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Although the close-packed sphere model has been successful in systematically correlating a large variety of crystal 
structures, it fails to allow for the prevalence of bee structures, and hence precludes a systematic approach to bee 
derivatives. An empirical alternative to the sphere-packing model, the Vector Equilibrium Principle, is proposed, 
according to which an interstice in any regular array is defined as a vertex of a Dirichlet domain of that array. 
Accordingly, many cubic crystals are recognized as distortions from idealized patterns which in turn constitute 
permutations and combinations of a small number of invariant point complexes. These point complexes are 
substitutional or interstitial derivatives from the bee lattice. 

A. Introduction 

The problems encountered in any attempt at systematically classifying crystal structures depend to a 
large extent. on the symmetry of the crystals under consideration. In the triclinic and monoclinic classes we 
find many idiosyncratic structures whose interrelationships, if any exist, are difficult to discern. On the other 
hand, in the cubic system it is the multitude and variety of the crystals and the complexity of their interrela- 
tions that confound the systematologist. Moreover, the cubic system is the only truly three-dimensional 
one, the others having at least one unique direction in space. The cubic system therefore requires true three- 
dimensional visualization, i.e. the ability to visualize the projection of any plane when the projection on and 
elevations out of a single plane are given. Many crystals of lower symmetry may be recognized as distorted 
forms of cubic structures; it is therefore well to start any attempt at classification at the high-symmetry end. 

Systematology is the science or art of arranging entities in a meaningful array such that the relations be- 
tween them are evident. A structure is an ordered array of entities that bear definite relations to each other. 
A crystal is an array of atoms or ions whose positions, and possibly orientations, can be determined experi- 
mentally. A crystal structure, on the other hand, is more than an array of ions or atoms: imaginary lines 
connecting these elements define spatial relations between them. These lines are conceptual rather than 
experimentally determinate, hence subjective and subject to controversy. 

Systematology likewise is subjective. What is meaningful to some is useless to others, what is obvious in 
one context is obscure in another. Controversial, for instance, is the question whether a classification of 
crystals should be based on geometrical considerations only, or on bond types as well. Some consider sphaler- 
ite as a substitutional derivative of diamond, while others consider this geometrical relation between diamond 
and sphalerite fortuitous because the bonding is quite different in the two structures. In many cases, particu- 
larly intermetallics, the distinction is not very clear, and geometrical resemblances may be fortuitous, or 
may be due to some underlying principle. The cations of spinel, for instance, occupy an array identical to 
that occupied by the metal ions in the Cu,Mg Laves phase. The former structure may be expressed as a cubic 
close-packed array of oxide ions with a symmetrical distribution of cations over octahedral and tetrahedral 
voids, but the latter has no close-packed ions or voids which would determine the position of the metal ions. 
It is difficult to say definitely if the resemblance between spine1 and the Laves phase is fortuitous or based 
on some significant principle of crystal architecture. In point of fact, the constraints of stoichiometry and 
symmetry limit the number of possible arrays [Loeb (I), Figueiredo (2)], and may well dominate bonding 
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considerations in determining structure. As the applications of systematology frequently lie in areas where 
details of properties and bond type are not well understood or controversial, this author prefers a system 
based exclusively on geometry. 

Models may be physical, conceptual, or both. A physical model of a crystal presupposes a detailed know- 
ledge of the electronic arrangements and behavior of the crystal. A conceptual model may at times be a 
conjectural rationalization without physical basis. The use of a conceptual model in systematology is well 
exemplified by the signs of the zodiac. The lines drawn between stars by astrologers have turned out to be 
physically meaningless, and the influence of these signs on terrestrial life is, at best, conjectural. Nevertheless, 
those signs have provided a useful frame of reference to astrologers and astronomers, facilitating the 
recognition, recording, and communication of celestial data. 

The program for this paper is, consecutively: (1) a discussion of significant patterns to look for in cubic 
crystals, including a generalization of the concept of an interstice, (2) a quantitative description of these 
patterns and their relationship to each other, (3) the enumeration of some basic arrays which in various 
permutations and combinations constitute the vast majority of cubic crystals, (4) the recognition of these 
arrays in data on crystals, and (5) a discussion of actual crystals and their systematic relationships. 

