Mixed Valent Molybdenum Monophosphates with an Intersecting Tunnel Structure: $A_3O_2(MoO)_4(PO_4)_4$ (A = Rb, Tl)

M. M. Borel, A. Leclaire, A. Guesdon, A. Grandin, and B. Raveau

Laboratoire CRISMAT URA 1318 associé au CNRS, ISMRA/Université de Caen, Boulevard du Maréchal Juin, 14050 Caen Cedex, France

Received July 1, 1993; in revised form October 18, 1993; accepted October 22, 1993

New mixed valent monophosphates $A_3O_2(MoO)_4(PO_4)_4$ with an intersecting tunnel structure have been isolated for A=Rb, Tl. The structure of the Rb-phase has been solved from a single crystal X-ray diffraction study. It crystallizes in the space group $C222_1$ with a=14.222(1) Å, b=14.223(1) Å, and c=19.227(4) Å. The structure is in fact closely related to that of the Mo(V) monophosphate $K_2O(MoO)_2(PO_4)_2$. It consists of similar double layers $[Mo_2P_2O_{11}]_\infty$ parallel to (001) and it is deduced from this Mo(V) monophosphate by a rotation of one double layer out of two of 180° , so that it can be described as a chemical twin of the phosphate $K_2O(MoO)_2(PO_4)_2$. The geometry of the MoO_6 octahedra is characteristic of Mo(V) in spite of the mixed valent Mo(V)-Mo(V1). The bond valence calculations suggest a delocalization of the electron between the two octahedra of the bioctahedral units Mo_2O_{11} . © 1994

INTRODUCTION

Recently a new series of Mo(V) monophosphates with the generic formula $A_2O(MoO)_2(PO_4)_2$ was synthesized for A = K, Rb and Tl (1). These compounds, which are isotypic with the niobium arseniates $A_2O(NbO)_2(AsO_4)_2$ with A = K, Rb, Tl, Cs (2, 3), exhibit an intersecting tunnel structure. The dimensions of some of the cavities seem to be significantly larger in the arseniates than in the phosphates. Consequently, the isotypic cesium molybdenophosphate could only be synthesized for a cationic deficiency, according to the formula Cs₃O₂ (MoO)₄(PO₄)₄ (4). A first interesting characteristic of the latter phase is the ordered occupancy of the tunnels, two sites being fully occupied by Cs⁺, the third one being empty owing to the too large size of Cs⁺. A second remarkable feature of this phase is the mixed valency of molybdenum Mo(V)-Mo(VI), which shows for the first time the possibility of Mo(VI) to exhibit the same geometry as Mo(V), i.e., to be off-centered in the same way in an almost regular O₆ octahedron forming short molybdenyl Mo-O bonds. In order to understand this peculiar behavior, attempts were made to synthesize Mo(V)-Mo(VI) phosphates with a similar formulation, but replacing cesium by smaller cations like rubidium or thallium. We report here on new mixed valent molybdenum monophosphates $A_3O_2(MoO)_4(PO_4)_4$ with A = Rb, Tl with an original intersecting tunnel structure that can be described as a chemical twin of the monophosphate $A_2O(MoO)_2(PO_4)_2$ and $Cs_3O_2(MoO)_4(PO_4)_4$.

SYNTHESIS

The growth of single crystals of the phosphates A_3O_2 (MoO)₄(PO₄)₄ (A = Rb and Tl) was performed in two steps from a mixture of nominal composition $AMo_2P_2O_{11}$ (A = Rb and Tl). First an adequate mixture of A_2CO_3 , H(NH₄)₂PO₄, and MoO₃ was heated in air to 673 K to eliminate CO₂, H₂O, and NH₃. In a second step 0.17 mole of molybdenum was added to the intermediate composition $AMo_{1.833}P_2O_{11}$; the finely ground product placed in an alumina crucible was heated in an air evacuated silica ampoule at 1000 K for 12 hr. The sample was then cooled slowly (3°hr⁻¹) to 800 K.

From the resulting mixture we have extracted some black crystals whose composition $A_3O_2(MoO)_4(PO_4)_4$ was confirmed by microprobe analysis in agreement with the structure determination.

