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A statistical thermodynamic analysis is given for an ordered, nonmetallic compound MX in which the predomi- 
nant atomic point defects are vacancies. These are associated with singly-ionizable donor and acceptor levels and 
are assumed to be distributed at random over the available sites. Conduction band electrons and valence band 
holes are considered to be present. The partition function for the Gibbs free energy is constructed as the sum of 
two parts: A configurational entropy times the temperature and an excess Gibbs free energy. Utilizing the fact 
that both these parts must be homogeneous functions of the first degree in the numbers of defects of each kind, 
fixes the composition dependence of the excess Gibbs free energy when expressed accurate to the 1st power of 
the defect numbers and forces the densities of states in the conduction and valence bands to be expressed as func- 
tions of the numbers of defects. The resulting equations reduce to those previously obtained only in the case of 
nondegenerate semiconductor with small defect concentrations. 

Introduction 

By nonstoichiometry we mean the composition 
of a crystalline compound is different from that 
unique, stoichiometric composition required by the 
ideal crystal structure characterizing the phase. 
At a given temperature the composition can in 
principle vary over a range, more or less close to the 
stoichiometric composition, but perhaps not includ- 
ing it. On an atomic scale we picture the presence of 
so-called native, atomic point defects of varying 
kinds and concentrations as the simplest way in 
which the crystal structure is preserved while the 
composition is changed. In nonmetallic or semi- 
conducting compounds, the atomic point defects 
give rise to donor and acceptor levels in the electronic 
energy band structure which can affect the electrical 
and optical properties as well as the thermodynamic 
properties. 

Our object in this paper is to present a statistical 
thermodynamic analysis of a nonstoichiometric 
semiconducting compound, MX, under the as- 
sumption that the atomic point defects are distri- 
buted at random over the available sites. We believe 
this analysis to be more complete in a thermodynamic 
sense than any given hitherto under the same 
assumption. A few remarks may be useful in placing 
t This work was sponsored by the U.S. Air Force. 

our treatment in perspective, since many statistical 
mechanical analyses of point defects in solids have 
been published. An essential feature of the specific 
model adopted here is that it takes account of 
conduction band electrons and valence holes and 
allows for the possibility that changes in composition 
can significantly shift the Fermi level. This in itself 
serves to separate our treatment from those which 
effectively deal with metals in explicitly or implicitly 
assuming the Fermi level is independent of composi- 
tion [Fowler and Guggenheim (I), Wagner (2), and 
more recently Libowitz and Lightstone (3)]. In addi- 
tion the statistical analysis itself is different from that 
often employed for solids in two straightforward but 
important respects. In common with Wagner (2) 
and with Libowitz and Lightstone (3), (1) the Gibbs 
free energy is constructed with the explicit recogni- 
tion that aside from a grouping of terms which is the 
product of the temperature and the configurational 
entropy, the remaining terms must collectively be 
regarded as an excess Gibbs free energy and (2) the 
number of lattice sites is recognized as a variable 
with respect to which the Gibbs free energy must be 
minimized. As a consequence of (l), equations are 
obtained which are thermodynamically consistent 
even when certain composition-independent, partial 
excess free energies must be considered to depend 
upon the temperature. In contrast, the common 
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method of constructing the quasi-grand partition 
function results in energy terms in place of the above 
partial excess free energies. When it is necessary to 
consider these energies to vary with temperature to 
fit experiment, an inconsistent set of equations 
results (4) and considerable confusion has arisen in 
the interpretation of experimental data. Thus we 
find for a nondegenerate semiconductor the tempera- 
ture dependence of the product of the electron and 
hole concentrations, np, is, aside from that of the 
densities of states, exp(g/kT), where g is the excess 
Gibbs free energy to create an electron and hole. The 
derivative of In np with respect to I/Tis the enthalpy 
required to create this pair. As a consequence of (2), 
an additional equation characterizing the equilib- 
rium state of the compound is obtained. For small 
departures from the stoichiometric composition, 
the content of this equation is that the Gibbs free 
energy/g-atom of the compound depends upon 
composition only through terms of the order of D/N, 
where D is the defect concentration and N is that of 
lattice sites. The Gibbs free energy/g-atom is then 
essentially independent of the composition of the 
compound-an assumption commonly made in 
thermochemical studies and commonly used to 
obtain a relation between the partial pressures of 
the two elementary species making up the compound. 

Finally, for the first time explicit use is made of 
the fact that the configurational entropy and the 
excess Gibbs free energy must both be first degree 
homogeneous functions of the number of defects of 
each kind. As a result the densities of states of the 
conduction and valence bands enter some of the 
equilibrium equations through their partial deriva- 
tives with respect to the numbers of defects. 
Consequently these equations are different than 
those obtained before, and reduce to them only for 
the special case that the semiconductor is non- 
degenerate. Moreover, because of this homogeneity 
property, the composition dependence of the 
excess Gibbs free energy is determined when 
expressed accurate to any order in D/N. 

