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Thermodynamic properties may vary to a considerable extent across the homogeneity range of a nonstoichio-
metric compound. It is shown that the variations in thermodynamic properties depend upon the nature and
distribution of point defects in the lattice as well as upon the change in composition of the compound. A method
of computing thermodynamic activities across the entire existence range of the nonstoichiometric compound

is presented.

Introduction

It can be shown (/) thermodynamically that all
crystalline inorganic compounds are normally non-
stoichiometric (i.e., have variable compositions)
above absolute zero. Brewer (2) has pointed out that
thermodynamic activities, and therefore, the thermo-
dynamic quantities calculated therefrom, may vary
to a considerable extent across the existence range
of a compound. For example, in MnO at 1650C, the
oxygen activities range (3) from about 10~° at the
stoichiometric composition to 10~' at MnO, q,.
Since the variation in activity may have pronounced
effects on the prediction of chemical behavior, it is
necessary to know the thermodynamic properties as
a function of composition across the entire existence
range of a compound.

Deviations from stoichiometry are due to
imperfections in the lattice. Consider a compound
MX,, where M represents a metal (or the more
electropositive element), X is a nonmetal (or the
more electronegative element), and s is the ratio of X
to M in the stoichiometric compound. For inter-
metallic compounds, X will represent the more
volatile element for the purposes of later discussion.
At any temperature above absolute zero, the lattice
may contain six possible types of basic point defects;
interstitial X atoms, X;, metal vacancies, [y,
X substitutionals (i.e., X atoms on M sites), X, X
vacancies, [y, interstitial metal atoms, M;, and M
substitutionals, Mx. An excess quantity of any of
the former three defects will lead to positive devia-
tions from stoichiometry, MX_, 5, while an excess of
any of the latter three will result in negative devia-
tions from stoichiometry, MX;_;.

50

In most solid compounds, the deviations from
stoichiometry are so small that they are difficult to
detect by usual experimental techniques. However,
there is a large group of compounds, particularly
those of the transition elements and intermetallic
compounds, which exhibit wide compositional
variations. These are usually referred to as non-
stoichiometric compounds. The purposes of this
paper are to show that the variation in thermo-
dynamic properties of a nonstoichiometric com-
pound is a function, not only of the defect concentra-
tion, but also of the defect structure (i.e., the type
and distribution of defects in the crystal lattice) and
to outline a method whereby the thermodynamic
activity may be calculated as a function of com-
position across the whole existence range of a
nonstoichiometric compound.

Configurational Entropies

The total free energy of a crystal MX, containing
only point defects may be written:

G = Npyvx, + Nom8om + Nox gox + Nim8im
+ Nix 8ix + Nvxy8mx) + Nxomy 8xom)

N!
—len[
g (sN)!
Nox! Nueo! (SN — Nox — Nyxy)!

(aN)! ]
X 1
NIM!NIX!(“N—NlM—le)! S
Nis the number of metal atom sites, sN the number of
X atom sites, and /N the number of interstices in
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TABLE1I

CONFIGURATIONAL ENTROPIES, ., OF INTRINSIC DEFECTS FOR 1, = 0.01

Se(eu)
Defect Intrinsic defect NaCl-type Fluorite
type concentration, 7; structure structure
Schottky
(Om+ Ox) Nm/N = Nox/sN 0.223 0.334
Frenkel
M; + Ow) Niu/N = Nou/N 0.236 0.223
Anti-Frenkel
X+ 0Ox) Nix/sN = Nox/sN 0.236 0.417
Interstitial
M; + Xp) Niu/N = Nix/sN 0.250 0.306
Antistructure
(Mx + Xn) (s + 1) Nmoo/sN = (s -+ 1) Nxowy/sN 0.125 0.169
Mx + DM (S + I)NM(x)/SN= NDM/N 0.174 0.195
Mx + X[ (S + I)NM(x)/SN-_‘— N]x/SN 0.188 0.284
XM + Ox (S + l)Nx(M)/SN= NDx/SN 0.174 0.302
Xu+ M; Ni/N = (5 + 1) Nxo/sN 0.188 0.191
the lattice where s and « are constants characteristic Schottky Defects:

