Be₃(AsO₄)₂ · 2H₂O, a New Berylloarsenate Phase Containing "Bridged" Tetrahedral 3-Rings

William T. A. Harrison,*.1 Tina M. Nenoff,† Thurman E. Gier,† and Galen D. Stucky†

*Department of Chemistry, University of Houston, Houston, Texas 77204-5641; and †Department of Chemistry, University of California, Santa Barbara, California 93106-9510

Received November 18, 1992; in revised form September 16, 1993; accepted September 21, 1993

The high-temperature/high-pressure hydrothermal synthesis and X-ray single crystal structure of Be₃(AsO₄)₂ · 2H₂O are described. The title compound contains a three-dimensional network of BeO₄ and AsO₄ tetrahedra, whose structural motif includes infinite layers of "bridged" tetrahedral 3- and 4-rings. ⁹Be MAS NMR data are consistent with the Be-atom environments in the crystal structure. Crystal data for Be₃(AsO₄)₂ · 2H₂O: $M_r = 340.91$, monoclinic, space group C2/c (No. 15), a = 16.318(2) Å, b = 4.6664(3) Å, c = 9.8755(7) Å, $\beta = 93.777(3)^\circ$, V = 750.37 Å³, Z = 4. Final disagreement values of R = 3.59% and $R_w = 3.79\%$ were obtained for 1289 observed reflections with $I > 3\sigma(I)$. © 1994 Academic Press, Inc.

INTRODUCTION

Molecular sieves containing tetrahedral 3-rings as part of their structures are currently of interest (1), and it has been suggested (2) that phases containing 3-rings as part of their three-dimensional structure may have a particularly low tetrahedral-framework atom density. The new aluminosilicate phase ZSM-18 (3) contains 3-rings of T atoms (T = Si, Al) and is notable as a large-pore material containing one-dimensional channels, which may have technologically valuable properties. The novel microporous beryllosilicate phase lovdarite (4) also contains 3-rings, as does a zincosilicate phase (5), which contains a framework subunit built up from three TO_4 units. Many possible topologies of 3-ring-containing structures have been recently clucidated (6).

We have previously described several materials containing various types of tetrahedral 3-rings in the (beryllo/zinco)(phosphate/arsenate) (Be/Zn)(P/As)O phase space (7), which are conveniently categorized according to their framework dimensionality. The *one-dimensional* chainions found in Na₂ZnPO₄OH · 7H₂O and synthetic berylloarsenate bearsite, Be₂AsO₄OH · 4H₂O, contain tetrahedral 3-rings as part of their chain structures (8). The

two-dimensional structures of the (nonisostructural) $CsH(ZnPO_4)_2$ and $NaH(ZnPO_4)_2$ contain "bridged" 3-rings as part of anionic Zn/P/O/H layers sandwiching cesium and sodium cations (9). Finally, the novel three-dimensional structure of $Zn_3(PO_4)(HPO_4)_2 \cdot HN_2C_6H_{12}$ contains similar "bridged" 3-rings, as part of its open, 8-ring channel-containing framework (10). Here, the term "bridged" 3-ring refers to the fact that one of the oxygenatom T-O-T' bridges in the tetrahedral 3-ring is bonded to three neighboring tetrahedral atoms, compared to the usual two T-atom neighbors for other T-O-T' bridges (Fig. 1).

In this paper we describe the synthesis, characterization, and ${}^9\text{Be}$ MAS NMR spectrum of Be₃(AsO₄)₂ · 2H₂O, a new beryllium arsenate hydrate phase, which also contains ''bridged'' 3-rings of BeO₄ and AsO₄ groups as part of its three-dimensional structure.

SYNTHESIS AND STRUCTURAL CHARACTERIZATION

The title compound was prepared by a high-temperature/high-pressure hydrothermal reaction: 0.087 g of Be(OH)₂, 0.3 ml of H₂O, and 0.644 g of 4M H₃AsO₄ solution were sealed in a gold tube and heated to 550° C for 135 hr in a Leco TemPres bomb. Upon cooling, numerous needle- and shard-like crystals were recovered from the mother liquor (pH = 2) by vacuum filtration. Warning: Beryllium and arsenic compounds are extremely toxic. Take all normal safety precautions in handling these materials, especially with respect to dust contamination.

The structure of $Bc_3(AsO_4)_2 \cdot 2H_2O$ was determined by standard single-crystal X-ray methods (11). As-synthesized transparent $Bc_3(AsO_4)_2 \cdot 2H_2O$ crystals are shardor needle-like and have a maximum linear dimension of ~ 0.5 mm, and are indefinitely stable in air.