For simplicity of presentation we shall consider a 
model in which vacancies are the only atomic point 
defects. There is no difficulty in considering the 
simultaneous presence of interstitials and place 
exchange defects. 

Description of the Model 

Consider a semiconducting compound, MX, 
which contains M-vacancy acceptors and X-vacancy 
donors. Our basic assumptions are : 

I. The structure of the compound consists of 
two sublattices each containing N-sites. The 
M-atoms occupy some or all of the sites of one- 
sublattice, the X-atoms occupy some or all of the 
sites of the second. Unoccupied sites in the M sub- 
lattice are called M-vacancies. Unoccupied X-sites 
are called X-vacancies. 

II. The M- and X-vacancies are distributed at 
random among the sites of the sublattices. 

III. The compound MX is a semiconductor. In 
the perfect stoichiometric compound at 0°K the most 
energetic electrons just fill a set of closely spaced 
energy levels (the valence band) which in turn is 
separated from the nearest empty levels. These 
empty levels are also closely grouped into a band 
called the conduction band. We emphasize the 
model includes both conventional semiconductors 
and those in which the hopping mechanism of 
electronic transport predominates. 

IV. Each M-vacancy is associated with an 
acceptor level at a fixed energy EA. Each X-vacancy 
is associated with a donor level at a fixed energy ED. 
The donor can be occupied by at most one electron 
but has a spin degeneracy of two. The acceptor level 
has a maximum occupancy of one hole and is also 
two-fold spin degenerate. 

V. The density of states per unit energy in the 
electronic energy bands is a function of the number 
of sites and the total numbers of M-vacancies and 
of X-vacancies. This dependence has heretofore 
been neglected as far as the author is aware. It is 
discussed in more detail later. 

VI. The electrons are distributed among the 
available energy levels according to Fermi-Dirac 
statistics. 

VII. The excess Gibbs free energy of the com- 
pound is a linear function of the number of defects 
of each kind and satisfies the more generally valid 
restriction of being a homogeneous function of the 
first degree in the number of defects of each kind. 

These assumptions are more likely to be valid for 
small deviations from stoichiometry. As the con- 
centration of donors or acceptors increases, the 
originally fixed donor and acceptor levels spread out 
in energy, forming so-called impurity bands which 
eventually merge with one of the main bands. This 
problem is currently of interest (5-7). The effect can 
be viewed as a screened coulombic interaction 
among the various charged species and at low 
temperatures can be important at relatively low 
concentrations of donors or acceptors (7). At 
temperatures high enough to attain equilibrium 
between the compound and the surrounding vapor 
phase, in reasonable times-the situation in which 
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TABLE I 

Lrsr 0~ SYMBOLS 

M-vacancy with a hole occupying the acceptor level 
at energy En. Also called a neutral M-vacancy in 
current nomenclature. 
M-vacancy with an electron, or no hole, occupying 
the acceptor level i.e. an ionized M-vacancy acceptor. 
V, = VMo + V,- total concentration of M-vacancies. 
X-vacancy with an electron occupying the donor 
level at energy ED. Also called a neutral X-vacancy 
donor. 
X-vacancy with no electron occupying the donor level 
i.e. an ionized X-vacancy donor. Vx = Vxo + Vx+ 
total concentration of X-vacancies. 
Conduction band electron with an energy between 
E,andE,+ AE,. 
Number of conduction band levels in the energy 
interval Es and Es + AE,. 
Valence band hole with an energy between E, and 
E, + AE,. 
Number of valence band levels in the energy interval 
E, and E, + AE,. 
Chemical potential of an M-atom measured relative 
to an isolated M-atom in its ground state. 
Chemical potential of an X-atom measured relative 
to an isolated X-atom in its ground state. 
Fermi level characterizing the electronic energy 
distribution. 

we are interested-the concentration of electronic 
carriers is often large due to excitation across the 
forbidden energy gap of the semiconductor. As a 
result the various charged species are more effectively 
screened and significant shifts in the energy levels 
occur at higher donor and acceptor concentrations 
(8). As a result of increasing defect concentrations 
assumptions II and VII are eventually invalid. 
However, developing a model in which electronic 
effects (as exemplified in III, IV, and V) were 
assumed unimportant, Libowitz and Lightstone (3) 
found assumptions II and VII to be apparently valid 
for a few hydrides (presumably metallic) at defect 
concentrations in the 1021 cmv3 range. 