of the crystal structure. Nowm, Noxs Nivs Nixo
Nxo» Nmpoy are the numbers of metal vacancies,
X atom vacancies, metal interstitials, X interstitials,
X substitutionals, and M substitutionals, respect-
ively, and gom, g0x> &m> 8ixs &xM)> &mx) are the
corresponding free energies of formation of the
defects (other than the contribution from configura-
tional entropy). pumx, is the free energy of the ideal
defect-free crystal. The In term in Eq. (1) represents
the configurational entropy of the crystal due to the
presence of defects. In practice there are rarely more
than two types of basic point defects present in the
lattice. At the stoichiometric composition, two
opposite types (those causing positive and those
causing negative deviations from stoichiometry) are
present in equivalent concentrations. The concentra-
tion of defect pairs at the stoichiometric composition
expressed in terms of the ratio of the number of
defects to the total number of sites in the lattice is
frequently referred to as the intrinsic defect concentra-
tion, n;. Expressions for intrinsic defect concentra-
tion for each of the nine possible types of intrinsic
defect pairs are shown in the second column of
Table I. Using these expressions, the following
relations for configurational entropy may be derived
from the In term in Eq. (1) for each type of intrinsic
defect.

S/R=(s+1)(m—1In(l —ny)
—n(s+ 1)Inn,

Frenkel Defects:

S/R=m—DIn(l—-n)+ @ —a)In(az—n)

—2nlnn; 4+ alna
Anti-Frenkel Defects:
S/R=s(n;,— DIn(1 —n) —sn;Ins
+ (sn; — o) In (o — sn;) — 25m; Inm,
+alna

Interstitial Defects:

S./R=(sn; + n; — )ln(a —sn; —n,)
—nInn, —snIn(sn) + alne
Antistructure Defects:
S/R=In[(s+ /(s +1—sn)]
+sinf(s+ /(s + 1 —n)]
+ [sny/(s + D]In[(s + 1 — sny)
x (s + 1 —n)/sn?]
(Mx + Ou) Defects:
S/R=(m—DIn(1 —n)+sn(s+1)
+ [s(n; — s — D](s + D]
xn(s+1—n)
— [mQ2s + D/(s + D]lnn,
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(M + X;) Defects:
S/R=sIn(s+ 1)+ [s(n; — s — D)/(s + 1)]
xIn(s+1—n)
+ aln o+ (sn; — e} In (o — sn;)
—sn;lns

— [sny(s + 2)/(s + D]Inn;

(X + x) Defects:
S/R=1In(s+ 1) + [(sn; — s — 1)/(s + 1)]
xIn(s+1—n)
+s(n; — DIn(1 —n;) — sn;Inny
— [sni/(s + D] In(sn;)
(Xu + M)) Defects:
S/R=In(s+ 1) + [(sn; — s — 1)/(s + 1)]
x In{s+1—sn;)
+ (n;— ) In(a—ny) — [sny/(s+1)]Ins
+ alno —[#(25 + 1)/(s + 1)]Inn;.

Thus, each type of intrinsic defect leads to a different
relation for configurational entropy. The third and
fourth columns in Table I show comparisons of
values obtained from these relations for 19
intrinsic defects (n, = 0.01) in an NaCl-type structure
(s=1, «a=2) and a fluorite-type structure (s =2,
a=1). It is seen that the configurational entropy
may differ by a factor of almost 21 (e.g., from Anti-
Frenkel to Anti-structure defects in the case of the
fluorite-type structure). The variance among values
is due mainly to the fact that each particular type of
defect is distributed over a different number of sites.
It should be mentioned that of the nine possible
defect types listed in Table I, only five, Schottky,
Frenkel, Anti-Frenkel, Anti-structure, and (X +
[Im) defects have ever been observed (4).