A suitable shard of Be₃(AsO₄)₂ · 2H₂O was selected and mounted on a thin glass fiber with cyanoacrylate adhesive, and room-temperature [25 (2)°C] intensity data were collected on a Huber automated 4-circle diffractometer (graphite-monochromated Mo $K\alpha$ radiation, $\lambda = 0.71073$

¹ To whom correspondence should be addressed.

 $Be_3(AsO_4)_2 \cdot 2H_2O$ 225

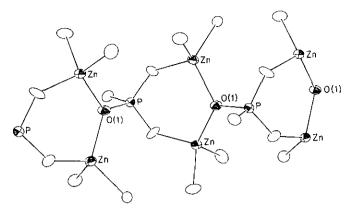


FIG. 1. Partial view of tetrahedral-Zn/P 3-rings linked via a "bridge-head" oxygen atom, O(1) in the three-dimensional phase Zn₃(PO₄)(HPO₄)₂ · HN₂C₆H₁₂ (see text and Ref. (10)).

Å). After the locating and centering of 25 reflections, unit cell constants were optimized by least-squares refinement, resulting in monoclinic lattice parameters of a =16.318(2) Å, b = 4.6664(3) Å, c = 9.8755(7) Å, $\beta =$ 93.777(3)° (esd's in parentheses). Intensity data were collected in the θ -2 θ scanning mode with standard reflections monitored for intensity variation throughout the course of the experiment. The scan speed was 6°/min with a scan range of 1.3° below $K\alpha_1$ to 1.6° above $K\alpha_2$. No significant variation in standards was observed. The raw data were reduced using a Lehmann-Larsen profile-fitting routine (12) and the normal corrections for Lorentz and polarization effects were made. The systematic absences in the merged ($R_{lnt} = 5.1\%$), reduced data (hkl, h + k =2n + 1; h0l, l = 2n + 1) indicated space groups Cc (No. 9) or C2/c (No. 15).

The crystal structure of Be₃(AsO₄)₂ · 2H₂O was partially solved in space group C2/c using the direct-methods program SHELXS-86 (13), and the centrosymmetric space group was assumed for the remainder of the crystallographic analysis. Other atom positions, including proton sites, were located from Fourier difference maps during the refinement procedure; after isotropic refinement, an empirical absorption correction (DIFABS) (14) was applied (minimum correction = 0.9, max. = 1.6). The final cycles of full-matrix least-squares refinement were against F and included anisotropic thermal factors (atom-type isotropic thermal factors for the protons) and a secondary extinction correction (15). Complex, neutral-atom scattering factors were obtained from the "International Tables" (16), and a 2-term Tukey-Prince weighting scheme (17) with Chebychev coefficients of 7.3(2) and 5.4(8) was applied to the data. Final residuals of R = 3.59% and $R_{\rm w} = 3.79\%$ were obtained for the observed $[I > 3\sigma(I)]$ data; for all data (1300 reflections), values of R = 3.62%and $R_w = 3.79\%$ resulted.

Hydrogen-atom positions were refined with bond

TABLE 1
Crystallographic Parameters for
Be₃(AsO₄)₂ · 2H₂O

	 _
Empirical formula	As ₂ O ₁₀ Be ₃ H ₄
Formula wt.	340.91
Habit	Colorless shard
Crystal system	Monoclinic
a (Å)	16.318(2)
b (Å)	4.6664(3)
c (Å)	9.8755(7)
β(°)	93.777(3)
$V(\mathring{A}^3)$	750.37
Z	4
Space group	C2/c (No. 15)
<i>T</i> (°C)	25(1)
λ(Μο <i>Κα</i>) (Å)	0.71073
$\rho_{\rm calc}$ (g/cm ³)	3.02
$\mu(MoK\alpha)$ (cm ⁻¹)	89.2
Absorption correction	DIFABS
hkl limits	± 24 , $+7$, $+14$
Total data	1609
Observed data ^a	1289
$R(F)^b$ (%)	3.59
$R_{\rm w}(F)^{\rm c}$ (%)	3.79

 $^{^{}a}I > 3\sigma(I)$ after merging.

distance [d(O-H) = 0.95(1) Å] and bond angle $[\theta(H-O-H) = 109(1)^{\circ}]$ restraints. At the end of the refinement, analysis of the various trends in F_0 versus F_c revealed no unusual effects. The least-squares, Fourier, and subsidiary calculations were performed using the Oxford CRYSTALS system (18), running on a DEC Micro VAX 3100 computer. Supplementary tables of observed and calculated structure factors are available from the authors. Crystallographic data are summarized in Table 1.