Table I gives a list of symbols used. Some play a 
double role of identifying a defect and indicating its 
number. Following current usage an X-vacancy is 
indicated by Vxo when an electron occupies the 
associated donor level and is called a neutral X- 
vacancy donor. When the level is not occupied by 
an electron the X-vacancy donor is said to be ionized 
and indicated by V,‘. The neutral M-vacancy 
acceptor is indicated by VMo and has a hole occupying 
the acceptor level. The hole is removed by placing 

an electron on the acceptor level to form an ionized 
M-vacancy acceptor, V,-. The energies Es and E, 
are arbitrary energies inside the conduction and 
valence bands, respectively. The number of defects 
given in Table I is considerably increased over the 
two, V, and V,, required if electronic defects are 
neglected. 

General Expression for the Gibbs Free Energy 

We now desire to obtain the Gibbs free energy of 
the compound as an explicit function of the numbers 
of defects of all kinds. The general form is indicated 
by Eq. (1). 

G* = G(N, vMo, VM-, vxo, vx+, . . . Iz,, . . .,&, . . .). 
(1) 

The superscript asterisk used in Eq. (1) and below 
indicates the value of the thermodynamic potential 
for general values of the numbers of defects. When 
the asterisk is omitted, the value of the thermo- 
dynamic potential is that special one, the equilibrium 
value, obtained by inserting the equilibrium values 
for the numbers of defects. 

Equation (2) serves to define a quantity, 6, called 
the excess Gibbs free energy here, in terms of the 
ordinary Gibbs free energy and the configurational 
entropy, SC,,. 

G = e - TS,,, (2) 
= -kTln 2 T,, (3) 
= -kTln 1 exp [-(&* - TS,*,,)/kT]. (4) 

An explicit expression for S,*,, is given later. Equa- 
tion (3) states formally that the Gibbs free energy 
can also be expressed in terms of the logarithm of a 
sum whose general term is T,, and which is a type of 
partition function. The structure of the general term, 
T,,, of the partition function is indicated in Eq. (4) 
in which the excess Gibbs free energy and the 
configurational entropy are to be given as explicit 
functions of the number of defects of each kind and 
the sum is over all sets of such numbers consistent 
with constraints of Eqs. (5)-(7). 

N - VMo - V,- = NM (a constant) (5) 

N - Vxo - V,’ = Nx (a second constant) (6) 

.I ns + VM- = “2 Pr + Vx’. (7) . . 

Equations (5) and (6) are an expression of I and 
indicate the numbers of vacancies and atoms of each 
kind add up to the same number, iV, the total number 
of sites in each sublattice. The stipulations that the 
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number of M-atoms, N,, and the number of 
X-atoms, Nx are each constant is required later 
when the equilibrium numbers of defects are deter- 
mined. As is well known this determination depends 
upon the fact that the Gibbs free energy is a minimum 
with respect to possible changes in the numbers of 
defects at constant temperature, T, pressure, P, and 
numbers of atoms of each kind (9). Equation (7) is 
the requirement of electrical neutrality. The first 
summation is over the number of electrons in each 
narrow energy interval of the conduction band 
while the second is an analogous sum for holes in 
the valence band. 

Configurational Entropy and Densities of Electronic 
States 

Applying the usual approximation we can replace 
the sum in Eq. (4) by its largest term, with negligible 
error (4). The configurational entropy part of this 
term can be written consistent with II, IV, and, VI 
as shown in Eq. (8). 

where the binomial coefficient is given by 

X 0 x! 
E 

Y x!(x-y)!’ (9) 

The binomial coefficient z gives the number of 
0 

ways in which x objects can be divided into two 
unordered groups, one group containing y objects 
and the other x -y objects. Thus 

(,&-) 

gives the number of ways a total of V,O + V,- 
M-vacancies can be distributed among N sites. For 
each of these distributions there are 

(GJ+p-) 

ways that V,’ holes can be distributed among a total 
of VMo + I’,- acceptor levels so each contains no 

more than one hole. The other binomial coefficients 
arise similarly. The binomial coefficient 

iN4 
\nsl 

gives the number of ways that n, conduction band 
electrons with energies in the interval Es and 
Es + AE, can be distributed among the N, levels in 
that energy range so that each level is either empty or 
occupied by one electron (10). This coefficient is 
then summed over all energies in the conduction 
band to obtain the contribution from all conduction 
band electrons to the configurational entropy. An 
analogous interpretation holds for the last sum of 
Eq. (8) which is over the energies of the valence band. 
The factor 2 raised to the Vxo + VMo power arises 
from the assumed two-fold spin degeneracy of the 
acceptor and donor levels. If in a more general case 
the donor level is g,-fold degenerate, while the 
acceptor level is g,-fold degenerate, but both with a 
maximum occupancy of one, this factor is replaced 
by g;““. gr;‘“. If the electronic defects were ignored 
Eq. (8) would be replaced by 