As the compound deviates from the stoichio-
metric composition, the concentration of one type of
point defect of the intrinsic defect pair increases,
while the concentration of the other type decreases
(the product of the concentrations of the two types
of basic point defects remains essentially constant
(%)), so that at large deviations from stoichiometry,
the assumption can be made that only one type of
basic point defect is present. Using this assumption,
an expression for the change in configurational
entropy, 4S., as a function of deviation from
stoichiometry, 8, may be derived for each type of
defect from the In term in Eq. 1. In accordance with
the formula MX,,;, the general relationship
between & and defect concentration is:

5 —
iNIx—NDx +5(Nom — Nim) + (s + 1D (Nx oy — Nmexy)
N+ N+ Nuoo —Nom— Nxon @

For positive deviations from stoichiometry, the

following relations were obtained:

X Interstitials:
A4S./R = aln[e/(ec — 8)] + 8 In [(« — 8)/8]

M Vacancies:
4S8 /R =1n[(s + 8)/s] + [8/(s + 8))In(s/3)

X Substitutionals:
AS /R =sIn[s(s + & + 1)/(s* + 58 + s — 8)]
+[8/(s+8+1)]
x In[(s2 + 58 + 5 — 8)/8].

The variation of 4S, with & is shown in Fig. 1 for
various values of s and «. It can be seen that the
dependence of configurational entropy on the
degree of nonstoichiometry is different for each type
of point defect. For negative deviations from
stoichiometry, the following expressions for the
change in configurational entropy with & were
obtained:

X Vacancies:
A4S./R=sIn[s/(s — 8)] + 8In[(s — 8)/8]

M Interstitials:
S./R = aln [a(s — 8)/(as — &d — 8)]
+[8/(s — 8)]In [(as — ab — 8)/8]

X Substitutionals:
S./R=sIn[s(s + 1 — 8)/(s® + 5 — 56 — )]
+[8/(s+1—8)]
x In [(s? + s — §8 — 8)/8].

Similar curves to those shown in Fig. 1 may be
obtained for negative deviations from stoichio-
metry. Therefore, the type of defects present in a
nonstoichiometric compound may be deduced from
the variation of configurational entropy with
composition. Experimentally, one usually measures
the thermodynamic activity as a function of
composition.

Thermodynamic Activities at Large Deviations
from Stoichiometry

The following expressions for thermodynamic
activity of the X component, ay, of a nonstoichio-
metric compound, MX(. 5, as a function of defect
concentration have been derived (5) from Eq. (1).
Each type of point defect leads to a different
functional reiationship between ax and § because
of the differences in the number of sites over which
the defects may be distributed, and also because of
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Fic. 1. Configurational entropies as a function of stoichio-
metry in the compound, MX,s.

dissimilar changes in the total number of sites on
defect formation. Similar relations may be derived
in terms of the M component.

For M vacancies:

ax =
C [N|l:|/§a(°‘N — Nim — Ni)**(sN — Nox — NM(X))]
M NUS(aN)*5(sN)
(3
where
Coom = exp [(emx, + gom)/SkT]. 4)

At large deviations from stoichiometry Ny > Ny,
Nix, Noxs Nmexys 8 = sNom/(N — Npow), and Eq. (3)
may be rewritten:

ax = Com [8/(s + ) e Q)
For X interstitials:
ax = Cix[Nix/(eN — Nix — Niw)] (6)
where
Cix = exp(gix/kT). )

For large deviations from stoichiometry Nyx > Ny,
8 = Nix/N, and Eq. (6) becomes:

ax = Crx[8/(x — 8)]. @®

For X substitutionals:

ax = Cxm)
% [NX(M)(SN_NDX_NM(X))S(aN_NlM_le)a s+
NN (aN)*
®
where
Cxm) = exp [(mx, + x))/(s + DET].  (10)