B. Sphere Packing 

The successful model of closely packed spheres has led to systematic schemes relating a variety of crystal 
structures (Fig. 1) [Loeb (3,4), Jellinek (5), Morris and Loeb (6), Gehman (7,8, 9), Lima-de Faria (20, II), 
Smirnova (12)]. Yet its success may be partly fortuitous: its failure to account for the prevalence of body- 
centered structures and their derivatives is a shortcoming as a conceptual model. Its failure to account for 
many alloys, and for such relations as that mentioned between spine1 and the Laves CuzMg phase, make the 
sphere-packing model questionable as a physical model. 

The sphere packing model corresponds to an interaction potential such as shown in Fig. 2a. This potential 
is constant when the distance between the centers of the spheres is greater than the sum of their radii, and 
infinite when this distance is less than the sum of the radii. A system subject to such interaction potentials is 
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FIG. 1. Systematic arrangement of interstitial derivatives from fee and hcp complexes. 
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FIG. 2. (a) Interaction potential for rigid spheres. (b) Interaction potential as a function of distance for a stable system. 

not stable except under external compression, in which case the only stable configurations are close-packed 
ones. Actually, a stable configuration requires a potential as shown in Fig. 2b, being repulsive at small 
distances, attractive at larger distances, and having a minimum at the so-called equilibrium distance. This 
behavior is true regardless of the detailed nature of the interaction. Before discussing very large systems 
subject to such interactions, let us consider the behavior of just a few interacting entities. 

Two atoms subject to a potential illustrated in Fig. 2b form a diatomic molecule oscillating about the 
equilibrium distance I,. Three atoms will arrange themselves at the vertices of an equilateral triangle; the 
determination whether a stable potential function can exist for three atoms lies in the domain of wave 
mechanics. It suffices here to state that if such a potential exists, the resulting configuration will be an equi- 
lateral triangle. 

Four atoms might arrange themselves either at the corners of a square, or at the vertices of a regular 
tetrahedron. Four entities have 3 (4.3) = 6 connections between them ; for the tetrahedron these six connec- 
tions are all edges and equal in length. In the square, four of the connections are edges and two are diagonals. 
Clearly, the tetrahedral arrangement is the more stable one because all connections can be at the equilibrium 
distance, while for the square either the edges are shorter than the equilibrium distance, and want to expand, 
or the diagonals are longer and want to contract. The square would therefore tend to buckle and form a 
tetrahedron (Fig. 3). The stability of the tetrahedron [cf. R. Buckminster Fuller (Z3)] is not due to any 
particular type of interaction (e.g., corresponding to rigid rods or spheres), but to the tendency for a maxi- 
mum number of connections to be equal in length to the equilibrium distance. In any configuration consisting 
of more than four entities (having more than six connections) the connections are necessarily of different 
lengths, so that a compromise must be struck. With an interaction like that of Fig. 2a, the shortest connec- 
tions are given unique weight, and the influence of the longer connections is ignored altogether. Therefore, 
it is not surprising that the sphere-packing model accounts for nothing but the close-packed structures. 
Figure 2b shows, on the other hand, that all connections play a role in determining an optimum 
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FIG. 3. Connections between four items. 
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FIG. 4. Comparison of nearest and next-nearest neighbors in the fee and bee lattices. (a) fee: unit cell chosen with its center 
on a close-packed atom. (b) bee. 

configuration; energetically all connections will tend to equal the equilibrium distance, re, but geometrical 
constraints preclude this situation. Compromises must therefore be struck, in which the distribution of 
connection distances depends on the exact form of the interaction potential. 

In the body-centered configuration there are only eight nearest neighbors, but six next-nearest neighbors 
only 15 % further away (Fig. 4b). By contrast, the face-centered structure has twelve nearest neighbors, with 
six next-nearest neighbors 41 ‘A further away (Fig. 4a). With the proper interaction potential, the relative 
paucity of nearest neighbors in the bee structure can be easily compensated for by the proximity of next- 
nearest neighbors. Different interaction potentials lead to different compromises; the great complexity of 
many structures, particularly intermetallics, is the result of a delicate balance between various idealized 
patterns. 