Now the configurational entropy given by Eq. (8) 
must be an extensive function of the numbers of 
defects if we confine our considerations to macro- 
scopic amounts of the compound large enough that 
surface effects are negligible. Mathematically 
speaking, S,*,, must be a homogeneous function of 
the first degree in the numbers of defects. In order 
for this to be so, the density of states in each band, N, 
and N,, must be considered to be doubled when two 
identical replicas of the compound are considered 
to be joined. In the past the situation has implicitly 
been left at that. However, one can argue that N, 
and N, ought to be a function of at least N, V, z 
VMo + I’,-, and V, = Vxo + V,‘. Suppose one 
considers the compound with no vacancies i.e. 
N = NM = Nx. The energy levels originate from 
atomic levels and the total number of energy levels 
and in particular N, and N, ought to be homogeneous 
functions of Nhl and N,. If NM and Nx are doubled, 
so must N, and N, be doubled for every energy 
interval in the bands. Now consider the stoichio- 
metric compound with vacancies present in equal 
numbers i.e. V, = Vx. The introduction of vacancies 
is accompanied by the introduction of donor or 
acceptor levels that are generally imagined outside 
the bands but in any case are considered different 
from them. Since these localized levels must basically 
originate from atomic levels and the total number of 
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levels must depend on NM and Nx, the number of 
levels in the bands must decrease. We are led to a 
general assumption that the density of states (per 
unit energy but not per unit volume) in both bands 
ought to be homogeneous functions of NM, V,, 
Nx and V,, or in terms of the variables of SC,,; 
N, I’,, and V,. Thus we can write: 

N,=NJ@, t$E)+ V,J,+ V,J, (11) 

N,=NH,+VMH2+VXH3. (12) 

The functions Ji and Hi are all homogeneous 
functions of the zeroth degree (II) in I’,, V,, and N 
and are functions of energy E, as indicated explicitly 
for the argument of J,. Equations (11) and (12) 
indicate a dependence of the total number of levels 
of all kinds on the total number of atoms in a 
formal way. The principle has been recognized but 
is usually dismissed as unimportant unless the donor 
and acceptor concentrations exceed about 10zo cm-3. 
As far as the author is aware it has not been included 
in the statistical analysis previously. In general the 
functions JI and Hi in Eqs. (11) and (12) are un- 
known. A possible specific form might be 

N,=(N- V,- Vx)n, where n, = n,(E) 
(1 lb) 

N,=(N- V,- V&y where n, = n,(E). 
Wb) 

For example, Eq. (11 b) would follow with n, unity 
if the conduction band was confined to a single 
energy, EC, was derived entirely from a single M- 
atom level, and suffered a loss of one level for each 
N-vacancy donor level formed. Then 

N,=N,-I/,=N-T/,-I/,. 

Inserting Eqs. (11) and (12) for the densities of states 
into Eq. (8) for the configurational entropy and 
applying Stirling’s approximation for the factorials, 
the configurational entropy is a homogeneous first 
degree function of the defect numbers. 

Excess Gibbs Free Energy 

The excess Gibbs free energy defined by Eq. (1) 
must be a homogeneous function of the first degree 
in the defect variables since the Gibbs free energy 
and configurational entropy themselves are. Thus 
one can formally write : 

&=Ng 
vlMo v,- V,O V,’ 
N,N,N,N ,..., 2 ,..., 5 ,.,. 

(13) 

where g is a homogeneous zeroth degree function (II) 
of the numbers of defects as implied in the form of 
its argument. Expanding g in a MacLaurin’s series 
about zero values for the numbers of each kind of 
defect, and discarding terms higher than the zeroth 
degree, (VII), we can express the excess Gibbs free 
energy as: 

I!?* = Ngo + V,” q+, + VXo l X + VM-(+, + EA) 

+ Vx+(+-ED)+ C n,Es- X P,J% 
c.b. v.b. 

(14) 
where the first factor of each term is the number of 
one kind of defect and the second factor is an excess 
Gibbs free energy for the creation of that defect. 
Some of these such as EA, ED, E,, and E, may be 
referred to as energy levels but are strictly speaking, 
excess Gibbs free energies. For the perfect stoichio- 
metric compound C.?’ = Ngo = Go, i.e. go is the free 
energy per MX pair in the perfect, stoichiometric 
compound. The physical significance of the other 
parameters in Eq. (14) can be determined by calculat- 
ing the change in & for changes in the defect 
numbers consistent with the constraints of Eq. 
(5)-(7). Thus if one electron is promoted from an 
energy E, in the valence band to an energy, ES in the 
conduction band, or equivalently, if an electron at 
energy, ES, and a hole at energy, E,, are created, the 
change in 6* is ES -EC. 