The synthesis of pure powder samples of these phosphates $A_3O_2(MoO)_4(PO_4)_4$ was performed in a similar way in two steps but starting from the exact stoichiometric composition. The second step was carried out at 950 K for I day and the compounds were finally quenched at room temperature. The results were a dark green powder.

The powder X-ray diffractograms registered with a PW3710 Philips diffractometer were indexed in an orthorhombic cell (Table I) in agreement with the parameters obtained from the single crystal study (Table 2).

STRUCTURE DETERMINATION

Two black crystals were selected for the structure determination with dimensions $0.115 \times 0.103 \times 0.040$ mm and $0.026 \times 0.026 \times 0.045$ mm for rubidium and thallium

16 BOREL ET AL.

phases, respectively. The cell parameters were determined and refined by diffractometric techniques at 294 K with a least-squares refinement based upon 25 reflections with $18^{\circ} < \theta < 22^{\circ}$ (Table 2). The almost equal a and b parameters led us to believe that the cell was tetragonal. The study of the $\pm h \pm k$ 2 reflections shows first that the variation of the intensity of the hkl, -hkl, h-kl and -h-kl reflections is less than 8%, and second that the variation of the intensities between the hkl set and the corresponding khl set rises to 30%. So there are only two mirrors running respectively along a and b, and no A_4 axis and no mirrors along $\langle 110 \rangle$ were found. One can admit then that the Laue symmetry class is mmm instead of 4/m or 4/mmm, but the structure should be pseudotetragonal.

The cell parameters (a_0, b_0, c_0) of these two orthorhombic phosphates can be related to those of the monoclinic cell $a_{\rm m}b_{\rm m}c_{\rm m}$ that characterizes the monophosphate $A_2{\rm O}$ (MoO)₂(PO₄)₂ or Cs₃O₂(MoO)₄(PO₄)₄ (Table 2). One indeed observes the following relations: $\mathbf{c}_0 \approx \mathbf{c}_{\rm m}$ and $\mathbf{a}_0 \approx \mathbf{a}_{\rm m} + \mathbf{b}_{\rm m}$.

The data were collected on an Enraf-Nonius CAD4 diffractometer with the data collection parameters re-

ported in Table 3. Unfortunately for Tl₃O₂(MoO)₄(PO₄)₄ the small number of reflections (350) that could be collected did not allow the structure to be solved. The reflections were collected for Lorentz, polarization, absorption, and secondary extinction effects.

The structure was solved by the heavy atom method with the space group $C222_1$ in agreement with the observed extinctions: h + k = 2n + 1 for all the hkl and l = 2n + 1 for 00l. The refinement of the atomic coordinates and their thermal anisotropic factors led to R = 0.029 and $R_w = 0.031$ and to the atomic parameters shown in Table 4.

The refinement of the enantiomorphic structure led to larger values of the R and R_w factors.

DESCRIPTION OF THE STRUCTURE AND DISCUSSION

The structure of this new mixed valent molybdenum phosphate is characterized by $[Mo_2P_2O_{11}]_{\infty}$ single layers of polyhedra parallel to (001) practically identical (Fig. 1) to those observed in the monophosphates A_2O $(MoO)_2(PO_4)_2$ or $Cs_3O_2(MoO)_4(PO_4)_4$ (1-4). As in the latter