C. The Vector Equilibrium Principle 

On the basis of the discussion of the previous section an alternate principle to the sphere-packing model is 
postulated. This principle is phenomenological, and no more profound than the sphere-packing model, 
but more encompassing. It will, therefore, permit the inclusion of bee structures and their derivatives together 
with the fee structures and derivatives in a single system. Being based on the establishment of equilibrium 
between attractive and repulsive forces, it will be called the Vector Equilibrium Principle (V.E.P.) : 

Crystal structures tend to assume configurations in which a maximum number of identical atoms 
and ions are equidistant from each other; if more than a single type of atom or ion is present, each 
atom or ion tends to be equidistant from as many as possible of each type of atoms or ions. 

It should be noted that the V.E.P. marks tendencies, recognizing the need for compromises in satisfying 
geometrical and stoichiometrical constraints. 
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It is of interest to compare the V.E.P. with three principles formulated by Laves (24) as a rationale prim- 
arily for intermetallics : 

a. Space Principle (aiming at efficient space filling), 
b. Symmetry Principle (aiming at highest symmetry), 
c. Connection Principle (aiming at connections of highest dimension). 

Of these three, the second and third are encompassed by the V.E.P. ; the Connection Principle is illustrated 
by the “buckling” of a square to form a tetrahedron. The Space Principle is modified by the V.E.P., because 
we are dealing with a “soft” interaction (Fig. 2b) rather than with rigid bodies. 

D. Diicblet Domain and Coordination Polyhedron 

Frank and Kasper (15, 16) have given a very elegant and rigorous definition of coordination that is 
independent of mechanical contact between rigid spheres. Consider a regular array of discrete points. A 
Dirichlet domain for such an array is a region of space within which every point is closer to a given one 
than to any other of the array of discrete points. When the discrete points are regularly spaced, the Dirichlet 
domain around each point is congruent with that around every other point, hence is a space-filling poly- 
hedron. 

The Dirichlet domain is constructed (cf. Frank and Kasper, op. cit.) by connecting one member of the 
array to every other member, and perpendicularly bisecting each connection by a plane. The innermost 
polyhedron enclosed by the bisector planes is the Dirichlet domain. The polyhedron whose vertices are the 
mirror images of the center of the Dirichlet domain in each of its faces is called the coordination polyhedron. 
To each face of the Dirichlet domain there corresponds a vertex of the coordination polyhedron. This 
observation led Frank and Kasper to conclude that Dirichlet domain and coordination polyhedron are 
generally each other’s duals. However, since it is not generally true that to each face of the coordination 
polyhedron there corresponds a vertex of the Dirichlet domain, the duality relation is only true in special 
cases. The duality relation does hold for the fee lattice, but not for the bee lattice; we shall see presently that 
the bee Dirichlet domain is quite significant in determining the systematic relationship between fee and bee 
derivatives. 

E. Interstices 

In abandoning the sphere-packing model, we have lost the concept of an interstice, or void, between 
spheres. The V.E.P. provides that when a second type of ion is introduced into a regular array of ions, this 
second type of ion must be equidistant from a maximum number of ions of this regular array. 

Each face of a Dirichlet domain is part of the locus of all points equidistant from two points in the array. 
The intersection of two faces, an edge, is equidistant from at least three points in the array, which lie in a 
plane normal to the edge. The interesection of two edges, namely a vertex of the Dirichlet domain, is equi- 
distant from at least four noncoplanar points of the array. We can accordingly define a general interstice 
in any regular array as a vertex of a Dirichlet domain of that array. We shall show that this definition is 
consistent with the concept of an interstice in the close-packed arrays. 