Gibbs Free Energy in Explicit Form and 
Equilibrium Conditions 

Equation (14) for the excess Gibbs free energy and 
Eq. (8) for the configurational entropy with N, and 
N, given by Eqs. (11) and (12) can now be substituted 
into Eq. (4). Following the usual procedure we 
approximate the sum in Eq. (4) by its largest term 
and apply Stirling’s approximation to the factorials 
in the binomial coefficients (4). The resultant 
equation for the Gibbs free energy is given by: 

N2 
go - kT’n(N- V&N- V,j 

- 2 J,kTln& - 2 H,kTln&] 
c.b. s s v.b. r I 

EM-kkTlnP - N-VM kTln2 
Vhf0 

- 1 J2 kTln & - 2 H2 kTln N%) 
s s I t 
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l M+EA-kTlnN;V, 
M 

+ Vxo Ex-kTln-- N-vx kTln2 
VXO 

+ V,’ cX - ED - kTln N--I 
Vx’ 

- ZJjkTln$& - zH,kTln&) 
s * r r 

Ns-n, ES-kTln--- 
n, 

- ~,,(E,+kTlnN~). 

We see that the defect variables are the factors 
multiplying each quantity in braces. The equilibrium 
distributions for these defect variables are obtained 
by minimizing G* with respect to each variable 
subject to the constraints of Eqs. (5)-(7) and constant 
T and P. We note that since G* is a homogeneous 
function of the first degree in the defect variables, 
its partial derivatives with respect to these variables 
can be read directly from Eq. (15) as the quantities 
in braces (II). It is seen that the summation terms 
arising from considering the densities of states, 
N, and N,, as a function of N, V,, and V, are (1) 
the same for the partial derivative of G* with respect 
to VMo as they are for the derivative with respect to 
V,-, (2) are identical in the same sense for Vxo and 
Vx+, and (3) appear only through N, and N, in the 
partial derivatives with respect to n, or pr. As a 
consequence we shall see that the equilibrium values 
of the ratios V,-/ VMo and V,‘/ Vxo are not affected 
by the assumed dependencies of N, and N, on I?, 
VM and VN made in Eqs. (10) and (11). In addition 
the equilibrium distribution functions for n, and pc 
have the same formal appearance as they would had 
these dependencies been neglected. 

At constant T, P, NM, and Nx the equilibrium 
conditions are given in terms of G*(N, VMo, V,-, 
Vxo, Vx’ ,..., n, ,..., p,...) of Eq. (15) by the seven 
equations : 

aG* 
*-cLhox=o (16) 

go+pm=o 
M 

aG* 
al/+PM-Ef=O 

M 

(17) 

(18) 

(19) 

g-EfzO s= 1,2,... (20 

aG+E =(-j 
ah f r= 1,2,.... (22) 

The chemical potentials pM and px and the Fermi 
level, E,, enter the equations as Langrangian 
multipliers arising from the constraints imposed 
by Eqs. (5)-(7). We wish to emphasize that the total 
number of sites in each sublattice, N, is a variable 
and the Gibbs free energy has been minimized with 
respects to variations in N in Eq. (16). That this 
should be done was indicated by Wagner (2) but as 
far as the author is aware, Libowitz and Lightstone 
(3) were the first to give a detailed statistical 
mechanical analysis in which this fact was recog- 
nized. Previous developments neglecting this fact 
suffer in losing one equation that serves to character- 
ize the equilibrium situation more completely. 

Distribution of Electrons and Holes 

Equations (21) and (22) can be solved to give the 
distribution functions for electrons and holes as: 

n, = NJ 1 + exp (Es - E,)/kT]-’ (23) 
pr = NJ 1 + exp (Ef - E,)/kT]-’ (24) 

These are the general Fermi-Dirac distribution 
functions (10). The total number of conduction 
band electrons or valence band holes is obtained by 
summing Eqs. (23) or (24) over all the energies in the 
appropriate band to give 

n z 2 n, = 2 NJ1 + exp(ES - E,)/kT]-’ (25) 
C.b. c.b. 

zz 
s 

N,dE 
1 + exp (E - E,)/kT 

c.b. 

P : C P, = vz NJ1 + exp(Ef - WkTl-1 
v.b. 

s N,dE 
= 1 -t- exp(Ef - E)/kT (26) 

v.b. 
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In going from the summation to the integrals it 
must be remembered that N, and N, are both to be 
considered functions of energy as well as of N, V,, 
and V, and the usual assumption has been made that 
the band levels are closely spaced enough in energy 
that the summations can be replaced by integrals. 
The commonly used Fermi integrals of order l/2 are 
obtained from the integral forms of Eqs. (25) and 
(26) if the densities of states in qach band vary as 
(E - E#p, where EO is the energy of the band edge 
(12) and if T/,/N and vx/N are small. 