TABLE 1
Interreticular Distances for Rb₃O₂(MoO)₄(PO₄)₄

hkl	$d_{\mathrm{cai}}(\mathrm{\AA})$	$d_{ m obs}({ m \AA})$	I/I_0	h k l	$d_{\mathrm{cal}}(\mathrm{\AA})$	$d_{\mathrm{obs}}(\mathrm{\AA})$	I/I_0
0 2 0	7.111	7.110	25.9	137	2.344	2.346	8.3
200	7.111			317	2.344		
021	6.670	6.657	1.6	118	2.338	2.339	8.1
102	6.670			3 3 6	2.316	2.317	2.9
022	5.717	5.712	15.8	062	2.302	2.303	2.7
202	5.717			602	2.302		
113	5.405	5.406	0.7	3 5 3	2.280	2.278	10.9
004	4.807	4.806	18.6	5 3 3	2.280		
023	4.761	4.762	14.0	028	2.277		
203	4.761			208	2.277		
130	4.498	4.499	18.0	260	2.249	2.247	4.9
310	4.498			620	2.249		
131	4.379	4.379	56.4	261	2.234	2.233	3.4
3 1 1	4.379 ~			621	2.234		
114	4.337	4.339	33. <i>5</i>	063	2.223	2.223	2.0
1 3 2	4.074	4.075	2.6	603	2.223		
3 1 2	4.074			3 5 4	2.175	2.175	11.5
0 2 4	3.982	3.980	3.5	5 3 4	2.175		
204	3.982			047	2.174		
223	3.956	3.958	3.3	407	2,174		
133	3.682	3.684	10.9	228	2.168	2.168	5.5
3 1 3	3.682			064	2.168	2,126	4.2
115	3.592	3.597	3.4	604	2.126		
224	3.475	3.476	6.1	3 3 7	2.125		
025	3.383	3.385	32.7	4 4 5	2.104	2.104	2.4
205	3.383			156	2.104		
0 4 2	3.335	3.335	4.8	516	2.104		
402	3,335			119	2.090	2.090	2.6
2 4 1	3,138	3.137	100.0	3 5 5	2.060	2.060	1.9
421	3.138			5 3 5	2.060		

17

TABLE 1—Continued

I/I_0	$d_{\mathrm{obs}}(\mathrm{\AA})$	$d_{\mathrm{cal}}(\mathrm{\AA})$	hkl	I/I_0	$d_{ m obs}({ m \AA})$	$d_{\mathrm{cal}}(\mathrm{\AA})$	h k l
3.5	2.047	2.046	029	78.7	3.110	3.109	0 4 3
		2.046	209			3.109	403
14.9	2.019	2.018	065	4.3	3.054	3.053	116
		2.018	605	43.8	3.021	3.019	2 4 2
6.6	2.013	2.011	170			3.019	4 2 2
		2.011	5 5 0	20.3	2.925	2.923	135
		2.011	710			2.923	3 1 5
2.8	1.992	1.991	0 4 8			2.922	0 2 6
		1.991	408			2.922	206
38.1	1.978	1.978	446	5.1	2.850	2.849	2 4 3
19.4	1.973	1.972	460			2.849	423
		1.972	640	1.7	2.790	2.789	150
14.5	1.958	1.957	157			2.789	5 1 0
		1.957	517	3.9	2.760	2.760	151
5.9	1.952	1.953	3 3 8			2.760	5 1 1
5.9	1.942	1.941	265	4.1	2.679	2.679	152
		1.941	625			2.679	512
		1.941	356	12.7	2.654	2.652	2 4 4
		1.941	536			2.652	424
6.8	1.931	1.930	139	15.6	2.611	2.611	0 4 5
		1.930	319			2.611	405
5.2	1.919	1.919	173			2.610	136
		1.919	553			2.610	316
		1.919	7 1 3	6.7	2.557	2.558	153
		1.917	2 4 8			2.558	513
		1.917	428	1.3	2.526	2.527	3 3 5
0.4	1.885	1.885	463	5.9	2.452	2.451	2 4 5
		1.885	6 4 3			2.451	4 2 5
6.9	1.856	1.859	371	1.3	2.410	2.411	227
		1.859	7 3 1	1.3	2.366	2.364	352
						2.364	532

monophosphates, each monophosphate group shares its four apices with MoO_6 octahedra, whereas each MoO_6 shares four of its apices with PO_4 tetrahedra, and one with another MoO_6 octahedron, the sixth one being free. One also recognizes from the projection of the $[Mo_2P_2O_{11}]_{\infty}$ monolayer along c (Fig. 1) the bioctahedral units Mo_2O_{11} that form the $Mo_2P_2O_{15}$ units with the PO_4 tetrahedra (Fig. 2), as previously described for the two other series of monophosphates (1–4).