⁹Be MAS NMR data for the Be/As/O sample were collected on a Brücker/Nicolet NT-200 hybrid spectrometer system, at 28.12 MHz (field strength 4.0 T) with 785 acquisitions, using a 7 mm broadband MAS NMR probe from Doty Scientific, spinning at a speed of approximately 5 KHz. Data were collected in a single-pulse mode, with a 45° pulse length of 3 μ sec and a recycle delay time of 60 sec. A broad singlet at -1.38 ppm is evident, as referenced to 2M Be(NO₃)₂ solution (downfield shifts defined as positive).

RESULTS

Final atomic positional and equivalent isotropic and anisotropic thermal parameters for $Be_3(AsO_4)_2 \cdot 2H_2O$ are listed in Table 2, with selected bond distance/angle data given in Table 3. The asymmetric unit and atom-labeling scheme of $Be_3(AsO_4)_2 \cdot 2H_2O$ are illustrated in Fig. 2. $Be_3(AsO_4)_2 \cdot 2H_2O$ is built up from BeO_4 and AsO_4 sub-

 $[^]bR = \Sigma ||F_0| - |F_c||/\Sigma |F_0|, ^cR_w = [\Sigma w(|F_0| - |F_c|)^2/\Sigma w|F_0|^2]^{\frac{1}{2}}$, with w_i as described in the text.

TABLE 2					
Atomic Posit	tional/Thermal	Parameters	for	$Be_3(AsO_4)_2$ ·	2H ₂ O

_	_					
Atom		х	у		z	
Be(1)a	1/2		0.195(2)	1/4	0.0098
Be(2)	0.25	528(3)	-0.056(1) -	-0.1606(5)	0.0048
As(1)	0.34	1532(2)	0.0527	6(8)	0.09835(4)	0.0034
O(1)	0.45	26(2)	0.4238	(8)	0.3494(4)	0.0151
O(2)	0.33	150(2)	-0.0772	(7)	-0.0597(3)	0.0057
O(3)	0.43	199(2)	-0.0159	(8)	0.1646(4)	0.0103
O(4)	0.27	64(2)	-0.1100	(7)	0.1984(3)	0.0046
O(5)	0.32	237(2)	0.4018	(7)	0.0993(3)	0.0060
H(1)	0.47	4(8)	0.58(3)	0.40(1)	0.05(2)
H(2)	0.41	9(7)	0.33(3)	0.41(1)	0.05(2)
Atom	U_{Π}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Be(1)	0.008(3)	0.013(3)	0,011(3)	0	0.003(2)	0
Be(2)	0.006(2)	0.003(2)	0.007(2)	-0.000(1)	0.001(2)	0.000(1)
As(1)	0.0032(2)	0.0035(2)	0.0036(2)	0.0004(1)	0.0000(1)	-0.0006(1
O(1)	0.017(2)	0.017(2)	0.019(2)	-0.003(1)	0.009(1)	-0.006(1)
O(2)	0.007(1)	0.011(1)	0.003(1)	0.001(1)	0.0013(9)	-0.0017(9
O(3)	0.008(1)	0.013(1)	0.021(2)	0.002(1)	-0.007(1)	-0.008(1)
O(4)	0.009(1)	0.006(1)	0.003(1)	-0.0014(9)	0.0037(9)	-0.0008(9)
O(5)	0.006(1)	0.006(1)	0.014(1)	0.0006(9)	0.007(1)	-0.000(1)

^a Wyckoff site 4e (symmetry 2).

units, as illustrated in Fig. 3 in polyhedral representation (19).

This connectivity of tetrahedral nodes in Be₃(AsO₄)₂ · 2H₂O leads to a three-dimensional network,

