with Cubic Perovskite Structure

Yukio Hinatsu

Department of Chemistry, Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki 319-11, Japan

Received May 11, 1993; in revised form August 6, 1993; accepted August 9, 1993

KUO₃ (cubic perovskite structure) was prepared and its magnetic susceptibility was measured from 4.2 K to room temperature. It was found that a magnetic anomaly (magnetic transition) occurred at 16.8 K and that this transition temperature decreased with increasing magnetic field. The electron paramagnetic resonance spectrum due to the U⁵⁺ ion in the paramagnetic state was not observed even at 4.2 K. The magnetic susceptibility and the optical absorption spectrum were analyzed on the basis of an octahedral crystal field model. The crystal field parameters determined are discussed and compared with those reported for other f¹ compounds. O 1994 Academic Press, Inc.

INTRODUCTION

The magnetic and optical properties of actinides are characterized by the behavior of 5f electrons. For the 5f compounds, the crystal field, spin-orbit coupling, and electron-electron repulsion interactions are of comparable magnitude, which makes the analysis of the experimental results complicated. However, in the case of actinide ions having the [Rn]5f¹ electronic configuration, such as a U⁵⁺ ion, the situation is considerably simplified because there are no 5f electronic repulsion interactions. Therefore, the theoretical treatment of such ions is easier and we may then obtain a deeper understanding of the behavior of 5f electrons in solids.

In this paper, we focus our attention on the magnetic properties of KUO_3 . X-ray structure analysis indicates that this uranate has a cubic-perovskite-type structure (space group: O_h^1 -Pm3m) (1), i.e., a uranium ion is octahedrally coordinated by six oxygen ions. This high coordination symmetry around the U^{5+} ion, in addition to the simple f^1 configuration, enables us to more easily analyze the experimental results.

There have been several reports on the measurements of the magnetic susceptibility and electron paramagnetic resonance (EPR) spectrum for KUO₃. However, the results are inconsistent with each other and not sufficiently discussed. Kemmler-Sack *et al.* (2) measured the mag-

netic susceptibility of KUO₃ from 92 to 453 K and found that it did not obey the Curie-Weiss law, but could be represented by $\chi = 0.040/T + 390 \times 10^{-6}$ (emu/mole). Keller (3) extended the temperature range of the magnetic susceptibility measurements of KUO3 down to 4.2 K and reported that there is no magnetic transition down to this temperature. Miyake et al. (4) prepared KUO, by heating a stoichiometric mixture of UO₂ and K₂CO₃ at 550 ~ 700°C in vacuo or in an argon atmosphere and measured its magnetic susceptibility in the temperature range between 2.0 K and room temperature. They found a sharp spike at 16 K in the magnetic susceptibility vs temperature curve. Later, Kanellakopulos et al. (5) made detailed measurements of the temperature and field dependence of the magnetic susceptibility of KUO3 and obtained results quite similar to those reported by Keller (3), but found a weak field dependence of the susceptibility at low temperatures. As for the electron paramagnetic resonance (EPR) spectrum on KUO₁, Lewis et al. (6) reported that they could not observe any EPR spectrum for KUO3 even at 4.2 K. On the contrary, Miyake et al. (4) measured a broad EPR spectrum at room temperature and 77 K and found a g-value of 2.42-2.61. Edelstein and Goffart (7) consider the magnetic susceptibility anomaly at 16 K and the EPR spectrum for KUO₁ measured by Miyake et al. to be incorrect.

In order to clarify the inconsistent experimental results and to study the magnetic properties of the 5f electron in an octahedral crystal field, we prepared KUO₃ and carried out its magnetic susceptibility measurements in the temperature range between 4.2 K and room temperature, and EPR measurements both at room temperature and at 4.2 K. EPR measurements were also made on KUO₃ diluted with BaUO₃ (a temperature-independent paramagnet (8)) and diluted with BaCeO₃ (a weakly temperature-independent paramagnet (9)). The crystal field parameters for KUO₃ were obtained from the analysis of its optical absorption spectrum reported earlier (10). The results of the magnetic susceptibility and the EPR measurements are discussed on the basis of an octahedral crystal field model.