In fact the structure of the monophosphate Rb_3O_2 (MoO)₄(PO₄)₄ differs from that of the $K_2O(MoO_4)_2(PO_4)_2$ -

type series by the stacking of the $[Mo_2P_2O_{11}]_{\infty}$ layers along c. The relationships between the two host lattices are easily understood from their projections along a (Fig. 3a) and along $\langle 110 \rangle$ (Fig. 3b), respectively. Both frameworks consist of similar slabs labelled A built up from the stacking of two single $[Mo_2P_2O_{11}]_{\infty}$ layers along c forming S-shaped tunnels. The thickness of these slabs determines the periodicity c in the $K_2O(MoO)_2(PO_4)_2$ -type structure (Fig. 3b), whereas one slab out of two is rotated 180° around a in the $Rb_3O_2(MoO)_4(PO_4)_4$ structure (Fig. 3a), leading to the sequence A-A'-A-A'. Thus two succes-

TABLE 2 Crystallographic Parameters

Compounds	a(Å)	b(Å)	c(Å)	β(°)	V(Å ³)
Rb ₃ O ₂ (MoO) ₄ (PO ₄) ₄	14.222(1)	14.223(1)	19.227(4)		3889
$Tl_3O_2(MoO)_4(PO_4)_4$	14,217(2)	14.218(8)	19.241(3)		3889
$Cs_3O_2(MoO)_4(PO_4)_4$	10.134(1)	10.104(1)	9.952(1)	100.44(1)	1002
$K_2O(MoO)_2(PO_4)_2$	9.867(2)	10.122(1)	9.903(2)	97.95(2)	979
Rb ₂ O(MoO) ₂ (PO ₄) ₂	9.88(3)	10.16(3)	9.93(2)	97.6(2)	988
$Tl_2O(MoO)_2(PO_4)_2$	9.945(1)	10.156(1)	9.974(2)	97.64(1)	998

18 BOREL ET AL.

TABLE 3
Summary of Crystal Data, Intensity Measurements, and
Structure Refinement Parameters

$Rb_3O_2(MoO)_4(PO_4)_4$						
Crystal data						
Space group	$C222_1$					
Cell dimensions (Å)	a = 14.222(1)					
	b = 14.223(1)					
	c = 19.227(4)					
Volume (Å) ³	3889(1)					
Z	8					
$d_{ m calc}$	3.81					
d_{mes}	3.70					
Intensity measurements						
$\lambda(M \circ K \alpha)$	0.71073					
Scan mode	ω - 5/3 θ					
Scan width (°)	1. + 0.35 tan θ					
Slit aperture (mm)	1. i + tan θ					
max θ (°)	45					
Standard reflections	3 (every 3000 sec)					
Reflections with $I > 3\sigma$	2523					
Measured reflections	8581					
Range h	$0 \rightarrow 27$					
k	$0 \rightarrow 27$					
1	$0 \rightarrow 36$					
μ (mm ⁻¹)	10.1					
Structure solution and refinement						
Parameters refined	300					
Agreement factors	$R = 0.029 R_2 = 0.031$					
Weighting scheme	$w = f(\sin \theta/\lambda)$					
Δ/σ max	< 0.03					
$\Delta \rho \ (e \ \mathring{A}_{\cdot}^{-3})$	0.4					

sive slabs A and A' can be described as being deduced from each other by a chemical twinning. As a consequence, the projections of the two structures along c (Fig. 4) are different in spite of their great similarity. One ob-

FIG. 1. $[Mo_2P_2O_{11}]_x$ layer parallel to the (001) plane.