TABLE 3
Bond Distances (Å)/Angles (°) for Be₃(AsO₄)₂ · 2H₂O

		33 472	_
Be(1)-O(1)	1.674(7)	Be(1)=O(1)'	1.674(7)
Be(1)-O(3)	1.591(6)	Be(1)-O(3)'	1.591(6)
Be(2)-O(2)	1.621(6)	Be(2)-O(4)	1.667(6)
Be(2)-O(4)	1.660(6)	Be(2)-O(5)	1.593(6)
As(1)-O(2)	1.673(3)	As(1)-O(3)	1.668(3)
As(1)-O(4)	1.722(3)	As(1)-O(5)	1.667(3)
O(1)-H(1)	0.9(1)	O(1)-H(2)	0.9(1)
$O(2) \cdots H(2)^a$	1.8(1)		
O(1)-Be(1)- $O(1)'$	100.7(5)	O(3)-Be(1)-O(1)	114.4(2)
O(3)-Be(1)-O(1)'	112.1(2)	O(3)' - Be(1) - O(1)	112.1(2)
O(3)' - Be(1) - O(1)'	114.4(2)	O(3)-Be(1)-O(3)'	103.6(5)
O-Be(1)-O	109.6[5.9] ^b		
O(4)-Be(2)-O(2)	107.0(3)	O(4)-Be(2)-O(2)	108.5(3)
O(4)-Be(2)-O(4)	109.0(3)	O(5)-Be(2)-O(2)	115.6(3)
O(5)-Be(2)-O(4)	106.7(3)	O(5)-Be(2)- $O(4)$	109.8(3)
O-Be(2)-O	109.4[3.2] ^b		
O(3)-As(1)-O(2)	109.3(2)	O(4)-As(1)-O(2)	110.3(1)
O(4)-As(1)-O(3)	108.2(2)	O(5)-As(1)-O(2)	110.6(2)
O(5)-As(1)-O(3)	112.1(2)	O(5)-As(1)-O(4)	106.3(1)
O-As(1)-O	$109.5[2.0]^b$		
As(1)-O(2)-Be(2)	125.4(3)	As(1)-O(3)-Be(1)	127.7(3)
Be(2)-O(4)-Be(2)'	123.1(2)	As(1)-O(4)-Be(2)	118.2(2)
As(1)-O(4)-Be(2)'	118.2(2)	As(1)-O(5)-Be(2)	127.9(3)

a H-bond contact.

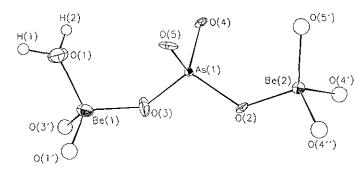


FIG. 2. Asymmetric unit of $Be_3(AsO_4)_2 \cdot 2H_2O$, showing the atom-labeling scheme: 50% thermal ellipsoids, arbitrary radii for H atoms.

built up from infinite bc-plane layers of As(1) and Be(2) tetrahedral groups, which are linked together by the Be(1)O₄ groups. The As(1)/Be(2) layers (Fig. 4) are built up from infinite tetrahedral "bridged" 3- and 4-rings. The "backbone" of the layer is an edge-sharing chain of 4rings, each of configuration $-Be(2)-As(1)-Be(2)-As(1)-\frac{1}{2}$ which propagates in the b-direction. Adjacent 4-ring chains are fused together by 3-rings (configuration -Be(2)-As(1)-Be(2)-), which are fused edge-to-edge themselves, resulting in an infinite sheet structure. A notable feature of this connectivity is the fact that each Be(2) atom makes contact with six nearest-neighbor tetrahedral atoms [four distinct As(1)s and two distinct Be(2)s], and each As(1) atom bonds to six different Be(2) atoms, rather than the usual four nearest-neighbor T atoms, as found in zeolite molecular sieves.

Be(1) has two water-molecule oxygen atoms [atom O(1) in its coordination sphere, and also makes two bonds to two different As atoms via O(3), with $d_{av}(Be-O) =$ 1.633(4) Å. Be(2) makes four distinct bonds to As via O(2), O(4), O(4)', and O(5) $[d_{av}(Be-O) = 1.635(3) \text{ Å}].$ The tetrahedrally coordinated As(1) atom $[d_{av}(As-O)]$ = 1.683(2) Å] makes four As-O-Be bonds; an As(1)-O(3)-Be(1) bond and links to Be(2) via O(2), O(4), and O(5). The bridging oxygen atoms fall into two groups; O(2), O(3), and O(5) link adjacent Be and As species, as noted above, with $\theta_{av}(Be-O-As) = 127(1)^{\circ}$. O(4) bonds to three nearest-neighbor tetrahedral species; $2 \times Be(2)$ and As(1), with the geometrical parameters listed in Table 3. Of the two protons attached to O(1), H(2) is involved in an H-bonding contact to O(2) $[d(O \cdots H) = 1.80(1)]$ Å], while H(1) has no near neighbors.