EXPERIMENTAL

1. Preparation

KUO₃ was prepared by the following reactions:

$$U_3O_8 + 3K_2CO_3 \xrightarrow{\text{in air}} 3K_2UO_4 + 3CO_2$$
, and [1]

$$K_2UO_4 + UO_2 \xrightarrow{in \, vacuo} 2KUO_3.$$
 [2]

 K_2UO_4 was prepared by firing finely ground mixtures of U_3O_8 and K_2CO_3 in air at 850°C for 1 day. After the mixtures were cooled, the same grinding and firing were repeated. KUO_3 was prepared by heating mixtures of UO_2 and an excess of K_2UO_4 in an evacuated quartz tube at 700°C for 10 hr. To avoid the reaction of the mixtures of K_2UO_4 and UO_2 with quartz, the mixtures were wrapped with molybdenum foil. After it cooled to room temperature, the sample was crushed into powder, pressed into pellets, and reacted under the same conditions.

The specimens, KUO₃ diluted with BaUO₃ (or BaCeO₃), were prepared by heating mixtures of the KUO₃ and BaUO₃ (or BaCeO₃) in evacuated quartz tubes at 700°C for 2 days. The ratios of the KUO₃ in BaUO₃ (or BaCeO₃) were 2-5 mole%.

2. Analysis

- 2.1. X-ray diffraction analysis. An X-ray diffraction study was performed with $CuK\alpha$ radiation on a Philips PW 1390 diffractometer equipped with a curved graphite monochromator. The lattice parameters of the samples were determined by a least-squares method applied to the diffraction lines.
- 2.2. Determination of oxygen content. The oxygen non-stoichiometry in the specimen was checked by the back-titration method (11, 12). A weighed sample was dissolved in excess cerium (IV) sulfate solution. The cerium (IV) sulfate solution was standardized in advance with stoichiometric UO₂. Then, the excess cerium (IV) was titrated against a standard iron (II) ammonium sulfate solution with ferroin indicator. The oxygen content was determined for a predetermined K/U ratio.

3. Magnetic Susceptibility Measurement

The magnetic susceptibility was measured with a Faraday-type torsion balance in the temperature range between 4.2 K and room temperature. The apparatus was calibrated with a manganese Tutton's salt ($\chi_g = 10.980 \times 10^{-6}/(T+0.7)$) standard. The temperature of the sample was measured by a "normal" Ag vs Au-0.07 at% Fe thermocouple (4.2 K ~ 40 K) (13) and an Au-Co vs Cu thermocouple (10 K ~ room temperature). To ex-

amine the field dependence, the magnetic susceptibility was measured in each of the field strengths of 2800, 4700, 6900, 9000, and 10,600 G. Details of the experimental procedure have been described elsewhere (14). Furthermore, the magnetic susceptibility was also measured with a commercial SQUID magnetometer (Quantum Design, MPMS model) at 1000, 3000, 5000, 7000, 9000, 15,000, and 25,000 G.

4. Electron Paramagnetic Resonance Measurement

The EPR measurements were carried out both at room temperature and at 4.2 K for the specimen sealed in a quartz tube. The measurements were made using a Jeol RE-2X spectrometer operating at X-band frequency (~9.10 GHz) with 100 kHz field modulation. The magnetic field was swept from 100 to 13,000 G. Before measuring the specimen, a blank was recorded to eliminate the possibility of interference by the background resonance of the cavity and/or sample tube.

RESULTS

The X-ray diffraction analysis shows the specimen KUO_3 prepared in this study is cubic and the lattice parameter is a=4.294 Å. From the chemical analysis of the oxygen concentration, the sample was found to be $KUO_{2.993}$. In view of the error limits for this analysis, this result indicates that the specimen is oxygen stoichiometric.