For large deviations from stoichiometry Ny >
Nox> Nuxys Nivs Nix; 8 = (54 D) Nxowy/(N — Nxoy)s
and Eq. (9) becomes:

ax = Cxm)[8/(s + 8 + D]letd, (11)
For X vacancies:
ay = Cox[(sN — Nox — NM(X))/NDX] (12)
where
Cox = exp (—gox/kT). (13)

For large deviations from stoichiometry Ny >
Nwmx), 8 = Nox/N and Eq. (13) becomes:

ax = Cox[(s — 9)/8].

For M interstitials:
ax=Cmm

l:(“N_ Nim— Nig)**!(sN — Nox — NM(X)) s
X

(14)

X (N — Ngm — NX(M))
SN[MNz(aN)a

(15)

Cim = exp [(pmx, — g1m)/SkT]. (16)
For large deviations from stoichiometry Ny > Nyy,
Noxs Nuxy Nows Nxeays 8 = sNim/(N + Npy) and
Eq. (16) becomes:
ax = Cim[(as — ad — 8)**!/3(as — ad)*]V* (17)
For M substitutionals:
ax = CM(X)(SN_ Nox — NM(X))

« [(N— NDM - Nxaw))("dv~ Nim— le)a]”(ﬁ”
Nayoo(SNY(aNY*N

where

(18)
where
Cux) = €xp [(umx, — gmx))/(s + DET].  (19)

For large deviations from stoichiometry Ny x,>
Nows NX(M)’ N, Nix; 8=(s+1)NM(X)/(N+
Nxm)) and Eq. (19) becomes:

ax = Cuexy(s + 1) (s — 9)/[(s? + 5 — 58)*8]/¢*D. (20)

Egs. (5), (8), and (11) apply for positive deviations
from stoichiometry and Egqs. (14), (17), and (20)
apply for negative deviations from stoichiometry.
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Itis apparent that if the types of defects responsible
for the deviations from stoichiometry and the
values of the appropriate constants Cyes,, (contain-
ing the energies of defect formation gy....) are
known, the thermodynamic activity as a function of
deviation from stoichiometry, 8, may be computed
at large deviations from stoichiometry using Egs.
(5), (8), (1), (14), (17), and (20). Conversely, the
nature of the predominant defect and the values of
the constants may be determined by comparing
experimental activity data at large deviations from
stoichiometry with the same set of equations. This
has been done (5) for several systems. The case of
positive deviations from stoichiometry in lanthanum
dihydride at 706C is illustrated in Fig. 2. (If the
standard state of hydrogen is taken as H, gas at 1
Torr, the activity of hydrogen in the hydride may be
expressed as the square root of the equilibrium
hydrogen pressure in Torr). The computed curves
were obtained from Eqgs. (5), (8), and (11) by
calculating the values of the constants, C.,, Cin,
and Cy 1.y, which gave the best fit with the data in
each case. Lanthanum dihydride has the fluorite
structure so that « =1 and s=2. The shapes or
slopes of the curves in each case are determined by

28 1 T T T T T T
/ ]
261 ,o
/
24 / n

22

(P, torr)!/2
*
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3

FI1G. 2. Activity of hydrogen in LaH,, as a function of
deviation from stoichiometry at 706C. Data of Korst and
Warf.
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the particular function of & which is characteristic of
that type of defect. The constants merely determine
the relative height of each curve on the ordinate. It is
seen here that the activity data of Korst and Warf (6)
give the best fit for the case of interstitial hydrogen.
This is in accordance with neutron diffraction (7)
and NMR studies (8) which have established that
the defects are indeed hydrogen interstitials.