F. The fee Array 

In the fee array the coordination polyhedron is a cuboctahedron (Fig. 5a), which can be inscribed in a 
cube, its vertices being located at the midpoints of cube edges. It has, therefore, 12 vertices (cf. Fig. 4a). 
Crystallographers use a Cartesian coordinate system in which the origin is at the center of the cube and the 
X, y, and z axes are parallel to the cube edges; the unit lengths of x, y, and z are chosen equal to the length 
of the cube edge. The vertices of the cuboctahedron then have the coordinates =t (3 + 02 ) where 3 indicates a 
cyclic permutation, and l acts on all coordinates within the parentheses. The author (3,6) has defined a 



242 LOEB 

hexagonal coordinate system whose h axis is parallel to a body diagonal of the cube, and whose v and w axes 
are projections of the y and z axes on a plane perpendicular to the body diagonal (a 1 1 l-plane)? : 

h=2(x+ytz); v=6y-h; w=6z-h. 

An advantage of this hexagonal coordinate system is that the entire infinite fee array is described by the 
equations, 

3 

v=2h; w:2h; h = 2K, where K is any integer. 

Here the symbol 3 denotes equality modulo - 3, meaning that the difference between the expressions on 
both sides of the equal sign must be an integral multiple of 3. These hexagonal coordinates are indicated at 
the vertices of the cuboctahedron in Fig. 5a. The cross section through this polyhedron at h = 0 is a hexagon, 
formed by the close-packing arrangement in a plane. The vertices at h = +2 form triangles above and below 
the hexagonal equator, which are part of a close-packed planar array extending beyond the cubic cell. The 
hexagonal coordinate system thus naturally fits the close-packed arrays. 

The Dirichlet domain of the fee array is a rhombohedral dodecahedron (Fig. 5b). At six of its vertices 
four acute angles meet; these we shall call the acute vertices. All acute vertices have odd values of h. At 
eight of the vertices three obtuse angles meet; these so-called obtuse vertices have half-integral values of h. 
The rhombododecahedron has 12 faces and 14 vertices ; from Euler’s equation o - e + f = 2 (where v =num- 
ber of vertices, e = number of edges, f = number of faces), it follows that it has 24 edges (cf., for instance, 
D. Hilbert and S. Cohn-Vossen, “Geometry and the Imagination,” Chelsea Publ. Co., N.Y. 1952, p. 290ff). 
The cuboctahedron has 14 faces, 12 vertices, and 24 edges. The coordination polyhedron and Dirichlet 
domain are, in the fee array,.each other’s duals. (Since duals have the same value of v +f, it follows from 
Euler’s equation that they necessarily have the same number of edges.) 

Gorter (17) has pointed out in connection with the sphere-packing model that the centers of the interstices 
surrounding a sphere in a close-packed array constitute the vertices of a rhombododecahedron. Accordingly, 
the general definition of an interstice as a vertex of a Dirichlet domain agrees with the conventional concept 
of an interstice in the case of cubically close-packed array of spheres. The acute vertices of the rhombo- 
dodecahedron correspond to octahedral interstices, and are characterized by odd values of h. The obtuse 
vertices correspond to tetrahedral interstices, and are characterized by half-integral values of h. The octa- 
hedral interstices by themselves constitute the vertices of octahedra around the fee points. The tetrahedral 
interstices together form cubes around the fee points, but they may be subdivided into two interpenetrating 
sets each of which separately forms tetrahedra around the fee points. These two sets of tetrahedra are 
distinguished from each other by their values of h: for one set h equals an even number minus+, while for the 
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FIG. 5. (a) Coordination polyhedron of the fee array: cuboctahedron. (b) Dirichlet domain of the fee array: rhombohedral 
dodecahedron. Coordinates shown are h, u, IV, respectively. 

t Note that the author used, in the previous articles referred to, a different scaling factor in his Cartesian coordinates. The 
cartesian coordinates used here are the conventional crystallographic ones defined above. 
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FIG. 6. Sorting out of fee and interstitial sites by 111 cross sections. 

other h equals an even number plus 3. We see, therefore, that h = 2(x + y + z) can be used as an index to 
distinguish the various “interstices” in an fee array (cf. Fig. 6) ; if K is any integer: 

h = 2K indicates the points of the fee array. 
h = 2K + 3 indicates one set of tetrahedral interstices. 
h = 2K + 1 indicates octahedral interstices. 
h = 2K + $ indicates the other set of tetrahedral interstices. 

