Subsolidus-Phase Equilibria in the System MgO-V₂O₅-MoO₃

V. G. Zubkov and I. A. Leonidov

Institute of Solid State Chemistry, Ural Branch of Academy of Sciences, 91 Pervomayskaia, Yekaterinburg, 620219 Russia

and

K. R. Poeppelmeier¹ and V. L. Kozhevnikov²

Chemistry Department of Ipatieff Laboratory, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208

Received May 17, 1993; in revised form April 1, 1994; accepted April 6, 1994

IN HONOR OF C. N. R. RAO ON HIS 60TH BIRTHDAY

The phase relations in the system $MgO-V_2O_5-MoO_3$ were studied and the subsolidus region of the phase diagram was constructed. The new compound $Mg_{2.5}VMoO_8$ was discovered on the join of $MgMoO_4-Mg_3V_2O_8$. $Mg_{2.5}VMoO_8$ crystallizes in the orthorhombic space group Pnma (No. 62) with cell dimensions a=5.0515(1) Å, b=10.3455(2) Å, c=17.4683(4) Å, and Z=6. The structure is a framework of MoO_4 and VO_4 tetrahedra with linking octahedral and trigonal prismatic MgO_6 groups. The molybdenum and vanadium cations preserve their highest oxidation state, and the electrical neutrality of the crystalline lattice is maintained by partial occupancy of magnesium sites. Simple quasibinary equilibria were established between $MgMoO_4$ and MoV_2O_8 , $V_{2-x}Mo_{2x}O_5$, MgV_2O_6 , and $Mg_2V_2O_7$. © 1994 Academic Press, Inc.

INTRODUCTION

Selective heterogeneous oxidation reactions of hydrocarbons are known to be catalyzed by metal oxides. The oxide systems MgO-V₂O₅ and MgO-MoO₃ have attracted attention in recent years because they have been shown to be active and selective in the oxidation of alkanes. Kung and co-workers (1) have shown that the selective oxidative dehydrogenation of butane to butenes in the system MgO-V₂O₅ could be attributed to magnesium orthovanadate Mg₃V₂O₈. Selective oxidative dehydrogenation of butane to maleic anhydride has also been reported by Stepanov et al. for the MgO-MoO3 system (2), and recently, Murchison has described the oxidation of butane to maleic anhydride over MgMoO₄ (3). Therefore, the more complex MgO-V₂O₅-MoO₃ system should be interesting as an oxidation catalyst. However, the basic questions on phase compatibility and phase relations

in this system are not known. In this report, we present the subsolidus-phase equilibria of the $MgO-V_2O_5-MoO_3$ system. The new compound $Mg_{2.5}VMoO_8$ was identified and its structure was determined. The structure accommodates the transition metal cations in their group's highest oxidation state. Electrical neutrality of the crystalline framework is maintained by the presence of magnesium vacancies.

Based on a review of the literature, the vanadates MgV₂O₆, Mg₂V₂O₇, and Mg₃V₂O₈ are known in the binary system MgO-V₂O₅ (4, 5). Magnesium metavanadate, MgV₂O₆, undergoes a phase transition at 585°C and melts incongruently at 768°C (6). Magnesium pyrovanadate, $Mg_2V_2O_7$, exists in three polymorphic forms: α - $Mg_2V_2O_7$ is stable below 767°C, β - $Mg_2V_2O_7$ exists in the limits 767–918°C, and γ -Mg₂V₂O⁷ is stable up to 1135°C, where it melts with decomposition. Magnesium orthovanadate, Mg₃V₂O₈, is known to be stable in one modification which melts incongruently at 1212°C (7). Two magnesium molybdates are documented reliably in the MgO-MoO3 system (8). Magnesium orthomolybdate, MgMoO₄, melts congruently at 1390°C. The molybdate, MgMo₂O₇, undergoes a phase transition at 830°C and melts with decomposition at 850°C. The eutectic between MgMoO₄ and MgO contains 66 mole% of MgO and melts at 1320°C. The eutectic between MoO₃ and MgMo₂O₇ contains 14 mole% of MgO and melts at 745°C. The oxides V₂O₅ and MoO₃ form a solid solution up to 10 mole% MoO₃, at room temperature (9). The intermediate compound MoV_2O_8 was identified (10). The eutectics V_2O_5 -MoV₂O₈ and MoV₂O₈-MoO₃ melt at 644 and 652°C, respectively.