Figure 1 shows the temperature dependence of the magnetic susceptibility of KUO3 which was measured in a magnetic field of 4700 G. We have found that the susceptibility shows a sharp maximum (spike) at ca. 16 K. In the same figure, the susceptibility data measured by other research groups are also shown. Our susceptibility data are close to those of Kanellakopulos et al. (5), but a discrepancy between their data and ours has been found in the lower temperature region. Keller (3) and Kanellakopulos et al. (5) reported no magnetic ordering down to 4.2 K through their magnetic susceptibility measurements, while Miyake et al. (4) found a sharp spike at 16 K in the susceptibility vs temperature curve. The magnetic anomaly found in this experiment is consistent with that reported by Miyake et al. (4). A similar magnetic behavior has been found for the magnetic susceptibility of NaUO, (15) (the crystal structure of which is GdFeO₃-type (16)) and is supported by the finding of a heat capacity anomaly (17), although the transition temperature is 31.1 K. That transition is reported to be of long-range order of the ferromagnetic type (5). We believe that the magnetic anomaly found at ca. 16 K is due to the long-range magnetic ordering between uranium ions. Figure 2 shows the dependence of magnetic susceptibility on field strengths 120 YUKIO HINATSU

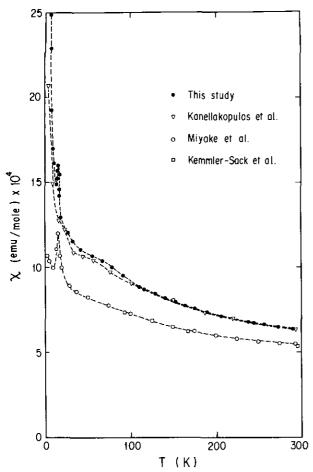


FIG. 1. Magnetic susceptibility vs temperature curve for KUO₃.

at 4.2, 77.3, and 298 K. A field dependence of the magnetic susceptibility is found at 4.2 K. This field dependence of the susceptibility must be related to the magnetic anomaly found at ca. 16 K. Kanellakopulos *et al.* also reported a similar field dependence of the susceptibility below 24.5 K (5).

Figure 3 shows the detailed susceptibility vs temperature curves in a lower temperature region at various magnetic fields. Clearly, the susceptibility below 25 K depends on the magnetic field and the magnetic transition temperature decreases with increasing magnetic field. Figure 4 shows the dependence of the transition temperature on field strength. In this figure, the data measured using a SQUID magnetometer are also included. From the extrapolation of the magnetic field to zero field, the transition temperature for KUO₃ was determined to be 16.8 K. In a magnetic field of 25,000 G, this sample shows no magnetic transition down to 4.2 K.

In this study, the EPR measurements for KUO₃ were made under various experimental conditions. The measurements for a concentrated (not diluted) KUO₃ showed

FIG. 2. Field dependence of magnetic susceptibility at 4.2, 77.3, and 298 K.

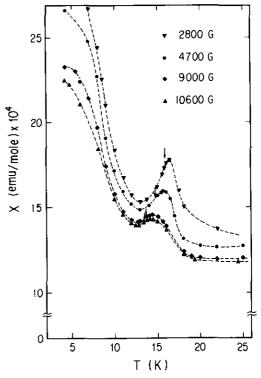
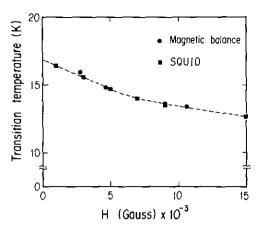
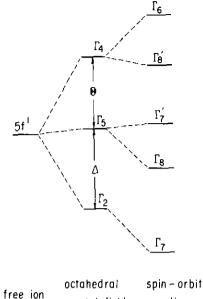


FIG. 3. Magnetic susceptibility vs temperature curves in a lower temperature region at various magnetic fields. Arrows show the transition temperatures at each magnetic field.