Brown/Wu bond valence sum (BVS) values (20) accord with these bonding geometries; Be(1) has a BVS of 2.02, Be(2) is 2.00, and As(1) is 5.02 (expected values for Be and As = 2.00 and 5.00, respectively). The values for the O-atom species are O(1), neglecting protons 0.45; O(2), 1.81; O(3), 1.88; O(4), 2.02; and O(5), 1.88 (expected values 2.00). In this phase, it therefore appears that the 3-coordinated oxygen atom has a "typical" BVS value,

 $^{^{}b}U_{eq}(\mathring{A}^{2}) = (U_{1}U_{2}U_{3})^{i}.$

^{&#}x27; Atom-type $U_{\rm iso}$.

 $^{^{}b}$ Average bond angle, with standard deviation in [], about central atom.

 $Be_3(AsO_4)_2 \cdot 2H_2O$ 227

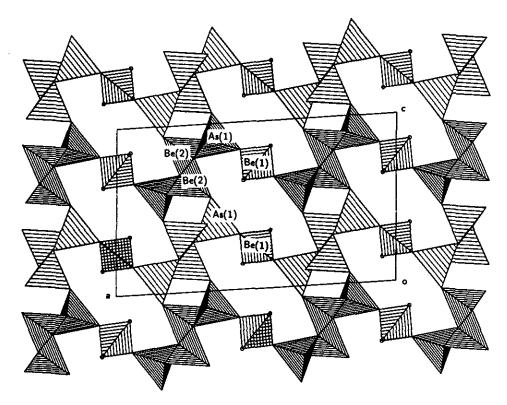


FIG. 3. Polyhedral plot of the crystal structure of $Be_3(AsO_4)_2 \cdot 2H_2O$, viewed down the **b**-direction, with some tetrahedra labeled. The "hanging" tetrahedral vertices of the interlayer $Be(1)O_4$ groups are occupied by water molecules (see text).

while the oxygen atoms which bridge two tetrahedral neighbors are slightly "underbonded." This situation is reversed in the layered phases $MH(ZnPO_4)_2$ (M = Cs, Na) (9), where the bridgehead (3-coordinate) oxygen atom appears to be somewhat "overbonded," with a BVS of \sim 2.2, compared to the typical value of \sim 2 for the other O atoms.

The ⁹Be MAS NMR spectrum of Be₃(AsO₄)₂ · 2H₂O (Fig. 5) indicates that only one magnetically distinct Be atom site is observable at this resolution, even though

there are two crystallographically distinct Be-atom sites in the structure. The chemical shift observed is in agreement with previous studies (21, 22). The observation of a single resonance may be rationalized by considering the consistent singular local environment (orthoberyllate group, BeO₄) of the Be atoms throughout the crystal, regardless of the fact that the next-nearest-neighbors are not equivalent. Similar instances have been documented in one-, two-, and three-dimensional systems containing BeO₄

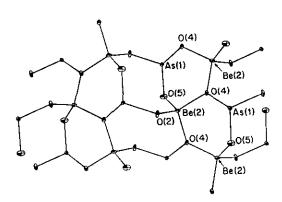


FIG. 4. ORTEP view of the Be(2)/As(1)-centered tetrahedral layers in the bc-plane of Be₃(AsO₄)₂ · 2H₂O, showing the interlinked 3- and 4-rings of tetrahedra.

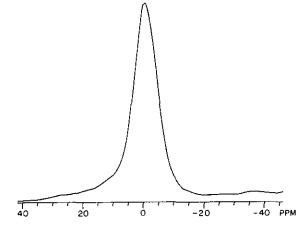


FIG. 5. ⁹Be MAS NMR spectrum of Be₃(AsO₄)₂ · $2H_2O$, referenced to 2 M Be(NO₃)₂.

228 HARRISON ET AL.

units (8, 21) and also by ³¹P/⁹Be MAS NMR studies of other beryllophosphate phases (22).

DISCUSSION

Rather similar sheet configurations to the three- and four-ring layers found in Be₃(AsO₄)₂ · 2H₂O have been found in the layered, anionic zincophosphate phases $CsH(ZnPO_4)$, and $NaH(ZnPO_4)$, (9). However, the precise nature of the tetrahedral-atom connectivity is different in each case; in Be₃(AsO₄)₂ \cdot 2H₂O, the 3-rings are fused with each other as described above. In CsH(ZnPO₄)₂, the tetrahedral 3-rings are joined "head to tail" and no two 3-rings share a common oxygen atom, while in NaH $(ZnPO_4)_2$, the 3-rings are isolated (from each other) and interlinked by tetrahedral 4-rings. Conversely, the one-dimensional phases Na₂ZnPO₄OH · 7H₂O and Be₂AsO₄OH · 4H₂O contain "true" (unbridged) tetrahedral 3-rings as part of their chain structures (8), although in these phases, hydroxide-ion bridges (i.e., Zn-(OH)-Zn and Be-(OH)-Be in Na₂ZnPO₄OH · 7H₂O and Be₂AsO₄OH · 4H₂O, respectively) bonds replace the bridgehead 3-coordinate 0 atom found in $Be_3(AsO_4)_2 \cdot 2H_2O$.