EXPERIMENTAL

Reagent grade oxides MgO, V₂O₅, and MoO₃ (Aldrich) were used as starting reagents. As a preliminary step, the

¹ To whom correspondence should be addressed.

² Permanent address: Institute of Solid State Chemistry, Ural Branch of Academy of Sciences, 91 Pervomayskaia, Yekaterinburg, 620219 Russia.

198 ZUBKOV ET AL.

bordering binary compounds were synthesized according to solid state procedures. The prepared compounds were weighed in desired proportions, milled carefully with addition of ethanol, and then calcined at appropriate temperatures. Owing to the presence of low-temperature eutectics with decreasing magnesia content in the mixtures, a calcination at 600-630°C was implemented for the compositions containing less than 50 mole% of MgO to prevent the formation of liquid phases. The equilibration of these mixtures was performed for 1.5-2 months. The firing temperature was chosen to be 850-900°C for the specimens with larger amounts of magnesia and equilibration was performed for 60-100 hr. The mixtures were ground several times during the calcination procedures. Equilibria were assumed to be established when there were no further changes in the X-ray diffraction patterns. The preliminary X-ray studies were carried out using a Rigaku Geigerflex diffractometer with $CuK\alpha$ radiation. The data for the structure determination were collected with a STADI-P (STOE, Germany) diffractometer with $CuK\alpha_1$ radiation using a transmission method and a Ge(111) single-crystal monochomator. The standards were Si (a =5.43075(5) Å, external) and α -Al₂O₃ (NIST SRM676, internal). The search for an isostructural analog was carried out using SEARCH/MATCH STOE software with the JCPDS-ICDD data base. Structural refinement was carried out using the DBW4.1 program (13), which is a version of the DBW3.2S program adapted for the STOE software. The angle correction for absorption was determined by absorption of the incident beam, $\mu t = \ln (I/I_0)$. Two types of step scans for data acquisition with rotation of sample were used: (i) a scintillation detector, 2θ range = $4-120^{\circ}$, step = 0.02° , FDS = 0.2 mm, acquisition time = 30 min, for preliminary structural refinement; and (ii) large position sensitive detector (PSD), 2θ range = 4– 120° , step = 5° , acquistion time = 30 min, for final refinement. PSDs exhibit a noticeable nonlinearity depending on the channel number. However, this nonlinearity in the central part of the detector does not exceed 1%. To avoid the influence of the nonlinearity on the results, the data acquisition was done with a 5° step.

RESULTS AND DISCUSSION

Single-phase materials were not obtained when molybdenum oxides was substituted into magnesium orthovanadate according to the formula $Mg_3V_{2-x}Mo_xO_8$ with x=0.2 and 0.5. However, a small solubility of molybdenum oxide at 900°C was noticed while substituting it according to the formula $Mg_{3-x}V_{2-2x}Mo_{2x}O_8$. The unit cell parameters of $Mg_{3-x}V_{2-2x}Mo_{2x}O_8$ reacted with small concentrations of molybdenum cations were estimated from the (132), (023), (113) diffraction peaks referenced to those of orthorhombic magnesium orthovanadate. The

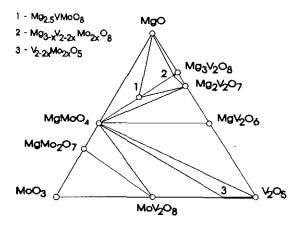


FIG. 1. Subsolidus-phase relations in the triangle MgO- V_2O_5 -MoO $_3$.