For all of these points u 12/z; w 12/z. 

G. The bee Array 

The Frank-Kasper definition yields for the coordination polyhedron of a bee array the rhombohedral 
dodecahedron; the obtuse vertices correspond to the nearest neighbors, the acute ones to next nearest 
neighbors. The fee and bee arrays therefore bear an interesting relation to each other. The coordination 
polyhedron of the bee array is just the Dirichlet domain of the fee array. This relationship is the basis of 

systematically linking fee and bee structures. The bee array is thus characterized by the equations u 12h, 

w 2 2h, where h may equal any integral multiple of 3. 
The Dirichlet domain of the bee array is not the dual of its coordination polyhedron ; the construction of 

Fig. 7 shows in detail how this domain is found. The faces of the cubic unit cell bisect the lines joining 
next-nearest neighbors, and this cube truncates the faces of an octahedron that bisect the lines joining 
nearest neighbors. The result is a truncated octahedron whose edges are all of equal length; there are 
36 such edges. Since the rhombododecadron was shown to have 24 edges, these two polyhedra cannot 
possibly be each other’s duals. 

According to our general definition the interstices of the bee array are the vertices of the truncated octa- 
hedron. Because of the relative proximity of these vertices, complete occupancy of all interstitial sites is 
rare. One-half occupancy of the bee array is quite common; the V.E.P. is satisfied if pairs of vertices in each 
cube face are occupied such that the lines joining the pairs in adjacent faces are mutually perpendicular. 
The resulting array is shown in Fig. 8 ; to illustrate the way in which two different conceptual models can be 
constructed to represent the same physical situation, we show this array in two different “gestalten.” 

The body-centered array with half of its interstices occupied is exemplified by the Cr,O structure, better 
known as the fl- Wstructure (the so-called #I- Wstructure is actually thought to be a tungsten oxide). Here the 
oxide ions occupy a bee array, the Cr ions the interstices. It will be observed in Fig. 8 that the environment 
of the oxide ions at the corners of the unit cells is identical with that of the oxide ions at the centers, but 
that their orientations are 90” apart. Because of these different orientations, the oxide ions belong to two 
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FIG. 7. Construction of the bee Dirichlet domain. (a) One octant of the bee unit cell. (b) The entire unit cell with inscribed 
truncated octahedron. 

different primitive lattices rather than to the same bee lattice. Any classification based on a lattice would 
place Cr,O in the primitive class, and would obscure the fundamental relation this structure has to the bee 
array. We shall, therefore, base our classification not on lattices, but on point complexes, i.e., arrays of 
points related by translation, reflection or rotation rather than by translation exclusively. 

The smallest Cr-0 distance in the CrXO structure is but 11% greater than the smallest Cr-Cr distance. 
A structure made up of identical atoms occupying both the bee array and half of its interstices would not 
seriously compromise the V.E.P. Therefore, it is not surprising that in /3-W tungsten, the W and oxide ions 
are randomly distributed over all these sites. In j3-UHX the uranium ions actually do occupy the entire /3-W 
array. The hydrogen ions are located at (X = 0, y = 0.156 f 5, z = 0.313) and the locations related to this 
by the symmetry operations of group cPm3n. It was tempting to search for the general interstices in the array 
of U ions, and to see whether the hydrogen ions would be anywhere near these interstitial locations. Four 
noncoplanar U locations were selected, (0 0 0), ($0 +), (--a 0 $), and (0 3 4); the point equidistant from these 
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FIG. 8. (a) Relation of the /3-W structure to the truncated octahedron of Fig. 7. (b) A different conceptual model for /3-W. 

four is 0, -&, +,-, whichin decimal notation becomes (0,O. 156,0.3 13) exactly the position of a hydrogen ion! 
Without a Dirichlet domain as a guide, the significance of the hydrogen locations would have been very 
difficult to recognize. The procedure in a pattern recognition project is to define first the pattern to search 
for; the definition of Dirichlet domains and their significance in the definition of interstices constitutes such 
a first step. 