TABLE 4
Positional Parameters and Their Estimated Standard Deviations

Atom	х	у	z	$B(A^2)$
Rb(1)	0.05358(9)	0.44118(9)	0.12649(7)	2.04(2)
Rb(2)	0.2081(2)	0	0.5	3.10(4)
Rb(3)	0.44128(9)	0.44653(9)	0.37644(7)	2.05(2)
Rb(4)	0.5	0.2084(2)	0.25	3.03(4)
Mo(1)	0.19029(5)	0.32595(5)	0.31033(4)	0.474(9)
Mo(2)	0.17406(5)	0.19026(5)	0.06031(4)	0.493(9)
Mo(3)	0.42511(5)	0.18052(5)	0.06374(4)	0.500(9)
Mo(4)	0.18057(5)	0.07492(5)	0.31366(4)	0.494(9)
P(1)	0.0526(2)	0.2087(2)	0.4196(1)	0.51(3)
P(2)	0.3451(1)	0.1996(2)	0.4100(1)	0.47(3)
P(3)	0.3005(2)	0.3450(2)	0.1601(1)	0.56(3)
P(4)	0.2917(2)	0.0530(2)	0.1696(1)	0.47(3)
O(1)	0.1026(5)	0.3734(5)	0.2637(4)	1.3(1)
O(2)	0.1783(4)	0.2008(5)	0.2870(3)	0.70(9)
O(3)	0.1098(5)	0.2929(5)	0.3950(4)	1.0(1)
O(4)	0.2959(5)	0.3436(4)	0.2403(3)	0.8(1)
O(5)	0.2192(5)	0.4535(5)	0.3576(4)	1.1(1)
O(6)	0.3027(5)	0.2869(4)	0.3773(4)	1.1(1)
O(7)	0.1262(5)	0.1034(5)	0.0135(4)	1.1(1)
O(8)	0.0479(5)	0.2190(5)	0.1073(3)	0.9(1)
O(9)	0.2065(5)	0.1099(5)	0.1445(4)	1.0(1)
O(10)	0.1558(4)	0.2954(5)	-0.0094(3)	1.0(1)
O(11)	0.2990(5)	0.1780(5)	0.0366(3)	0.8(1)
O(12)	0.2117(4)	0.3032(5)	0.1276(4)	1.1(1)
O(13)	0.4685(5)	0.0966(5)	0.0127(4)	1.2(1)
O(14)	0.4484(4)	0.2910(5)	0.0004(3)	0.8(1)
O(15)	0.5509(4)	0.1967(6)	0.1142(3)	1.1(1)
O(16)	0.3869(5)	0.0956(5)	0.1465(4)	0.9(1)
O(17)	0.3896(4)	0.2944(5)	0.1376(3)	0.8(1)
O(18)	0.0959(5)	0.0307(5)	0.2628(4)	1.4(1)
O(19)	0.0935(5)	0.1133(5)	0.3967(4)	0.8(1)
O(20)	0.1954(6)	-0.0499(5)	0.3632(3)	1.1(1)
O(21)	0.2919(4)	0.0507(4)	0.2502(4)	0.7(1)
O(22)	0.2945(5)	0.1105(4)	0.3876(3)	0.9(1)

Note. Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as $B=\frac{4}{3}$ $\Sigma_i \Sigma_j \mathbf{a}_i \cdot \mathbf{a}_j \cdot \boldsymbol{\beta}_{ij}$.

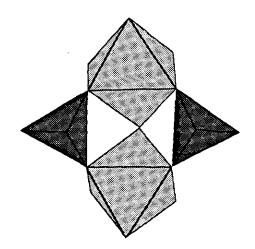


FIG. 2. [Mo₂P₂O₁₅] unit.

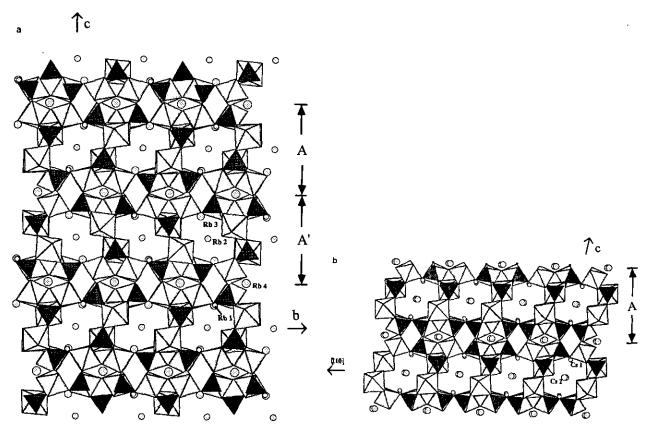


FIG. 3. Projection of host lattices (a) for Rb₃O₂(MoO)₄(PO₄)₄ along a and (b) for Cs₃O₂(MoO)₄(PO₄)₄ along (110).

tains zigzag tunnels along c in the Rb-monophosphate $Rb_3O_2(MoO)_4(PO_4)_4$ (Fig. 4a), whereas straight tunnels are observed in the monophosphate $K_2O(MoO)_2$ (PO₄)₂ (Fig. 4b).