For nondegeneracy the Fermi level must lie 
within the energy band gap and at least a few kT 
away from either band edge so that: 

1 + exp (Es, - E,)/kT NN exp (Es0 - E,)IkT 
(274 

and 
1 + exp (Ef - E,,)/kT z exp (E, - E,,)/kT 

(27b) 
where Es, is the lower-most energy level of the 
conduction band and E,, is the upper-most energy 
level of the valence band. Equations (25) and (26) 
for the numbers of electrons and holes then reduce to 

n = [exp WWI L.2 Ns exp (-E&T~I (28) . . 
P = kxp b%WI [,z. Nr exp EIkT)I (2% 

so that 

np = [ 2 N, ev f-WT)l iv; Nr exp G%W)I (30) 
c.b. 

Broad Band Semiconductors 

For some semiconducting compounds such as the 
III-V, II-VI, and IV-VI compounds, the conduc- 
tion and valence bands are of the order of a few 
electron volts wide. These so-called broad band 
semiconductors characteristically have densities of 
states per unit volume and unit energy that are small 
compared to the atomic density. It is therefore 
generally true that when a broad band semi- 
conductor is nondegenerate, the fractions of sites 
vacant are also small; V,/N, T/,/N Q 1. If the 
densities of states per unit energy N, and N,, are 
converted to densities of states per unit volume and 
unit energy by dividing Eqs. (11) and (12) by the 
total volume, we expect that to a good approxima- 
tion the new densities of states will be functions of 
energy and number of lattice sites per unit volume 
only. Moreover, the latter concentration will vary 
negligibly over the composition range in which the 
semiconductor is nondegenerate. Equation 30 can 

then be rewritten in terms of concentrations 
(number per cm3) as 

bl [PI = h12 (31) 
where the intrinsic carrier concentration, [n,], is a 
function of temperature only for a given semi- 
conducting compound. 

Narrow Band Semiconductors 
Characteristically, narrow band semiconductors 

have relatively large densities of states so that at 
relatively large vacancy fractions the electron-hole 
distribution may still be nondegenerate (23). For 
semiconducting, oxygen-rich, transition metal ox- 
ides, MO, a commonly used description is that 
for every M-vacancy or for every (M-vacancy, 
M-vacancy, M interstitial) complex there are two 
M+3 ions randomly distributed among the sites 
occupied by M-ions. In the terminology used in 
this paper one would say the acceptors are all 
doubly ionized and the valence band is confined to a 
single energy, E,, with a density of states, N, = 
N - I’,, at E,. Thus taking the total number of 
sites N, to be equivalent to a concentration of about 
10z2 cmm3, the hole concentration could be as large 
about 102’ cmW3 without the occurrence of full 
degeneracy. This can be seen using Eq. (26) in 
which the sum reduces to a single term with N, = 
N - I’, and E, = E,. In terms of the band picture 
one ascribes large densities of states to the presence 
of narrow d-bands. 

Remaining Distribution Functions for the Special 
Case of Nondegeneracy 

The distribution functions for the other defect 
variables obtained from Eqs. (16)-(20) all contain 
terms similar to 

T=- 2 J,kTln& 
c.b. s s 

- 2 H,kTln&. 
v.b. r r 

(32) 

The specific terms shown arise in Eq. (16) for the 
minimization of G with respect to N. For the other 
defect variables the only change is in the subscript 
of the Jf, Hi functions. Using Eq. (23) and (24) for 
the distributions of electrons and holes, the terms 
above in Eq. (32) can be written as 

T = - 2 J1 kTln [ 1 + exp (Ef - E,)/kT] 
c.b. (33) 

- “5 HI kTln [l + exp (Er - Ef) kT]. 
. . 
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When the semiconductor is nondegenerate as 
defined by Eq. (27a,b) the exponentials in each term 
of Eq. (33) go to zero and so then does each term. 
This is also true of similar terms arising in the 
distribution functions for VMo, V,-, Vx”, and V,‘. 
In this special case the distribution functions 
obtained here by substitution of Eq. (15) into Eqs. 
(16)-(20) are the same as those obtained on the 
assumption that the densities of states N, and N, 
depended only on energy. These distribution 
functions are : 

~M+~N=gO-kTln 
N2 

(N - V,)(N - V,) (34) 

pM = kTln K-y, - 
VMO 

Ed + kTln 2 (35) 

= kTlnN$ - EM + 6% - &) (36) 
M 

px = kTln !k!h - 
vx” 

ox + kTln 2 (37) 

= kTln 
N- V, 
___ - EX + (ED - EJ. 

Vx’ 
(38) 

Equating Eqs. 35 and 36 and Eqs. 37 and 38 gives 
respectively : 

In 2 V,-/ VMo = (Et - E,)/kT (39) 

In 2 V,‘/ Vxo = (ED - E,)/kT (40) 
Along with Eqs. (23) and (24), Eqs. (39) and (40) 
complete the description of the equilibrium distribu- 
tion of electrons and holes over the electronic energy 
level structure. As mentioned earlier, Eqs. (39) and 
(40) as well as Eqs. (23) and (24) for n, and pr are 
still valid even if the semiconductor is degenerate, 
whereas Eqs. (34)-(38) for the chemical potentials 
must be corrected by addition of terms of the 
general form given by Eq. (32). 