The deviation of the computed curve from the
experimental points as the concentration approaches
stoichiometry (6 = 0) is due to the increased concen-
tration of the opposite defect of the intrinsic defect
pair. As mentioned above, Egs. (5), (8), (11), (14),
(17), and (20) were derived with the assumption that
only one type of basic point defect is present.
Consequently, they are not valid in the vicinity of
the stoichiometric composition.

In a similar manner the experimental data at large
negative deviations from stoichiometry can be used
to determine the predominant defect in this region
and also the value of the corresponding constant.
The data for lanthanum dihydride at 706C are
shown in Fig. 3. The computed curves were obtained
from Egs. (14), (17), and (20). It appears that hydro-
gen vacancies are the predominant defects at large
negative deviations from stoichiometry. Here again,
deviation of the computed curve from the experi-
mental data is observed as 8 approaches zero. The

(P, torr)"/2

h2 i ] ] | I

-20 -6 -2 -08 -04 0
3

FiG. 3. Activity of hydrogen in LaH,_; as a function of
deviation from stoichiometry at 706C. Data of Korst and
Warf.
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intrinsic defect for LaH, is therefore the Anti-
Frenkel defect, hydrogen interstitials and hydrogen
vacancies.

Computation of Activities

In order to illustrate how the activity across the
entire existence range (including compositions in
the vicinity of and at the stoichiometric composition)
may be calculated, let us consider the case of Anti-
Frenkel defects in lanthanum dihydride in detail.

Anti-Frenkel Defects

For Anti-Frenkel defects (X; + [x), Eq. (2) may
be written :

6= (le - NDx)/N (21)
and Eqs. (6) and (12) become:
ax = Cix[Nix/(aN — Nix)] (22)
and
ax = Coxl(sN — Nox)/Nox] (23)

respectively. Elimination of N;x and Nk from
Eqgs. (21)+23) yields:
(CX. — 8) axz + CDx(a —§— 8) ax — sclxax =
C]x CDx(S + 8) (24)
For LaH,. ;, this equation becomes:
(1 -8 ay* — (8Cyy + 8Cy + Cop) A =
Ciu Cr(2 + 9). (25)
It was shown in the previous section that Cyy and
Cu can be determined from hydrogen activity data

28—
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at large positive and negative deviations from
stoichiometry, respectively. For a hydrogen stan-
dard state of hydrogen gas at 1 Torr pressure, the
values calculated were Cyy = 135 and Cy =0.146
at 706C. Utilizing these values, the activity across a
wide composition range of lanthanum dihydride
(including the stoichiometric composition) may be
computed from Eq. (25). The result is illustrated in
Fig. 4 where it can be seen that the points at 6 = 0.08,
0.07, and 0.05 which previously were above the
calculated curve in Fig. 2, and the points at & = —0.01
and —0.02, which were considerably below the
calculated curve in Fig. 3, are now much closer to
the curve computed from Eq. (25).

As shown in Eqs. (7) and (13), the constants Cjy
and C contain the free energies of defect formation
gx and gy with respect to some standard state. In
the case discussed above, the standard state is
hydrogen gas at 1 Torr pressure. Therefore, gy is
the free energy of formation of a hydrogen inter-
stitial by addition of an H atom to the crystal from
hydrogen gas at 1 Torr. gy is the free energy of
formation of a hydrogen vacancy by removal of an
H atom from the crystal to hydrogen gas at 1 Torr.
Since these free energiesarein terms of somearbitrary
standard state, the values of Cyy and C, cannot be
computed independently. However, the ratio Cry/
Cy is independent of standard state. We can write:

Cru/Crg = exp [(gow + &)k T] = exp(gar/kT) (26)

where g,y is the sum of the free energies of removing

T T T 1T T 71
26
24

22

(P, torr) /2

®.
oo ) 11

1T T T 1

T T T 7°

L1 L]

-8 -14 -.10

.06 A0 14 18

FiG. 4. Comparison of activity data of Korst and Warf for LaH, 5 at 706C with the corresponding curve calculated from

Eq. (25).