lattice, parameters obtained for pure, undoped Mg₃V₂O₈ were slightly smaller than the JCPDS-ICDD (Card N37-351) data obtained from a monocrystalline sample. The difference was most likely caused by sample imperfections. From the changes of lattice parameters the solubility limit was estimated to be at $x \sim 0.03$ (11). Systematic triangulation was used to clarify phase constituents at larger molybdena contents (see Fig. 1). Compositions along the lines from the point MgO: $V_2O_5 = 3:1$ (orthovanadate) of the binary system MgO-V₂O₅ to the points of the binary system MgO-MoO₃ with ratios of $MgO-MoO_3 = 1:1, 1.5:1, 2:1, 3:1, and 4:1$ were investigated. All of these samples showed the presence of an unidentified phase in combination with magnesium orthovanadate (Mg₃V₂O₈) or magnesium orthomolybdate (MgMoO₄), depending on the composition. The X-ray diffraction patterns of the specimens along the line Mg₃V₂O₈-MgMoO₄ with overall composition Mg_{3-x} $V_{2-2x}Mo_{2x}O_8$ revealed the existence of two solid phases in equilibrium between the points 0 < x < 0.5 and 0.5 <x < 1.0. Additional experiments also showed the equilibrium between MgO and $Mg_{3-x}V_{2-2x}Mo_{2x}O_8$ with x =0.5. The firing of the oxide mixture MgO: V₂O₅: MoO₃ = 6:2:1, corresponding to the triangle $Mg_3V_2O_8$ -Mg₂V₂O₇-Mg_{2.5}VMoO₈, gives a three-phase equilibrium between the constituent points. These results demonstrate that the singular point Mg2.5VMo8 corresponds to an individual compound. Moreover, these data also show the existence of equilibria between the compounds $MgMoO_4-Mg_{2.5}VMoO_8$, $MgO-Mg_{2.5}VMoO_8$, $Mg_2 V$ $MoO_8-Mg_3V_2O_8$, and $Mg_{2.5}VMoO_8-Mg_2V_2O_7$.

The octagon which is bordered with the nodes MoO_3 , $MgMo_2O_7$, $MgMoO_4$, $Mg_{2.5}VMoO_8$, $Mg_2V_2O_7$, MgV_2O_6 , V_2O_5 , and MoV_2O_8 and which is arranged from three independent chemical variables (MgO, V_2O_5 , MoO_3) contains [(8!/6!2! - 8) - 3] = 17 possible binary equilibria. Recognizing the existence of low-temperature eutectics in this region and the corresponding necessity of using a

low-temperature calcination to avoid the appearance of the liquid phases, an enormous effort would be required to examine all the possible equilibria in a regular fashion. However, empirical experience suggests that pseudobinary equilibria between the binary compounds with equimolar ratio of constituent oxides exist rather often (14). Therefore, the lines $(MgO:MoO_3 = 1:1)-(MgO-1)$ $V_2O_5 = 1:1$) and $(MoO_3: MgO = 1:1)-(MoO_3: V_2O_5 =$ 1:1) were systematically studied. Equimolar ratios of MgMoO₄ with MgV₂O₆ and MgMoO₄ with MoV₂O₈ were mixed and heated at 600°C for more than 1.5 months with several intermediate grindings. No traces of compounds other than the starting ones were found. Therefore the pseudobinary equilibria MgMoO₄-MgV₂O₆ and MgMoO₄-MoV₂O₈ exist and no other compounds are present. In analogous long-term calcination experiments, the regions MgMoO₄-Mg₂ 5VMoO₈-Mg₂V₂O₇-MgV₂O₆, $MgMoO_4-MgV_2O_6-V_2O_5-MoV_2O_8$, and MoV₂O₈-MoO₃-MgMoO₄ were resolved without the appearance of new compounds and the simple pseudobinary equilibria MgMoO₄-Mg₂V₂O₇, MgMoO₄-V₂O₅, and MgMo₂O₇-MoV₂O₈ were established.

The low-temperature equilibrium MgMoO₄-V₂O₅, which substantially determines the subsolidus diagram configuration, required additional evaluation. The mechanical mixture of these components melts at 625°C. As a control experiment, the equimolar mixture of MgV₂O₆ and MoV₂O₈ was reacted at 600°C for nearly 2 months. The X-ray patterns of the starting mixture and of the final product are shown in Fig. 2. The reflections belonging to the phases MgMoO₄ and V₂O₅ are evident in the X-ray pattern of the product. Hence, there is a solid state reaction $MgV_2O_6 + MoV_2O_8 \rightarrow MgMoO_4 + 2V_2O_5$ and the equilibrium MgMoO₄-V₂O₅ at 600°C was established. Having established the binary equilibria MgMoO₄-V₂O₅ and MgMoO₄-MgV₂O₈, the line connecting MgMoO₄ and the point of the solid solution $V_{2-2r}Mo_{2x}O_5$ can be drawn (see Fig. 1).