In conclusion, the synthesis and structure of $Be_3(AsO_4)_2 \cdot 2H_2O$, a new beryllium arsenate hydrate phase, have been described. Like several other phases in the (Be/Zn)(P/As)O-structure field, this material contains tetrahedral 3-rings, although they are bridged or "fused," by way of a 3-coordinate oxygen atom which links the 3-ring group with another tetrahedral-atom center. By way of contrast, such tri-bridging oxygen atoms appear to be unknown in tetrahedral aluminosilicate structures. The non-1: $IBe: As\ ratio\ in\ Be_3(AsO_4)_2 \cdot 2H_2O\ leads\ to\ a\ neutral\ "framework," as opposed to the typical anionic framework found in other BeAsO sieves (7), which suggests the possibility of synthesizing other three-dimensional, neutral BeAsO materials containing 3-rings. Efforts are now being made to that effect.$

ACKNOWLEDGMENT

We thank the National Science Foundation (Grant DMR-9208511) and the Office of Naval Research for partial financial support.

REFERENCES

- M. J. Annen, M. E. Davis, J. B. Higgins, and J. L. Schlenker, Mater. Res. Soc. Symp. Proc. 233, 245 (1991).
- G. O. Brunner and W. M. Meier, Nature (London) 337, 146 (1989).
- 3. S. L. Lawton and W. J. Rohrbaugh, Science 247, 1319 (1990).
- 4. S. Merlino, Eur. J. Mineral. 2, 809 (1990).
- S. Kohara and A. Kawahara, Acta Crystallogr., Sect. C 46, 1373 (1990).
- 6. M. O'Keeffe, Acta Crystallogr., Sect. A 48, 670 (1992).
- 7. T. E. Gier and G. D. Stucky, *Nature (London)* 349, 508 (1991).
- W. T. A. Harrison, T. M. Nenoff, T. E. Gier, and G. D. Stucky, Inorg. Chem. 32, 2437 (1993).
- T. M. Nenoff, W. T. A. Harrison, T. E. Gier, J. C. Calabrese, and G. D. Stucky, J. Solid State Chem. 107, 285 (1993).
- W. T. A. Harrison, T.M. Nenoff, M. M. Eddy, T. E. Martin, and G. D. Stucky, J. Mater. Chem. 2, 1127 (1992).
- W. T. A. Harrison, T. E. Martin, T. E. Gier, and G. D. Stucky, J. Mater. Chem. 2, 175 (1992).
- M. S. Lehmann and F. K. Larsen, Acta Crystallogr., Sect. A 30, 580 (1974).
- 13. G. M. Sheldrick, "SHELXS-86 User Guide." Crystallography Department, University of Göttingen, Germany, 1986.
- 14. N. Walker and D. Stuart, Acta Crystallogr., Sect. A 39, 158 (1983).
- A. C. Larson, in "Crystallographic Computing" (F. R. Ahmed, Ed.). Munksgaard, Copenhagen, 1970.
- "International Tables for X-Ray Crystallography, Vol. IV. Kynock Press, Birmingham, 1974.
- 17. J. R. Carruthers and D. J. Watkin, Acta Crystallogr., Sect. A 35, 698 (1979).
- D. J. Watkin, J. R. Carruthers, and P. W. Betteridge, "CRYSTALS User Guide." Chemical Crystallography Laboratory, Oxford Univ., 1985.
- 19. R. X. Fischer, J. Appl. Crystallogr. 18, 258 (1985).
- I. D. Brown and K. K. Wu, Acta Crystallogr., Sect. B 32, 1957 (1975).
- S. Prabhakar, K. J. Rao, and C. N. R. Rao, Chem. Phys. Lett. 139, 96 (1987).
- T.M. Nenoff, W. T. A. Harrison, T. E. Gier, J. M. Nicol, and G. D. Stucky, *Zeolites* 12, 770 (1992).