FIG. 4. Dependence of magnetic transition temperature on field strength.

a broad EPR spectrum even at room temperature. The g-value was 2.39 and the peak-to-peak linewidth was ca. 1600 G. This result is similar to that reported by Miyake et al. (4). With decreasing temperature, the spectrum becomes broader. As will be discussed later, we believe that this EPR spectrum with large g-value (g > 2) is not ascribable to the paramagnetic behavior of the U^{5+} ion perturbed by the octahedral crystal field, but that it may be related to the magnetic interaction between uranium ions, as was found at low temperatures. To decrease the effect of this magnetic interaction and to measure the EPR spectrum ascribable to the U^{5+} ion just perturbed by the crystal field, KUO₃ was diluted with BaUO₃ or BaCeO₃. Both the specimens, however, showed no EPR signal, even at 4.2 K.

DISCUSSION

 KUO_3 is a suitable compound to study the behavior of 5f electron in solids, because it has a cubic-perovskite-type structure, in which a U^{5+} ion is octahedrally coordinated by six oxygen ions. This high coordination symmetry, in addition to the one-electron configuration ([Rn]5 f^1), enables us to analyze the magnetic properties of KUO_3 theoretically.

Figure 5 shows the effects of perturbing the f^1 orbital energy levels successively by an octahedral crystal field, and spin-orbit coupling. In the crystal field with octahedral symmetry, the sevenfold degenerate energy state of the f orbitals is split into Γ_2 , Γ_5 , and Γ_4 states, where Δ and Θ are parameters that represent the intensity of the crystal field. If spin-orbit coupling is taken into account, the Γ_2 orbital state is transformed into Γ_7 , whereas the Γ_5 and Γ_4 states are split into Γ_7^* and Γ_8 , and Γ_6 and Γ_8^* , respectively. The ground-state Kramers doublet is the Γ_7 state and is coupled to the excited Γ_7^* state arising from

crystal field coupling

FIG. 5. f^{\dagger} orbital splitting perturbed by octahedral crystal field and spin-orbit coupling.

the Γ_5 orbital, by spin-orbit coupling. The energy matrices for the Γ_7 , Γ_8 , and Γ_6 states are:

$$\Gamma_{7}: \begin{vmatrix} 0 & \sqrt{3k} \zeta \\ \sqrt{3k} \zeta & \Delta - \frac{1}{2}k\zeta \end{vmatrix}$$

$$\Gamma_{8}: \begin{vmatrix} \Delta + \frac{1}{4}k\zeta & \frac{3}{4}\sqrt{5kk'} \zeta \\ \frac{3}{4}\sqrt{5kk'} \zeta & \Delta + \Theta - \frac{3}{4}k'\zeta \end{vmatrix}$$

$$\Gamma_{6}: |\Delta + \Theta + \frac{3}{2}k'\zeta|.$$
[3]

Here ζ is the spin-orbit coupling constant and k and k' are the orbital reduction factors for an electron in Γ_5 and Γ_4 orbital states, respectively (18, 19). Diagonalization of the energy matrix produces the ground state Γ_7 and the excited state Γ_7' , and the corresponding wavefunctions are written

$$\begin{split} |\Gamma_{7}\rangle &= \cos\theta|^{2}F_{5/2}, \Gamma_{7}\rangle - \sin\theta|^{2}F_{7/2}, \Gamma_{7}^{*}\rangle, \\ |\Gamma_{7}'\rangle &= \sin\theta|^{2}F_{5/2}, \Gamma_{7}\rangle + \cos\theta|^{2}F_{7/2}, \Gamma_{7}^{*}\rangle, \end{split} \tag{4}$$

where θ is the parameter describing the admixture of the Γ_7 levels in the ground state with the relation

$$\tan 2\theta = \frac{2\sqrt{3k}\,\zeta}{\Delta - \frac{1}{2}k\zeta}.$$
 [5]

Similarly, diagonalization of the Γ_8 matrix produces the two levels Γ_8 and Γ_8' .