56 LIBOWITZ

an H atom to its standard state to form a vacancy
plus the free energy of removing the H atom from
the same standard state and placing it into an
interstice in the crystal. Thus, the energy of the
standard state is canceled out and g,r is merely the
free energy of intrinsic Anti-Frenkel defects; i.e.,
the energy necessary to remove an H atom from its
normal site and place it into an interstice.

The energy of intrinsic defect formation may be
computed from lattice energies (9) so that ratio
Cru/Cin may be obtained independent of activity
measurements. Therefore, in some cases, it is only
necessary to obtain data at one side of the stoichio-
metric composition (either large positive or large
negative deviations from stoichiometry) in order to
calculate activities across the entire existence range
of a compound. In addition, if the ratio of constants
is known at one temperature, it may be calculated at
other temperatures from Eq. (26).

By equating Egs. (22) and (23) at the stoichio-
metric composition where Nrx = Njx, a relation
between the ratio of constants and the intrinsic
defect concentration, »; (as defined in Table I) may
be obtained:

Cix/Co=(s— smy) (o — smy)/(sm3)2.

Consequently, if the intrinsic defect concentration
is obtained in an independent manner (e.g., density
measurements), the ratio of constants can be com-
puted. Conversely, the intrinsic defect concentration
may be calculated from the constants obtained from
activity measurements at large deviations from
stoichiometry.

Schottky Defects

For the case of Schottky defects, Egs. (2), (3), and
(12) may be written:

S = SNDM - NDX
N — Nowm
N\‘:{lsvx(SN — Nox)
ax = CDM[W (27)
ax = Coxl(sN — Nox)/Nox]- (28)

By eliminating Ny and Nk from these three
equations, the following expression relating activity
to & for Schottky defects is obtained:

(ax + Cox)* (s + 8) = CEMICox(s + 9) + 8ax] (29)
For compounds with one-to-one stoichiometry
(s =1), Eq. (29) becomes:

(1 + 8) ax2 + (2C|jx + 28C|:\x - SCDM) ax
+ Cox(1 + 8)(Cox — Com) = 0.

From Eqgs. (4) and (13) we see that the ratio of
constants in this case is:

Crom/Cox = exp [(mx, + 8om + 580x)/skT]  (30)

grm and gy are the free energies of formation of an
M vacancy and an X vacancy by removing an M
atom and an X atom to their respective standard
states, and pyy, is the free energy of formation of a
formula unit of MX from M atoms and X atoms in
their standard states. Therefore (pyx, + o + S80x)
is the free energy of formation of Schottky defect,
i.e., the energy necessary to remove an M atom and
s X atoms from their normal sites to create vacancies
and to form new M and X sites. This quantity can
be calculated from lattice energies (9).

From Egs. (27) and (28) and the definitions of
intrinsic defect concentration in Table I, the
following relationship is obtained for Schottky
defects:

CDM/CDX — ni—(s+l)/s'

In a manner similar to the ones used for Anti-
Frenkel and Schottky defects, the relations between
thermodynamicactivity and deviation from stoichio-
metry, 6, may be derived for each of the remaining
seven types of possible intrinsic defect pairs. These
are outlined below.

Frenkel Defects
For the case of Frenkel defects, Eqgs. (2), (3), and
(15) may be rewritten as follows:
8 =5s(Ngm — N)/(N + Ny — Now) 3D)
ax = Com[Nom(aN — Ni)*[aN*H1Ys - (32)
ax = Ciu[(«N — NIM)a+l(N — Now)/e® Nim Na“]l/s)-
(33

It is not possible to get a general analytic relation
between ax and & by simple algebraic manipulation.
However, in specific cases when « and s are known,
ax as a function of 8 may be obtained by elimination
of Nm and Ny, from Eqgs. (31)-(33).

