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The formation of Y Ba,Cu;0; .., (Y-123) and YbBa,Cu,;0,_, (Yb-
123) phases, the synthesis of single-phase Yb-123, and the lowest
temperature for obtaining the single-phase Y-123 superconductor
have been studied by X-ray diffraction, differential thermal analy-
sis, and supcrconductivity measurements, ‘The results indicate that
the Y-123 phase is formed from the principle chemical reaction

Y,0, + 4BaCoO, + 6Cu0
+ (1 — 2x)/20,—> 2YBa,Cu,0,_, + 4CO, 1 .

The reactions for forming Yb-123 phase are

Yb203 + BaCO; + CuD— szBaCUOS + COzT
BaC03 + CI.IO_) BaCqu + COzT

Yb,BaCuQs + 3BaCuO, + 2Cu0
+ (1 = 2x)/20,— 2YbBa,Cu,0,._ ..

In our expetiments, the lowest temperature for obtaining the near-
single-phase Y-123 bulk superconductor is 780°C; a simple proce-
dure for synthesis of the single-phase Yb-123 superconductor is
described. © 1994 Academic Press, Inc.

INTRODUCTION

This first occurrence of superconductivity above the
boiling point of liquid nitrogen was reported for the com-
pound YBa,CuO,_, (Y-123) (1, 2). Substitution of other
rare earth elements for Yitrium followed soon thereafler
{3-5). Compounds of the general formula RBa,Cu;0,_,
(R-123) (R = rare earth elements or Y} can be formed
except for R = Ce and Tb; however, some of them are
difficult to obtain the single phase R— 123 for when R =
Yb, Lu (6-11). For R = Yb, Yb,BaCuQ; always exists
as an impurity in the YbBa,Cu,0,_, (Yb-123) supercon-
ductor prepared by the conventional high-temperature ce-
ramic technique, while the single-phase Y-123 is easily
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obtained. This is attributed to the smaller atom radius of
Yb compared to other rare earth atoms, which may cause
the relative instability of Yb-123. Much research has been
done to reduce the instability of Yb-123 through partly
replacing the Ba site with other small aloms or by prepar-
ing samples with nonstoichiometric starting materials for
hindering the formation of Yb-211. To obtain single-phase
Yb-123, Badri and Varadaraju (11) attempted to achieve
single-phase formation by partly substituting Sr at the Ba
site in Yb-123. This is expected to reduce the instability
of Yb-123 by inducing a contraction of the unit cell through
replacement of Ba by Sr. These authors obtained single-
phase YbBa,_,Sr,Cu,0,_, (x = 0.1-0.5). However, it is
not single-phase Yb-123. Somasundaram et al. (12) used
an 8% excess CuO to suppress the formation of the Yb-211
phase and obtained a sample with T, = 89 K; however,
some CuO impurity was still present.

In the present study, we attempt to compare the forma-
tion process of Yb-123 with those of other rare earth
elements, and we chose yttrium as an example. Through
such a comparison the cause which leads to different
results is expected to be found, and the single-phase for-
mation is expected to be achieved by overcoming the
difficulties associated with the incomplete formation of
Yb-123 during the normal solid-state reaction. We also
investigated the lowest temperature for formation of Y-
123.

2. EXPERIMENTS

The standard four-probe method is used for supercon-
ductivity measurements. X-ray diffraction (XRD) pat-
terns were recorded by a Rigaku Dmax/ra diffractometer
using CuKo radiation. The differential thermal analysis
(DTA) measurements were carried out with a CR-G-type
apparatus; & — Al,O, powder was used as the reference.
Finax and Lazy programs are used for the phase identifi-
cation and for the calculation of lattice parameters.
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3. RESULTS AND DISCUSSIONS

3.1. DTA Experiments of Y,0,, Yb,0,, BaCO,, and
CuO and the Stoichiometric Mixtures of
YO, {(YbO, }iBaCO,/Cu0 = [:2:3

In order to investigate the formation processes of Y-
123 and Yb-123, DTA was carried out for the starting
malerials and stoichiometric mixture Yb-123, with a heat-
ing and cooling rate of 10°C/min. From the weight loss
of samples after and before the experiment, the percent-
age of decomposed BaCO, was calculated.

The results show that Y,0, and Yb,0O; do not exhibit
any phase transition below 1300°C. CuQ has no phase
transition betow $00°C.

a — BaCO, =22== 8 — BaCO,

BaO + CO, 1

965°C

For @ — BaCQ,, @ = 0.5314 nm, # = 0.8904 nm, and
¢ = 0.6430 nm, with space group D1 — Pmnm (JCPDS
5-378}. Fory — BaCQO,, a = 0.6959 nm, with space group
Fm3m (11-697).

BaCQ; has two phase transitions below 1000°C, and
v — BaCQ, begins to decompose at 1160°C, which is
complete at 1350°C. In the Yb-123 mixture, the phase
transition and decomposition temperatures of BaCO, are
lowered because of the coexistence of Yb,0; and CuO.