In AuZn, the Au ions occupy the entire P-W array; the Zn ions have locations (x = 0, y = 0.165 h 5, 
z = 0.300 f 5), etc. This structure is now recognized as aslightly distorted form of an ideal interstitial deriva- 
tive of the /3-W structure. 

H. The Diamond Array 

An important basic array is that formed by the centers of carbon atoms in diamond. This array is not a 
lattice, as the environments of nearest carbon-atom neighbors are identical but oriented 90” with regard to 
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FIG. 9. Dirichlet domain of diamond structure. 

each other. The Dirichlet domain of diamond is related to the truncated tetrahedron of Fig. 9, whose edges 
are all of equal length. By its definition a Dirichlet domain is necessarily a space filler (every point in space 
must be closer to some point of a regular array than to any other, or else lie on the surface of a Dirichlet 
domain). The truncated tetrahedron is not a space-filler, but requires a tetrahedron of equal length in one- 
to-one ratio to fill all of space. Such a tetrahedron can be equally divjded between the four surrounding- 
truncated tetrahedra; each portion has as base a face of the tetrahedron, as vertex the center of the tetra- 
hedron; the result is a Dirichlet domain. As shown in Fig. 9, this domain has two types of vertices: twelve, 
marked L are the vertices of the truncated tetrahedron, and four, marked D, are the centers of the tetrahedra. 
Because of their relative proximities, these two types are not simultaneously occupied, but both lead to 
“interstitial derivatives” of the diamond structure. The D vertices by themselves form a second diamond 
structure, congruent with the first. Together the two diamond structures constitute a bee structure. The L 
vertices constitute the Cu locations in the Laves phase Cu*Mg, with the Mg ions occupying the original 
diamond structure. The Laves phase can thus be interpreted as an interstitial derivative of the diamond 
structure. We have already seen that in turn these Cu and Mg arrays occur as interstices between fee oxide 
ions in spinel. These examples point to a conclusion that there appears to be a rather small number of basic 
configurations that reoccur in various interpenetrating combinations and permutations in a large variety of 
different crystals. 

I. Point Complexes 

A suitable set of basic configurations in terms of which crystals may be expressed, is provided by point 
complexes. A point complex is an array of symmetrically related points. A lattice is a special kind of point 
complex whose points are related by translational symmetry. The multiplicity of a point complex is defined 
as the number of points of this complex in a unit cell. Crystal data are implicitly presented in terms of point 
complexes. Take, for example, the structure of Cu$S+V, in a typical format presented by Pearson (18): 

Cu&V cPa3m 
v: la 000 
cu: 3c 0++3 
S: 4e --- xxx, xxx x=0.235&4 

Here, the information cPd3m is not of prime importance for our purpose beyond referring to the appro- 
priate page in the International Tables for X-ray crystallography. The important data are la, 3c, 4e for 
these indicate that the respective ions occupy point complexes of multiplicities 1,3, and 4 whose coordinates 
are as given in the International Table. The complexes la and 3c have definite, constant coordinates (0 0 0 
and 0 3 33 , respectively). These are invariant complexes. The complex 4e is a vuriabIe complex, but its 
coordinates are very near x = 0.25; with exactly that value the complex would be invariant. We have found 
by rounding all coordinates off to the nearest multiple of l/8, it is practically always possible to identify a 
point complex unequivocally as a distorted form of one of the invariant complexes. 
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The problem is thus one of identifying and recognizing invariant complexes among crystal data. Unfor- 
tunately, the International Tables do not provide their information in a very useful form for this task. The 
point complexes are arranged according to space group in order of decreasing multiplicity. The complex of 
highest multiplicity has the most general points, whose coordinates (x, y, z) are all different. In the example 
under consideration, space group cP43m, the most general point complex has multiplicity 24. The next listed 
complex has points located on mirror planes, so that two of its coordinates are equal, and the 24 points fuse 
pairwise into a complex of multiplicity 12. Similarly, each space group has a point complex of greatest 
generality and multiplicity, followed by more specialized locations and lower multiplicity. The invariant 
complexes appear last and have the lowest multiplicities. The most general complex is uniquely characteristic 
of a particular space group; the invariant complexes recur in many space groups, and are not characteristically 
identified with one particular space group. We shall establish relationships between crystal structures on the 
basis of the invariant point complexes they have in common. The space group of a crystal is not primarily 
determined by its invariant complexes, but rather by the peculiar, exceptional ion in a general position; the 
space group is therefore not a good index for our classification system. 