The ratio of constants in this case is:

Ciom/Cim = exp [(gom + gm)/skT]

where g + g1m 1S the energy necessary to form a
Frenkel defect. Also, from Egs. (32) and (33) and
TableI at 6 =0,

Com/Cim = o' ~*(a — m) (1 — my)/m?.

Interstitial Defects

For the case where the intrinsic defects are inter-
stitial defects, Egs. (2), (6), and (15) may be written:

8 = (NMix — sSNim)/(N + Niw) (34)
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ax = Cix[Nix/(aN — Nix — Nim)] (35
ay = Ciml(aN — Nyyg — Nix)* ! [Ni(aN)*12. (36)
Eliminating N,x and Ny, from Eqs. (34)-(36) yields
the following relationship between ay and &
ay® o*[Cix(s+8) +ax(s + 8 + D) [ax « — ax & — Cix 8]
=CCE W ad+ad+ 8>, (37)
It can be seen that this is at least a cubic equation in
ay, and it becomes much higher order if s, «>1.
Therefore, it is advantageous to use a computer to
work out the exact variation of ax with 8 for specific
values of Cix and Ciy.
From Egs. (7) and (16):
Cix/Cim = exp [(mx, + 581x — g[Sk T,
and from Egs. (35) and (36) and Table I:

Cix/Crm = [(& — n; — Sni)aﬂﬂ/ss a*n

Antistructure Defects

For antistructure defects, Eqs. (2), (9) and (18)
become:

i+l]1/s.

8 =(s + D(Nxpn — Nmeo)/ (N + Nyx) — qu»a)s)
ay = (CX(M)/N)[NX(M)(SN - NM(X))S/SS]I/S+1 (39)

CM(X)(SN NM(X))(N NX(M))I/(S+1)/
N(s* Ny )“(’“) (40)

Here again, it is not possible to btam a general
analytic expression relating ax and 3, but by
eliminating Ny x,and Ny, from Egs. (38)~(40) for
specific values of s and «, and using EDP techniques,
ay as a function of 8 may be computed for specific
values of Cx ) and Cyx).

From Egs. (10) and (19) we have:

Cxon)/Cux) = €xp [(gxm) + Emex))/(s + 1) kT
and from Eqgs. (39), (40) and Table I:
Cxmy/Cumxy = [(s + 1 — n)(s + 1 — smy)/sn 2]/ D,

M Vacancy plus M Substitutional Defects

For (O + My) defects, Egs. (2), (3), and (18)
become:

=[sNom — (5 + D) Nue)/(N — Now) - (41)
ay=Cnom NHK{(SN - NM(X))/SN GrDis - (42)

ax = CM(X)(SN - NM(X))[(N_ NDM)/NM(X)
x (SN N]Ves+D (43)

As in the cases of interstitial defects and anti-
structure defects, a general analytic expression
cannot be obtained by eliminating Ny x, nad Now
from Eqs. (41) to (43). However, ax as a function of

may be obtained for specific values of s, Cy, and
Cmx)

From Egs. (4) and (19) we may write:
CDM/ CM(X) =

exp [(umx, + Sgom + goom + S8mex))/s(s + D KT
and from Egs. (42), (43) and Table I:

Com/ Cuxy = [(1—n)(s+ 1)/n§28+l)/s]l/s+l.

X Interstitial plus M Substitutional Defects

For (X; + My) defects, Egs. (2), (6), and (18) may
be written:

8=[Nx— (s + 1) Ny)l/(N + Nux))  (44)
ax = Cix[Nix/(«N — Nix)] (45)

ax = CM(X)(SN - NM(X))[(aN— le)a/NM(X)
(SN)s(aN)a]l/sH (46)

Eliminating Nyx and Ny, from Eqs. (44)—(46) yields
the following relationship:

ad[s(ax + Cix)(s + 1 + 8)F(ax « — 8ay — 8Cyx)
(ax + Cx)*

= Cid Cixl(ax + C)(s* + 5 + 58 + 8) — ax o]t
47

It is seen that this equation involves ay to at least the
fifth power (for s =1 and « = 1), thus making the
use of a computer desirable for obtaining the explicit
dependence of ax on 8 for specific cases.