The geometry of the PO_4 tetrahedra and of the MoO_6 octahedra is very similar to that observed for K_2O

 $(MoO_4)_2(PO)_2$ and $Cs_3O_2(MoO)_4(PO_4)_4$. The PO_4 tetrahedra have the classical geometry of monophosphate groups. The O_6 octahedra are almost regular, but the molybdenum atom is off-centered inside its octahedron toward the free oxygen atom (Table 5). As a result one observes one abnormally short Mo-O distance ranging

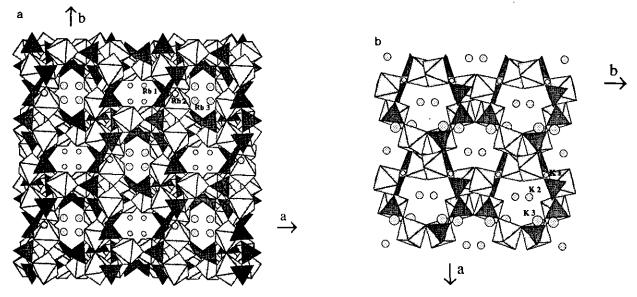


FIG. 4. (a) Rb₃O₂(MoO)₄(PO₄)₄ zigzag tunnels along c; (b) K₂O(MoO)₂(PO₄)₂ straight tunnels along c.

20 BOREL ET AL.

from 1.663 to 1.677 Å, corresponding to the free oxygen atom, as in the Mo(V) phosphate, whereas the opposite Mo-O distance is much longer (2.127 to 2.214 Å). The equatorial Mo-O distances are intermediate: three of them exhibit a mean value of 2.04 Å, characteristic of the Mo-O-P bond in Mo(V) phosphates, whereas the fourth one that corresponds to a Mo-O-Mo bond is significantly shorter, ranging from 1.843 to 1.868 Å. Bond valence calculations using the Zachariasen curve [5] suggest that no ordering of the Mo(V) and Mo(VI) species appears, i.e., that one electron is delocalized between the two corner-sharing octahedra of the Mo₂O₁₁ units exactly as

in $Cs_3O_2(MoO)_4(PO_4)_4$. One indeed obtains mean valences of 5.41 for Mo(1), 5.5 for Mo(2), and 5.3 for Mo(3) and Mo(4).

An interesting feature deals with the positions of the interpolated cations Rb^+ in tunnels that can be compared to those of potassium in the $K_2O(MoO)_2(PO_4)_2$ structure. In both structures the interpolated cations do not sit at the intersection of the tunnels. Among the four independent rubidium sites, two sites Rb(1) and Rb(3) correspond to the K(2) sites, whereas the two other sites Rb(2) and Rb(4) correspond to the K(1) sites. The Rb(1) and Rb(3) ions are located in the tunnels waving along c. The nine oxygen