3.2, Forming Processes of the Y-123 and
Yb-123 Phases

In order to compare the formation process of Y-123
with that of Yb-123, stoichiometric Y Yb-123 mixtures
were mixed, ground throughly, pressed inte pellets, and
placed into a Pt crucible. The samples were respectively
sintered for 3¢ hr at 300, 400, 500, 600, 650, 700, 735, 770,
800, 820, and 850 =5°C under the same heating schedule
(heating and cooling rates are 75°C/hr and 30°C/hr, re-
spectively). The Y Yb-123 phase formation processes
were investigated according to the variations of sample
weight, phase, and superconductivity after and before
every sintering process.

These experiments show that Y,05, Yb,0;, and CuO
do not suffer any weight loss below 900°C; therefore the
weight loss of the samples is due to the decomposition of
BaCO;. Because the amount of RBa,Cu,0,_, formed
from decomposition of BaCO, and oxygen content (x)
changes with sintering temperature, the amount of decom-
posed BaCO; is not easily determined accurately. It is
found that the weight of the sample sintered at 820°C did
not change after a further heating process at 850°C for 30
hr; therefore, we state that the loss weight due to BaCO,
decompositionis M = My — Mgy, where M, is the weight
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of the starting sample, and My, represents the weight of
sample after sintering at 850°C for 30 hr. The precentage
(Pp) of decomposed BaCO; sintered at each tempera-
ture is

MO—MTX

P. =
T M, — Mg,

100%.

Figure 1 shows the T, of samples and the relation be-
tween percentage of decomposed BaCO,(Pr) and sin-
tering temperature, When the sintering temperature is
below 650°C, the weight of the Y Yb-123 stoichiometric
mixture did not change, and the samples sintered at this
temperature did not exhibit superconductivity. The Y-123
sample sintered at 700°C for 30 hr began to exhibit super-
conductivity; this means that the superconductive phase
was formed. When the sample loses some weight, this
indicates that the decomposition of BaCO, and the forma-
tion of Y-123 are interlinked. As the temperature is in-
creased further, more BaCO; is decomposed and more
Y-123 is formed. When the temperature is raised (o 820°C,
almost all BaCO; is decomposed and the T, of the sample
increases to 92 K. For Yb-123, samples did not exhibit
any superconductivity until the sintering temperature was
raised to 800°C. In other words, when the temperature
remains below 800°C the decomposition of BaCO; does
not lead to the formation of Yb-123,

Comparing Y-123 with Yb-123, as long as the tempera-
ture is below 800°C, the decomposition of BaCO; is simi-
liar (Fig. 1); however, one leads to the formation of the
superconductive phase, but the other does not.

The XRD patterns of Y-123 and Yb-123 mixtures sam-
ples sintered at different temperatures are shown in Fig.
2 and Fig. 3, respectively. Markers are used to indicate
¢ach phase obtained at different temperatures. All phases
that existed in samples heated at ditferent temperatures
are listed in Table 1.
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FIG. 1. {A) The percentage of decomposed BaCO, in Y(Yb)-123

mixture vs sintering temperature. (B) The relation between supercon-
ductivity of samples and sintering temperature. A, O, Y-123 mixture;
A, ®, Yb-123 mixture.
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FIG. 2. The XRD patterns of the Y-123 mixture sintered at different temperatures. @, BaCOy; B, Y,0;; O, CuO; &, Y- 123; 'Y, Y,Cu,05; O,
BaCuOs; A, Y-211.

It can bee seen from Table | and Fig. 2 that the Y- and Fig. 2 indicate that the Y-123 phase is formed by the
123 phase begins to form at 700°C; as the temperature main chemical reaction
is increased further, more superconducting material is
obtained, and the superconducting transition temperature
T, becomes higher. Single-phase Y-123 with 7, = 92 K Y:0, + 4BaCO; + 6Cu0

is formed at 820°C. The phase identifications in Table [ + (1 = 2x)120,— 2YBa,Cu,0,_, + 4CO, 1.
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FIG. 3. The XRD patterns of the Yb-123 mixture sintered at different
temperatures. @, BaCO;; W, Yb,0;; O, CuQ; &, Yb-123; W, Yb,Cu,yOs;
O, BaCuO,; A, Yb-211.

It is seen from Fig. 3 and Table 1 that the formation of
Yb-123 is essentially different from that of Y-123. When
the temperature increases to 700°C, Yb-123 is not formed
as is Y-123; however, the BaCO, in the sample begins to
decompose. As the temperature is raised to 770°C, most
of the BaCO, in the sample is decomposed, and this pro-
cess does not lead to formation of Yb-123. Inall processes,
Yb-211 and BaCuQ, are obtained as the main phases
through the chemical reactions
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Yb,; + BaCO; + CuO — Yb,BaCuO4(Yb-211)
+ CO,; T BaCO, + CuO— BaCuQ, + CO, 1.