Physically, Eq. (34) can be viewed as a justification 
in terms of our model of an approximation com- 
monly used, but not always recognized, in thermo- 
chemistry. Provided the vacancy concentrations 
are small enough so that V,/N, V,/N Q 1 and the 
vapor is ideal, then Eq. 34 leads to 

pg”.p:{,” = K(T) (41) 
where K is a function of temperature only, pw is the 
partial pressure of M, molecules (a vapor phase 
molecule composed of a atoms all of the element M) 
and pxb is the partial pressure of XI, molecules. 
It can be seen directly from Eq. (34) with N - V, = 
N - V, = N and Eq. (41) that lnK(T) is equal to 

AG,O/RT, where AGfo is the standard free energy of 
formation of MX(c) from M,(g) and X,(g) each at 
1 atm. 

Products other than np are functions of tempera- 
ture only for a nondegenerate semiconductor. 
Adding Eq. (35), giving ~1~ in terms of VMo, and 
Eq. 37 giving px in terms of Vxo, equating the result 
of Eq. (34), and rearranging we obtain 

VMo Vxo/N2 

= (8 exP [-(go + EM + l d/kU = W’, p). 
(424 

Similarly adding Eqs. (36) and (37) and equating to 
Eq. (34), the Fermi level cancels out and we obtain 

V,- Vx+/N2 

= exp [-(go + EM + cX + EA - E,)/kT] = k,(T,P). 
Wb) 

Thus so-called Schottky constants are defined for 
each product. Strictly speaking it is the product of 
the vacancy fractions, e.g. ( VMo/N)( Vxo/N), that is 
a function of temperature only. However, if the 
vacancy concentrations are small enough the 
number of sites per cm3 does not vary significantly 
with defect concentrations, one can replace the 
vacancy fractions by concentrations. This substitu- 
tion of course can be made throughout the equations 
used here. 

Equations (36) and (38) for the chemical potentials, 
simplified as they have been by the assumption of 
nondegeneracy, are still more complicated than 
their analogs for a model in which electronic defects 
are neglected. Equations (35) and (37) in terms of 
the neutral or unionized vacancies have almost the 
same forms as for the simpler model, but only 
reduce to them when the fraction of neutral M- or 
X-vacancies is unity, i.e. when there are no ionized 
vacancies. This is the case when (1) either the M- 
or X-vacancy concentration is much larger than the 
other and (2) the ionization energies for the donor 
and acceptor levels are large compared to kT. 
That Condition 2 is not enough, can be seen by 
considering the stoichiometric compound in which 
the total concentration of M-vacancies must equal 
the total concentration of X-vacancies. If as is 
usually the case, the M-vacancy acceptor level is 
much below the X-vacancy donor level in energy, 
the electrons will fall from the donor levels into the 
acceptor levels and all the vacancies will be ionized. 
Thus when a single type of vacancy is in excess and 
is essentially neutral because of a large ionization 
energy of the associated donor or acceptor level, 
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the equation for the corresponding chemical 
potential reduces to that obtained when electronic 
defects are neglected. 

The chemical potentials can be written in a highly 
compact form in terms of the net electron concentra- 
tion, 12 -p, provided (1) the semiconductor is non- 
degenerate and (2) that V,/N, Vx/N@ 1 (so that 
N-V,% N; N- V,z N). As mentioned earlier, 
the latter restriction is less confining in general than 
the former for broad band semiconductors. The 
variable, n - p, is particularly appropriate for broad 
band semiconductors since Hall measurements are 
generally easily made and, once enough is known 
concerning the band structure, 12 and p can be calcu- 
lated. Using Eqs. (7), (31), and (42b) we can rewrite 
Eqs. (36) and (38) as 

pM = kTsinh-r [(n --p)/2kij2] 

+ kTsinh-’ [(n - p)/2nJ 

+ bdint) 

(43) 

flX = -PM f &dint) + pX(int) (44) 

where pFLM(int) and px(int) are respectively the 
chemical potential of M and of X when n -p = 0 
i.e. when the semiconductor is intrinsic. It should be 
emphasized that the validity of Eqs. (43) and (44) is 
independent of the fraction of M-vacancies or 
X-vacancies ionized. The only restrictions are of 
small vacancy concentrations so that N - V, w N - 
V x M N and nondegeneracy. Within these restric- 
tions Eqs. (43) and (44) are equally valid near 
stoichiometry when VM = Vx and “far” from 
stoichiometry when one vacancy or the other is in 
excess. The important points in connection with 
Eqs. (43) and (44) are that the energy parameters of 
the model appear in the temperature dependent 
CpaUtitieS, &int) and px(int), and at a given 
teInperatUre serve Only t0 shift PM and px eqUa]ly 

for all values of II -p. The dependence of the 
chemical potentials upon composition arises in the 
inverse hyperbolic sine terms. One arises from the 
configurational entropy of distributing the vacancies 
over sites, the other [with the argument (n -p)/2nl] 
arises from the configurational entropy of distribut- 
ing electrons and holes over the available energy 
levels. Which predominates depends on the relative 
magnitudes of k, and ni2. Generally both must be 
considered. 