122 YUKIO HINATSU

The g-value for the ground Γ_7 doublet is calculated as follows:

$$g = 2\langle \Gamma_{7} | \mathbf{L} + 2\mathbf{S} | \Gamma_{7} \rangle$$

$$= 2 \cos^{2} \theta - 4\sqrt{k/3} \sin 2 \theta - \frac{2}{3} (1 - k) \sin^{2} \theta.$$
 [6]

This equation indicates that the g-value should be between -1.43 and 2.00, even if the covalency effect k is included (20). Therefore, the EPR spectrum with large g-value (g > 2) measured for concentrated KUO₃ is not ascribable to the paramagnetic behavior of U⁵⁺ ion. The KUO₃ diluted with BaUO₃ (or BaCeO₃) in which the U⁵⁺ ion is perturbed by the octahedral crystal field shows no EPR signal, even at 4.2 K. Although the g-value for the ground crystal field state of U⁵⁺ ion was not determined from EPR measurements, this value can be evaluated from the temperature-dependent part of the magnetic susceptibility, as will be described in the following.

The magnetic susceptibility of the molecule is given by the equation

$$\chi = \frac{N \sum_{n,m} \{(E_{n,m}^{(1)})^2 / kT - 2E_{n,m}^{(2)}\} \exp(-E_{n,m}^0 / kT)}{\sum_{n,m} \exp(-E_{n,m}^0 / kT)}, \quad [7]$$

where N is Avogadro's number, $E_{n,m}^0$ is the zero-field energy, $E_{n,m}^{(1)}$ and $E_{n,m}^{(2)}$ are the first- and second-order Zeeman terms, and n and m are quantum numbers. If the separation of levels within the ground state is much smaller than kT, and the energy of the next excited state is much larger than kT, the susceptibility is expressed by the form (21)

$$\chi = \frac{Ng^2\beta^2}{4kT} + \chi_{\text{TIP}}$$
 [8]

where

$$\chi_{\text{TIP}} = 2N\beta^2 \sum_{i} \frac{|\langle \Gamma_i | \mathbf{L} + 2\mathbf{S} | \Gamma_7 \rangle|^2}{E(\Gamma_i) - E(\Gamma_7)}.$$
 [9]

The g-value in Eq. [8] is the same g-value obtained from EPR measurements on the ground crystal field state (Eq. [6]), i.e., the g-value can be determined from this temperature-dependent part of the susceptibility. From the extrapolation of 1/T to 0 for the measured magnetic susceptibility ($\chi_{\rm exp}$) vs reciprocal temperature (1/T) curve, we may obtain the temperature-independent paramagnetic susceptibility $\chi_{\rm TIP} = 450 \times 10^{-6}$ (emu/mole). The resulting temperature-dependent susceptibility ($\chi(T) = \chi_{\rm exp} - \chi_{\rm TIP}$) follows the equation $\chi(T) = 0.054/T$ except at very low temperatures. From the temperature-dependent part of the susceptibility (using Eq. [8]), the g-value for the

ground state of the U^{5+} ion in this KUO₃ is calculated to be 0.76. This g-value is quite reasonable for the value of an f^1 electron perturbed by the octahedral crystal field and comparable g-values are found in many $5f^1$ compounds (22–25).

The optical spectrum on KUO₃ was measured by Kemmler-Sack in the range between 4000 and 40,000 cm⁻¹ (10). The spectrum shows no splitting of $\Gamma_7 \to \Gamma_8$ and $\Gamma_7 \to \Gamma_8'$ transitions, i.e., the central U^{5+} ion is in a crystal field with octahedral symmetry. The transition energies are listed in Table 1. The crystal field parameters and orbital reduction factors in Eq. [3] are determined by fitting the transition energies calculated to those determined experimentally, and by fitting the calculated gvalue (Eq. [6]) to the g-value obtained from the magnetic susceptibility measurements (|g| = 0.76). We have considered that the transition $\Gamma_7 \to \Gamma_8'$ is a least reliable one because it is known to be broad and sometimes split. The transition energies calcualted, and the crystal field parameters and orbital reduction factors determined here are also listed in Table 1. The spin-orbit coupling constant is 1896 cm⁻¹, which is a reasonable value for U⁵⁺ ions in solids (26-29), and is close to the value obtained from linear interpolation of the ζ values between Pa⁴⁺ and Np⁶⁺ compounds, 1950 cm⁻¹ (30). From the orbital reduction factors k and k', a considerable degree of covalency is found to exist in this uranate. For comparison, the crystal field parameters and spin-orbit coupling constants for LiUO₃ and BaPrO₃ (20, 31) are listed in Table 2 (32). They were also determined from the analysis of their magnetic and optical properties on the basis of the octahedral crystal field model. Parameters obtained for KUO₃ are comparable to those for LiUO₃ (20). The spin-orbit coupling constant for the U5+ ion in KUO3 is much larger than that for the Pr⁴⁺ ion ([Xe]4f¹ electronic configuration) in