The subsolidus equilibria in the triangle $MgO-V_2O_5-MoO_3$ are shown in Fig. 1. The interesting feature of this diagram is a coexistence of V_2O_5 and $Mg_{2.5}VMoO_8$ with $MgMoO_4$. This suggests that magnesium molybdate $MgMoO_4$, which itself is active in butane oxidation (3), can serve as an active support for vanadium pentoxide V_2O_5 (known to be active in a wide variety of oxidation reactions) or for $Mg_{2.5}VMoO_8$, which has been shown to maintain the good selectivity exhibited by magnesium orthovanadate in the butane oxidation reaction (11).

One important condition for the successful resolution of a structure determination problem on the basis of a powder diffraction pattern is the identification of a structural analog. The two phases Li₂Ni₂Mo₃O₁₂ (12) and NaCo_{2.31}(MoO₄)₃ (15) were identified as possible models. Both compounds are isostructural and adopt an orthorhombic structure (space group *Pnma*) with the Mo

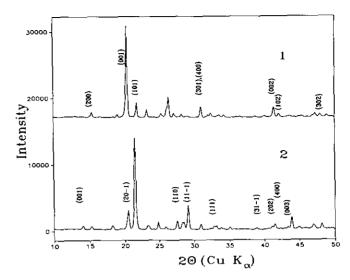


FIG. 2. (1) X-ray pattern of the equimolar mixture $MgV_2O_6 + MoV_2O_8$ after 2 months of calcination at 600%C in air. Indexes mark V_2O_5 ; the other peaks belong to $MgMoO_4$. (2) X-ray pattern of the equimolar mechanical mixture $MgV_2O_6 + MoV_2O_8$. Indexes mark MgV_2O_6 ; the other peaks belong to MoV_2O_8 .

cations in tetrahedral positions (4c and 8d). The alkali cations reside in trigonal prisms (4c, designated M₁ in Fig. 4) and Co or Li and Ni are in octahedral positions (4c and 8d, designated M_2 and M_3 , respectively, in Fig. 4). Based on these observations and taking into account the preference of V5+ cations to adopt tetrahedral coordination, one can suppose three variants of the possible cation distribution in Mg_{2.5}VMoO₈: (i) Mg₁-8d, Mg₂-4c, Mg₃-4c, $2V_1 + 2Mo_1-4c$, $4V_2 + 4Mo_2-8d$; (ii) Mg_1-8d , Mg_2-4c , Mg_3-4c , $4V_1-4c$, $2V_2 + 6Mo_2-8d$; and (iii) Mg_1-8d , Mg_2-4c , Mg_3-4c , $4Mo_1-4c$, $6V_2 + 2Mo_2-8d$. Comparison of the calculated X-ray patterns for these three models and the experimental data was carried out using the TEO/STOE software. The best correspondence was obtained for model (i). Therefore, the final structural refinement was carried out with this model of the cation distribution. The starting positional parameters for the cations were taken from Ibers and Smith (15). The refinement results are presented in Table 1 and Fig. 3. The atom coordinates are similar to those found in NaCo_{2,31}(MoO₄)₃ (15). The b-cprojection of the structure is shown in Fig. 4. The unit cell of the compound Mg_{2.5}VMoO₈ comprises six formula units. Therefore, the crystal-chemical formula should be written Mg₁₅V₆Mo₆O₄₈.