Degenerate Semiconductors and Semimetals 

The expressions for the chemical potentials are 
different than those obtained heretofore if the 

semiconductor is degenerate. We have not written 
them down explicitly, but they are readily obtainable 
upon substitution of Eq. (15) into Eqs. (16)-(20). 
Since we know very little at present concerning the 
functions defining the densities of states in the bands 
(Eqs. (11) and (12)) not much can be said. However, 
it is obvious that, in contrast to the situation for non- 
degeneracy, the results of the statistical-mechanical 
analysis cannot be cast in the form of mass action 
laws (with activity coefficients all equal to unity). 
For instance the product, np, formed from Eqs. (25) 
and (26) can be seen to be a function of composition 
both through the Fermi level and the densities of 
states. 

In some cases the model used here is too simple at 
the donor or acceptor concentrations necessary for 
the onset of degeneracy for reasons summarized in 
Description of the Model. However, the model may 
very well be appropriate for semimetals. In semi- 
metals the valence and conduction bands just touch 
or overlap slightly, so the electron distribution is 
always degenerate. However, the density of states 
in one or both of the bands is small so that, like 
semiconductors and unlike normal metals, relatively 
small donor or acceptor concentrations (in the 
10’6-1020 cmP3 range) can cause significant shifts in 
the Fermi level. For instance HgTe and HgSe are 
semimetals for which the relationship between 
stoichiometry and carrier concentration has been 
investigated experimentally (14, 1.5, 16). On the 
basis of the results presented here this relationship 
ought to be interpretable provided the densities 
of states can be determined, whereas a customary 
mass action law analysis is invalid because of 
degeneracy. 

Discussion 

Comparisons between the results obtained here 
and those for models neglecting electronic defects 
have been made in Eq. (10) and in the paragraph 
following Eq. (42b). In particular the results obtained 
by Libowitz and Lightstone (3) and those obtained 
here are consistent in the following sense. If their 
results are specialized to the case that vacancies are 
the predominant atomic point defects in a compound 
MX (they considered vacancies, interstitials, and 
place exchange defects in M,X,) and if the considera- 
tion of electronic defects is eliminated from our 
results by taking all vacancies to be neutral and the 
electron and hole concentrations to be zero, then 
both sets of equations are identical. 

The author has previously given a statistical 
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mechanical analysis for a semiconducting compound 
with vacancy defects (17) and has presented the 
results for more general defect models (18). These 
previous treatments differ from the one given here 
in that (1) the total number of sites was not con- 
sidered as a variable, (2) the conduction and valence 
bands were treated as being at fixed energies with 
effective densities of states, (3) the densities of states 
in the bands were taken as independent of the defect 
variables, and (4) the sum of the chemical potentials, 
pM + px, was assumed to be independent of composi- 
tion. For N - V, FZ N - V, w N we have shown 
here that the ad hoc assumption in (4) is identical to 
the additional equilibrium relation obtained by 
considering N a variable and for a nondegenerate 
semiconductor (2) and (3) introduce no error. In 
sum the previous results are correct for a non- 
degenerate semiconductor in which V,/N, V,/N Q 1. 
The applications by the author of these previous 
results to the problems of interdiffusion (29) and the 
extent and position of homogeneity ranges (20) 
and to general thermodynamic behavior (21), 
therefore require no essential correction. One need 
only recognize (1) the assumption made in these 
previous publications that pM + px is independent of 
composition is not necessary, being a consequence 
of the theory when V,/N, V,/N < 1, and (2) the 
energy parameters appearing in the previous work 
are to be considered as excess free energies. 

Since the results obtained here reduce to those 
obtained previously for the case of a nondegenerate 
semiconductor and V,/N, V,/N Q 1, we refer to 
previous work (21, 22) for applications of the 
theory to experiment. 

Note added in proof. Because of partial ionic character 
in the crystal binding, the M-atoms will bear some positive 
charge and the X-atoms some equal, but negative charge in 
the crystal. We have implicitly assumed that an tin-ionized or 

“neutral” vacancy bears the same charge as the atom norm- 
ally occupying the vacant site. Then the electroneutrality 
condition given by Eq. (7) follows and is independent of what 
this charge is. 
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