TABLE 1
Crystal Field Parameters and
Orbital Reduction Factors

	Experiment	Calculation
$\Gamma_7 \rightarrow \Gamma_8 \text{ (cm}^{-1)}$	4,386	4,365
$\Gamma_7 \rightarrow \Gamma_7' \text{ (cm}^{-1)}$	6,849	6,849
$\Gamma_7 \rightarrow \Gamma_8' \text{ (cm}^{-1)}$	9,808	10,715
$\Gamma_7 \rightarrow \Gamma_6 (\text{cm}^{-1})$	12,500	12,500
g-value	$ g = 0.76^a$	g = -0.76
ζ (cm ⁻¹)	101	1,896
Δ (cm ⁻¹)		3,335
Θ (cm ⁻¹)		4,683
k		0.95
		0.80

^a This value was determined from the temperaturedependent part of the magnetic susceptibility (see text).

TABLE 2
Spin-Orbit Coupling Constant and
Crystal Field Parameters

Compound	ζ	Δ	Θ
KUO ₃	1896	3335	4683
LiUO ₃	1938	3543	6145
BaPrO ₃	865	1686	2521

Note. All values are given in cm-1.

BaPrO₃ (31). The magnitude of the crystal field splitting $(\Delta + \Theta)$ of the U⁵⁺ ion in KUO₃ is also much larger than that for the Pr⁴⁺ ion in the same octahedral symmetry. This result shows that the 5f electrons of actinides are not so effectively shielded from their environment by the completed 6s and 6p subshells.

Next, the magnetic susceptibility of KUO₃ in the paramagnetic temperature region is evaluated. Since we have already obtained the wavefunctions for the ground doublets (Eq. [4]) and excited states, the magnetic susceptibility of KUO₃ is easily calculated from Eq. [8] as follows:

$$\chi = 0.054/T + 225 \times 10^{-6}.$$
 [10]

The discrepancy between the calculated results and experimental results is found in the temperature-independent part of the susceptibility. The χ_{TIP} obtained experimentally is larger than that calculated. This result suggests that some of the uranium ions are in the tetravalent state. The electronic configuration of the U^{4+} ion is $[Rn]5f^2$. If the $5f^2$ ion is octahedrally coordinated by six anions, its susceptibility is known to show a temperature-independent paramagnetism over a wide temperature range (33).

REFERENCES

- W. Rüdorff, S. Kemmler, and H. Leutner, Angew. Chem. 74, 429 (1962).
- S. Kemmler-Sack, E. Stumpp, W. Rüdorff, and H. Erfurth, Z. Anorg. Allg. Chem. 354, 287 (1967).
- C. Keller, in "MTP International Review of Science," Vol. 7, "Lanthanides and Actinides" (K. W. Bagnall, Ed.), Series I, p. 47. Butterworths, London, 1972.
- 4. C. Miyake, K. Fuji, and S. Imoto, Chem. Phys. Lett. 61, 124 (1979).