When the temperature increases to 800°C, the sample
begins to exhibit superconductivity, which indicates that
Yb-123 is formed. The Yb-123 phase is clearly seen in
the enlarged section of Fig, 3. When the temperature
increases further, a great quantity of Yb-211 and BaCuQ,
transforms into Yb-123 according to the reaction

Yb,BaCuO; + 3BaCu0,+ 2Cu0
+ (1 = 2x)/20,— 2YbBa,Cu,0, ,.

The formation processes of Y-123 and Yb-123 are differ-
ent, although they have the same structure and exhibit
similiar superconducting properties. The difference may
arise from the greater stability of Yb-211 (9). Compared
to Y-211, it is easier to form Yb-211 at relatively low
temperatures. As the temperature is increased, Yb-211
transforms into Yb-123. The difference between the for-
mation processes of Yb-123 and Y-123 shows that single-
phase Yb-123 is more difficult to obtain, using the same
method as that for Y-123.

3.3. Synthesis of the Single-Phase Yb-123
Superconductor

In order to find the optimum temperature for sintering
Yb-123, we investigated the relation between the forma-
tion of Yb-123 and the sintering temperature. The starting
mixture of stoichiometric Yb-123 was throughly mixed,
ground, pressed into pellets, and then sintered at 800,
820, 830, 850, and 880°C, respectively, for 30 hr. The Yb-

TABLE 1
The Phases in the Y(Yb)-123 Mixture Samples Sintered at
Different Temperatures

Phase
Sintering

temperature (°C)

Y-system samples

Yb-system samples

25 Y,0, (Y), BaCO, (B), Yb,0s (Yb), BaCO,
Cu0 (C) (B}, CuO (C)
700 Y. B, C, Y-i23, Yb, B, C, BaCu(,
Y2CU2OS (BC), Yb-211,
Yb,Cu,0;
735 Y-123,Y,B, C, Yb, B. C, Yb-211,
BaCuO, (BC) BC, Yb,Cuy(s
770 Y-123,Y, B, C, BC B, C, Yb-211, BC
800 Y-§23, BC, C, Y-211  Yb-211, BC, Yb-123,
C
820 Y-123 Yb-123, Yb-211, BC,

C




410

40 60 80 100

Relative content [/

20

1
820

!
840

1
860

800 ggo-

Temperature (°C)

FIG. 4. The relative content of the Yb-123 phase in sample vs sin-
tering temperature.

123 content in the samples was determined by XRD. The
relative content of Yb-123 is represented by I,

[,(Yb-123)

L= [ Yb0123) + 1, (Yb-211)

X 100%,

where I,;;(Yb-123) and I;,,(Yb-211) represent respectively
the intensities of the (103} and (131) diffraction lines of
Yb-123 and Yb-211. The results are shown in Fig. 4. It
can be seen that the relative content of Yb-123 increases
with increasing temperature; however, when temperature
is increased further, the relative content of Yb-123 de-
creases. Single-phase Yb-123 cannot be obtained by just
increasing the sintering temperature; this is in agreement
with resuits cited in the literature (10}, The optimum tem-
perature range is 820-830°C for transforming Yb-123 and
BaCuQ, into Yb-123. On the basis of these results, we
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reground the samples sintered at 820°C for 30 hr, pressed
them into pellets, and sintered them twice under the same
conditions. The single-phase Yb-123 superconductor with
T, = 92 K was then obtained. Its XRD pattern is shown
in Fig. 5. The lattice parameters obtained for Yb-123 are
a = 0.3796, b = 0.3873, and ¢ = 1.167] nm. In all prepa-
ration processes, regrinding and reheating for several
times are necessary for formation of single-phase Yb-123.
These findings are similar to the results published in the
literature (14); however, the sintered temperature used in
our experiments is relatively low. One should note that
high temperatures are disadvantageous to the formation
of single-phase Yb-123.

3.4. The Lowest Sintering Temperature for Forming the
Y-123 Superconductor

Since the formation temperaturé of Y-123 depends on
the heating rate and holding time, we tried to find the
lowest sintering temperature for forming single-phase Y-
123. This information is useful for preparing wire and
ribbon material superconductors. The lowest temperature
for forming Y-123 is 700°C, as mentioned above. At this
temperature, samples must be sintered for a long time,
but single-phase Y-123 cannot be obtained, We gradually
raised the sintering temperature and reground samples
twice. The sample sintered at 780°C for 60 hr exhibits near-
single-phase Y-123 with T, = 93 K. The XRD pattern is
shown in Fig. 6; Its lattice parameters are a = (.3824,
b = 0.3862, ¢ = 1.1714 nm.

4. CONCLUSION

The formation process of Yb-123 is different form that
of Y-123, which is formed directly from the starting mate-
rials. Yb-123, Yb-211, and BaCuO, are formed at rela-
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FIG. 5. The XRD pattern of the single-phase Yh-123 sample.
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FIG. 6. The XRD pattern of the near-single-phase Y-123 sample with T(0) = 92 K obtained at 780°C (+, impurity phase).

tively low sintering temperatures and then transform into
Yb-123 at 800°C. A simple method to prepare single-phase
Yb-123 has been found. In our experiments, the lowest
temperature of formation of near-single-phase Y-123
is 780°C.
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