TABLE 5
Distances (Å) and Angles (°) in the Polyhedra in Rb₃O₂(MoO)₄(PO₄)₄

Mo(1)	O(1)	O(2)	O(3)	O(4)	O(5)	O(6)
O(1)	1.677(8)	2.72(1)	2.77(1)	2.82(1)	2.70(1)	3.79(1)
O(2)	101.0(3)	1.843(7)	2.64(1)	2.78(1)	3.89(1)	2.77(1)
O(3)	95.8(4)	85.4(3)	2.044(7)	4.05(1)	2.86(1)	2.77(1)
O(4)	98.4(4)	91.5(3)	165.8(3)	2.033(7)	2.95(1)	2.76(1)
O(5)	91.7(3)	166.2(3)	87.9(3)	92.1(3)	2.070(8)	2.68(1)
O(6)	170.9(3)	88.0(3)	83.0(3)	83.0(3)	79.2(3)	2.127(8)
Mo(2)	O(7)	O(8)	O(9)	O(10)	O(11)	O(12)
O(7)	1.673(8)	2.68(1)	2.77(1)	2.80(1)	2.71(1)	3.79(1)
O(8)	91.6(3)	2.050(8)	2.83(1)	2.93(1)	3.87(1)	2.65(1)
O(9)	96.1(4)	87.7(3)	2.035(8)	4.03(1)	2.64(1)	2.77(1)
O(10)	97.9(4)	91.9(3)	166.1(3)	2.024(8)	2.78(1)	2.75(1)
O(11)	100.9(3)	166.4(3)	85.7(3)	91.7(3)	1.843(7)	2.79(1)
O(12)	170.2(3)	78.6(3)	83.3(3)	82.9(3)	88.8(3)	2.131(8)
Mo(3)	O(11)	O(13)	O(14)	O(15)	O(16)	O(17)
O(11)	1.868(7)	2.71(1)	2.75(1)	3.89(1)	2.72(1)	2.86(1)
O(13)	100.2(4)	1.663(8)	2.79(1)	2.69(1)	2.83(1)	3.87(1)
O(14)	90.2(3)	98.1(4)	2.016(8)	2.95(1)	4.05(1)	2.77(1)
O(15)	166.7(3)	92.1(4)	93.2(3)	2.049(7)	2.81(1)	2.72(1)
O(16)	87.2(3)	97.6(4)	164.3(3)	86.0(3)	2.070(7)	2.83(1)
O(17)	88.5(3)	171.2(3)	81.6(3)	79.2(3)	82.8(3)	2.213(7)
Mo(4)	O(2)	O(18)	O(19)	O(20)	O(21)	O(22)
O(2)	1.863(7)	2.73(1)	2.73(1)	3.86(1)	2.77(1)	2.85(1)
O(18)	100.8(4)	1.674(8)	2.83(1)	2.65(1)	2.81(1)	3.80(1)
O(19)	87.1(3)	96.8(4)	2.093(7)	2.81(1)	4.09(1)	2.87(1)
O(20)	166.8(3)	91.2(4)	86.1(3)	2.026(8)	2.94(1)	2.72(1)
O(21)	90.6(3)	98.4(4)	164.8(3)	93.1(3)	2.028(8)	2.78(1)
O(22)	88.3(3)	170.9(4)	83.3(3)	79.8(3)	81.6(3)	2.214(7)
	P(1)	O(3)	O(8i)	O(14 ⁱⁱ)	O(19)	
	O(3)	1.523(8)	2.48(1)	2.49(1)	2.57(1)	
	$O(8^i)$	108.7(5)	1.527(7)	2.51(1)	2.51(1)	
	O(14 ⁱⁱ)	108.3(4)	109.2(4)	1.553(8)	2.49(1)	•
	O(19)	113.8(4)	109.9(5)	107.0(4)	1.540(8)	
	P(2)	O(6)	O(10 ⁱⁱ)	O(15 ⁱⁱⁱ)	O(22)	
	O(6)	1.517(8)	2.54(1)	2.45(1)	2.52(1)	
	O(10 ⁱⁱ)	111.9(5)	1.553(8)	2.51(1)	2.49(1)	
	O(15 ⁱⁱⁱ)	106.1(5)	108.0(4)	1.550(8)	2.52(1)	
	O(22)	112.2(4)	108.5(5)	110.2(5)	1.520(7)	