From Egs. (7) and (19) we obtain:

Cix/ CM(X)

= exp [(sgix + &ix + &mx) — Hmx)/(8 + DKT]
and from Eqgs. (45), (46) and Table I we obtain:
Clx/ CM(X)

= [(a_sni)aﬂﬂ(s_i_ 1 —ni)‘“/a“s’“(s—i- 1)’n§+2]”‘“.

X Substitutional plus X Vacancy
For the (Xy + [x) intrinsic defect, Egs. (2), (9),
and (12) may be written:
8 =[(s + D(Nxm) — No /(N — Nxmy)  (48)
ax = CX(M)[NX(M)(SN — Nox)*/(sN Y N]”s+l (49)
ax = Cox(SN — Nox)/Nox- (50)

Eliminating Ny, and Ny from Egs. (48)-(50)
yields the following relationship between ax and &:

ax(ax + CDx)s+l(s + 1 + 8)

Cxim(8Cox + dax + 8Cx). (1)



58 LIBOWITZ

From Egs. (10) and (13) we obtain:
CX(M)/ Cox
= exp {[pmx, + gxo) + (s + 1) goxl/(s + )/KT}
and from Egs. (49), (50) and Table I:
Cxmy/Coox = [(1 — m) (s + 1)/smi*2]Vs*L,

X Substitutional plus Metal Interstitial Defects

For the (Xy + M,) defect, Egs. (2), (9), and (15)
become:

_ (S+ I)NX(M) *SN[M

&= 52
N + Nim — Nxmy (52)
N. N — N ) 1/(s+1)
ax = CX(M)[ X(MES;V)“N ina) ] (53)
_ (aN — NIM)TH(N— NX(M)) s
CR R i E Y

As in some of the previous cases, a general expres-
sion for ax as a function of & cannot be obtained in
this case. However, for specific values of s, 8, Cx )
and Cyy, ax can be computed at various values for 8.

From Egs. (10) and (16) we obtain:

Cxm)/Cm
= exp {[sgx) + (s + 1) &im — pmx,)/s(s + KT}
and from Egs. (53), (54) and Table I:

CX(M)/CIM
— [(a _ ni)a+s+1(s+ 1 —sni‘s+l/oc“ss(s+ l)ni2s+l]l/s(s+1)

Conclusion

It has been shown that the configurational entropy
and, therefore, the chemical potential and thermo-
dynamic activity of a nonstoichiometric compound
depend upon the nature of the defects present as well
as their concentration. From Egs. (5), (8), (11), (14),
(17), and (20), the nature of the defects responsible
for the nonstoichiometry may be deduced from
activity measurements at large deviations from
stoichiometry. Ultilizing this information, the
thermodynamic activity as a function of composition
may be computed across the existence range
(including the stoichiometric composition) of a

nonstoichiometric compound from Egs. (24), (29),
and (31)-(54). The free energies of defect formation
and the intrinsic defect concentrations also may be
calculated from activity measurements.

It should be pointed out that the treatment
presented here neglects interactions between defects.
Interactions may become important at very large
deviations from stoichiometry or low temperatures
or both. Relations between ax and & at large
deviations from stoichiometry equivalent to Egs.
(5, (8), (11), (14), (17) and (20) have been worked
out for the case of defect interactions (/0), and
these may be used to derive ax as a function of 8
across the whole existence range in the manner des-
cribed in the previous section, although the algebra
would be considerably more cumbersome.

In nonstoichiometric semiconducting compounds,
the distribution of electronic defects must be taken
into account at temperatures above which the
defect ionizes. This can be done (II) relatively
simply by an additional term in the expression for
configurational entropy.
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