- B. Kanellakopulos, E. Henrich, C. Keller, F. Baumgärtner, E. König, and V. P. Desai, Chem. Phys. 53, 197 (1980).
- W. B. Lewis, H. G. Hecht, and M. P. Eastman, *Inorg. Chem.* 12, 1634 (1973).
- N. M. Edelstein and J. Goffart, in "The Chemistry of the Actinide Elements" (J. J. Katz, G. T. Seaborg, and L. R. Morss, Eds.), 2nd ed., Chap. 18. Chapman & Hall, London/New York, 1986.
- 8. Y. Hinatsu, J. Solid State Chem. 102, 566 (1993).
- J. B. Bulman, M. V. Kuric, R. P. Guertin, S. Foner, E. J. McNiff, Jr., G. Cao, J. O'Riely, J. E. Crow, P. P. Wise, and T. Yuen, J. Appl. Phys. 69, 4874 (1991).
- 10. S. Kemmler-Sack, Z. Anorg. Allg. Chem. 363, 295 (1968).
- S. R. Dharwadkar and M. S. Chandrasekharaiah, Anal. Chim. Acta 45, 545 (1969).
- T. Fujino and T. Yamashita, Fresenius' Z. Anal. Chem. 314, 156 (1983).
- L. L. Sparks and R. L. Powell, J. Res. Natl. Bur. Stand. U.S. A. 76, 263 (1972).
- 14. Y. Hinatsu and T. Fujino, J. Solid State Chem. 60, 195 (1985).
- 15. C. Miyake, K. Fuji, and S. Imoto, Chem. Phys. Lett. 46, 349 (1977).
- S. F. Bartram and R. E. Fryxell, J. Inorg. Nucl. Chem. 32, 3701 (1970).
- W. G. Lyon, D. W. Osborne, H. E. Flotow, and H. R. Hoekstra, J. Chem. Thermodyn. 9, 201 (1977).
- J. C. Eisenstein and M. H. L. Pryce, Proc. R. Soc. Ser. A 255, 181 (1960).
- H. G. Hecht, W. B. Lewis, and M. P. Eastman, Adv. Chem. Phys. 21, 351 (1971).
- Y. Hinatsu, T. Fujino, and N. Edelstein, J. Solid State Chem. 99, 182 (1992).
- J. H. Van Vleck, "The Theory of Electronic and Magnetic Susceptibilities." Oxford Univ. Press, London, 1932.
- 22. C. A. Hutchison, Jr. and B. Weinstock, J. Chem. Phys. 32, 56 (1960).
- 23. P. Rigny and P. Plurien, J. Phys. Chem. Solids 28, 2589 (1967).
- 24. M. Dryfford, P. Rigny, and P. Plurien, Phys. Lett. A 27, 620 (1968).
- 25. J. Selbin and H. J. Sherrill, Inorg. Chem. 13, 1235 (1974).
- 26. D. G. Karraker, Inorg. Chem. 3, 1618 (1964).
- 27. M. J. Reisfeld and G. A. Crosby, Inorg. Chem. 4, 65 (1965).
- 28. N. Edelstein, D. Brown, and B. Whittaker, *Inorg. Chem.* 13, 563 (1974).
- "Gmelin Handbook of Inorganic Chemistry," Uranium, Supplement Volume A6. Springer-Verlag, New York/Berlin, 1983.
- 30. J. Selbin and J. D. Ortego, Chem. Rev. 69, 657 (1969).
- 31. Y. Hinatsu and N. Edelstein, J. Solid State Chem., in press.
- 32. There are a number of different conventions used for the crystal field parameters. We believe that for the f^1 system the strong crystal field convention using parameters Δ and Θ is the most convenient. Some researchers use the formalism which is used in the theory of tensor operators. The parameters B_k^q have the relationship given by the equations $b_4 = B_0^4/33$, $b_6 = (-5/429)B_0^6$, $\Theta = 8b_4 56b_6$, and $\Delta = 10b_4 + 84b_6$. From these equations, $B_0^4 = 15,291$ cm⁻¹ and $B_0^6 = 1403$ cm⁻¹ are obtained.
- C. A. Hutchison, Jr., and G. A. Candela, J. Chem. Phys. 27, 707 (1960).