TABLE 5—Continued

		IDDE D COMM	, aca	
P(3)	O(4)	O(12)	P(17)	O(20 ^{iv})
O(4)	1.542(8)	2.54(1)	2.48(1)	2.51(1)
O(12)	111.6(5)	1.531(8)	2.54(1)	2.48(1)
O(17)	108.3(4)	112.8(4)	1.520(7)	2.52(1)
$O(20^{iv})$	107.6(4)	106.6(5)	109.9(5)	1.562(8)
P(4)	O(5 ^v)	O(9)	O(16)	O(21)
$O(5^{v})$	1.516(8)	2.46(1)	2.53(1)	2.50(1)
O(9)	107.7(5)	1.535(8)	2.58(1)	2.51(1)
O(16)	110.9(5)	113.2(4)	1.549(8)	2.49(1)
		• •	(3)-O(5) = 3.180(8)	
		3.212(9)	-O(6) = 3.006(8)	
		3.165(8)	$-O(7^{ii}) = 2.893(9)$	
	, ,	3.183(8)	$-O(7^{iv}) = 3.221(8)$	
	· /_	2.984(8)	$-O(9^{iv}) = 3.159(8)$	
	$-O(13^{vi}) = 3$ $-O(13^{vii}) = 2$		$-Q(17^{iii}) = 3.246(8)$ $-Q(18^{ix}) = 3.324(9)$	
	$-O(15^{vi}) = 2$ $-O(16^{vi}) = 3$	• •	$-O(18^{iv}) = 3.324(9)$ $-O(18^{iv}) = 2.979(9)$	
	$-O(10^{\circ}) = 3^{\circ}$ $-O(22^{iv}) = 3^{\circ}$, ,	$-O(18^{\circ}) = 2.375(8)$ $-O(19^{ix}) = 3.235(8)$	
	, ,		-O(19) = 3.233(8) (4)-O(4) = 3.487(8)	
	$-O(19^{\text{viii}}) = 3$. ,	$-O(4^{iii}) = 3.487(8)$	
	• /	2.729(8)	-O(15) = 2.715(8)	
	$-O(20^{\text{viii}}) = 2$		$-O(15^{iii}) = 2.715(8)$	
		2.941(8)	-O(16) = 3.020(8)	
	$-O(22^{\text{viii}}) = 2$		$-O(16^{iii}) = 3.020(8)$	
	- (/	(-,	-O(17) = 2.938(3)	
			$-O(17^{iii}) = 2.938(8)$	
		Symmetry cod	le	
	i	-x y	1/2 - z	
		1/2 - x - 1/2 - y	y = 1/2 + z	
		1-x y	1/2 - z	
		1/2 - x = 1/2 + y		
		1/2 - x y = 1/2		
		-1/2 + x + 1/2 + y	·	
		-1/2 + x - 1/2 - y	,	
	viii :	x -y	1-z	
	ix	$\frac{1/2 + x}{2} + \frac{1/2 + y}{2}$	y z	

atoms around Rb(1) and those around Rb(3) delimit identical polyhedra, but they are different from the polyhedron of K(2) delimited only by eight oxygen atoms. The Rb(2) and the Rb(4) cations are near the axis of the tunnels running respectively along **a** and **b**. Rb(2) lies in an octahedron of oxygen and Rb(4) is surrounded by eight oxygen atoms in such a way that there are two perpendicular planes containing five oxygen atoms each. These two polyhedra are very different from the one of K(1) which is a hexagonal bipyramid.

CONCLUDING REMARKS

This study confirms the possibility of a mixed valency Mo(V)-Mo(VI) "delocalized" over two corner-sharing

octahedra. It opens the road to the research of other intersecting tunnel structures, intermediate between the $K_2O(MoO)_2(PO_4)_2$ structure and the $Rb_3O_2(MoO)_4(PO_4)_4$ structure, based on a chemical twinning mechanism that allows the content of the interpolated cation to be varied.

REFERENCES

- C. Gueho, M. M. Borel, A. Grandin, A. Leclaire, and B. Raveau, J. Solid State Chem. 104, 202 (1993).
- M. F. Zid, T. Jouini, N. Jouini, and M. Omezzine, J. Solid State Chem. 74, 337 (1988).
- 3. M. F. Zid and J. Jouini, C.R. Acad. Sci. 315, 59 (1992).
- M. M. Borel, A. Leclaire, A. Grandin, and B. Raveau, J. Solid State Chem., in press.
- 5. W. H. Zachariasen, J. Less Common Met. 62, 1 (1978).