The refined ion coordinates were used for calculation of the cation-anion distances which are illustrated in Fig. 5. These distances were used to calculate bond valence sums (16). The calculated valence sums for the cations are $Mg_3(+1.80)$, $Mg_2(+2.04)$, $Mg_1(+2.03)$, V_1 + $Mo_1(+5.69)$, and V_2 + $Mo_2(+5.61)$. These values reflect the ionic character of the bonding in $Mg_{2.5}VMoO_8$, i.e., all the cations are in their highest oxidation state (Mg^{2+} ,

TABLE 1
Crystal and Structure Parameters from Rietveld Refinement for Mg_{2.5}VMoO₈

Formula	$Mg_{2.5}VMoO_8$
Molar weight	339.69
Space group (number), Z	Pnma (62), 6
Lattice constants a, b, c (Å)	5.0515(1), 10.3455(2), 17.4683(4)
Density d_m , d_x (g/cm ³)	3.60(3), 3.71
Number of permitted X-ray reflections	724
Number of the X-ray reflections with intensity $I/I_0 > 0.1\%$	250

Atom coordinates and occupancy

Atom	Position	$x/a (\sigma x)$	y/b (σy)	z/c (σz)	Occupancy
Mg ₁	8 <i>d</i>	0.2577(12)	0.4228(4)	0.4734(2)	1.0
Mg_2	4 <i>c</i>	0.4025(13)	0.25	0.7568(4)	0.5
Mg_3	4 <i>c</i>	0.2359(18)	0.25	0.3024(4)	0.45(5)
$V_1 + Mo_1$	4 <i>c</i>	0.7201(6)	0.25	0.5551(1)	0.25 ± 0.25
$V_2 + Mo_2$	8 <i>d</i>	0.7775(4)	0.4672(6)	0.3415(3)	0.5 + 0.5
O_1	4 <i>c</i>	0.6469(24)	0.25	0.6558(7)	0.5
O ₂	4 <i>c</i>	0.4587(12)	0.25	0.4971(9)	0.5
O ₃	8 <i>d</i>	0.8485(19)	0.6101(10)	0.2957(10)	1.0
O ₄	8 <i>d</i>	0.9050(15)	0.1172(8)	0.5350(5)	1.0
Os	8 <i>d</i>	0.5840(16)	0.5012(10)	0.4274(10)	1.0
O ₆	8 <i>d</i>	0.5596(21)	0.3764(15)	0.2813(10)	1.0
O ₇	8 <i>d</i>	0.0506(10)	0.3880(15)	0.3683(16)	1.0

Note. Standard deviations are shown in parentheses. The reliability factors are pattern $R_p = 3.34\%$, weighted pattern $R_{\rm wp} = 3.36\%$, expected pattern $R_{\rm exp} = 2.78$, Bragg $R_1 = 9.63\%$; overall isotropic temperature factor = 0.21(5) Å².

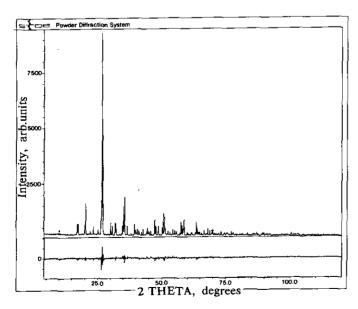


FIG. 3. The observed X-ray pattern and difference plot from Rietveld refinement for $Mg_{2.5}VMoO_8$. *Foil substrate.

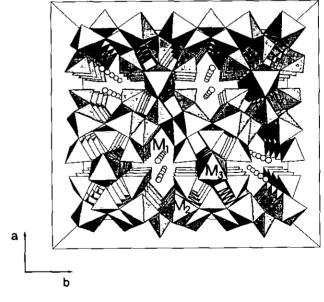


FIG. 4. The b-c projection of the crystal structure of $Mg_{2.5}VMoO_8$. Positions M_1 , M_2 , and M_3 are shown (see text for their definition).

FIG. 5. A fragment of the Mg_{2.5}VoO₈ structure. Open circles represent oxygen atoms.

V⁵⁺, Mo⁶⁺). The slightly decreased value for the Mg₃ ions residing in the trigonal prisms is expected because the prism cavities (designated M₁ in Fig. 4) are too large for the magnesium ion. Therefore, in contrast to NaCo_{2,31}(MoO₄)₃, where the charge balance is preserved with trivalent cobalt ions in octahedral coordination (designated M₂ and M₃ in Fig. 4), charge neutrality in Mg_{2,5}V MoO₈ is satisfied with magnesium vacancies which are most likely concentrated in the trigonal prismatic (M₁ positions) sites.

A distinct feature of the magnesium orthovanadate, Mg₃V₂O₈ (17), compared to the meta- and pyrovanadates, is the isolation of the tetrahedra containing vanadium (5+) between the magnesium containing octahedra. This particular feature of a solid state structure was suggested to be the reason for the high selectivity of Mg₃V₂O₈ in the oxidation of butane to butadiene (1). Isolation of the tetrahedra that contain the transition metal cation is preserved in the framework of Mg_{2.5}VMoO₈. However, this structure contains three inequivalent six-coordinate positions, which suggests that a wider range of isomorphous substitutions is possible compared to magnesium orthovanadate. Thus, for example, the new compounds Mg₂Mn_{0.5}VMoO₈ and Mg₂Li_{0.25}Fe_{0.25}VMoO₈ exhibit Xray patterns similar to that of Mg_{2.5}VMoO₈, and com-

pared with almost colorless Mg_{2.5}VMoO₈ they are colored.

CONCLUSION

Phase relations of the system $MgO-V_2O_5-MoO_3$ were studied in the subsolidus region and quasi-binary equilibria were established between MoV_2O_8 , $V_{2-2x}Mo_{2x}O_5$, MgV_2O_6 , $Mg_2V_2O_7$, and $MgMoO_4$. The new compound $Mg_{2.5}VMoO_8$ was found on the quasi-binary line $MgMoO_4-Mg_3V_2O_8$, and as observed with magnesium orthovanadate, $Mg_3V_2O_8$, isolation of the transition metal in tetrahedral MO_4 groups occurs. The vanadium and molybdenum cations have been shown to exist in the +5, +6 oxidation state, respectively, with charge neutrality satisfied by partial occupancy of the magnesium sublattice. Isomorphous substitution of alkali and transition metals on the magnesium sites has been observed.

ACKNOWLEDGEMENT

The authors acknowledge an Extramural Research Award (EMRA) from BP America, Inc., for support of this research.

REFERENCES

- M. A. Chaar, D. Patel, M. C. Kung, and H. H, Kung, J. Catal. 105, 483 (1987).
- G. A. Stepanov, A. L. Tsailingol'd, V. A. Levin, and F. S. Pilipenko, Stud. Surf. Sci. Catal. B 7, 1293 (1981).
- C. Murchison, Report delivered at Catalysis Club of Chicago, Nov. 9, 1992; S.-C. Chang, M. A. Lengers, and M. R. Bare, J. Phys. Chem. 96, 10358 (1992).
- 4. E. I. Speranskaia, Trans. AS USSR Inorg. Mater. 7, 1809 (1971).
- 5. R. Wolast and A. Tazait, Silic. Ind. 34, 37 (1969).
- 6. P. Kohlmuller and T. Perrand, Bull. Soc. Chim. Fr. 3, 642 (1964).
- A. A. Fotiev, B. V. Slobodin, and M. Ya. Khodos, "Vanadates: Composition, Structure, Properties." Science Moscow, 1988.
- V. M. Zhukovski, Dissertation, Ural State University, Sverdlovsk, 1974.
- L. Stanescu, E. Indrea, I. Ardelean, M. Coldea, I. Bratu, and D. Stanescu, Rev. Roum. Phys. 21, 939 (1976).
- 10. A. Magneli and B. Blomberg, Acta Chem. Scand. 5, 585 (1951).
- W. D. Harding, H. H. Kung, V. L. Kozhevnikov, and K. R. Poeppelmeier, J. Catal. 144, 597 (1993).
- A. Ozima, M. Sato, and T. Zoltai, Acta Crystallogr., Sect. B 33, 109 (1989).
- D. Wiles, a. Sakthevel, and R. Young, "Rietveld Analysis Program—Version DBWS-9006." Georgia Institute of Technology, 1990;
 S. A. Howard, "A Program for the Rietveld Analysis of X-Ray and Neutron Powder Diffraction Patterns: DBW 4.1." University of Missouri-Rolla, 1989.
- "Phase Diagrams for Ceramics." Edition of American Ceramic Society, 1964-1984.
- 15. J. A. Ibers and G. W. Smith, Acta Crystallogr. 17, 1990 (1964).
- I. D. Brown and D. Altermatt, Acta Crystallogr., Sect. B 41, 244 (1985).