TABLE I 

INVARIANT CUBIC POINT COMPLEXES IN ORDER OF INCREASING MULTIPLICITY 

Symbol 
Brief description and explanation 

Coordinates of symbol Multiplicity 
- 

P 

P’ 
I 

J 
J’ 
F 
F 
F” 
F” 

fY 
+Y’ 
-Y 
- Y’ 

W 
W 

D 

D 

+s 

-7 s 

+ 1’ 

-v 

T 

T 

primitive 

bee array (inner-centered) 
three-fourth occupied fee array 
(“jackstone” configuration) 

fee array 

rarely encountered complex in 
which points occur in a Y-shaped 
configuration 

one-half of the interstices in the 
I-complex, as observed in the &W 
structure 

diamond structure 8 

1 
one-quarter occupied Wcomplex 

another quarter of the W complex 
(cf. +S and -S) 

w=+s+-s++v+-v 

BQB. i+~63,6?2%3 ~~%3,aQt3,~#33 one-half occupied Farray : 

S&k, HBS39BB4i3 
the vertices of the trunc- 

t~~3,+Q~3,~4~3 
ated (Laves) tetrahedron 

1 

2 
3 

4 

4 

6 

12 

12 

16 

9* 
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FIG. JO. F complexes as distributions over the sites of the I complex. 
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FIG. 11. The F complexes related to the cubical unit cell. 

The International Tables list all point complexes occurring under every space group. However, these tables 
do not identify the same complex by a unique symbol regardless of the space group under which it is listed. 
For instance, the same point complex is called 8c when listed under space group cFm3m, but 8a under space 
group cFm3c. A nomenclature was, therefore, developed by Hermann, Hellner, etc. (29,20,2I), in which 
each point complex was given a unique symbol regardless of its context. Of these, the cubic invariants are 
listed in Table I, rearranged in order of increasing multiplicity to show that multiplicity rather effectively 
characterizes an invariant point complex. For our example of Cu&V, the V ions obviously are located on a 
P complex, Cu is at once identified with the J complex, and it is not hard to imagine that the distortion 
of an F complex from x = 4 to x = 0.235 would produce just the complex of sulphide ions. 

It may appear surprising that a complex of multiplicity 6, the W complex, when half-occupied should 
yield a complex of multiplicity 12, viz., the S and V complexes. The reason is that symmetrical half-occu- 
pancy of the W complex necessitates the scaling of the unit cell by a linear factor 2. Such scaling multiplies 
the multiplicity by 8, and is indicated by a subscript 2; the complex W, multiplicity 6, is transformed into 
W,, multiplicity 48, which is then subdivided into the four complexes of multiplicity 12 each. The geometry 
of these subdivisions will be discussed presently. 

Different positions of a complex relative to the unit cell are distinguished by primes. It should be empha- 
sized that the complexes so distinguished are congruent, and not essentially different from each other, al- 
though they often appear different when inscribed in a unit cell (Figs. 10 and 11). 
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J. The Algebra and Geometry of Cubic Invariant Complexes 
From crystallographic data we can glean the following information: (1) the invariant point complexes 

can be identified, their multiplicity being the principal clue; (2) the Cartesian coordinates of the variable 
complexes can be rounded off to the nearest multiple of +, so that these complexes can become identified 
with invariant complexes of the same multiplicities. As a result, the crystal is described as a combination 
of interpenetrating invariant complexes; crystals that have invariant complexes in common are said to be 
related in the sense of our system of organization. To be useful as a conceptual model, this description 
needs some geometrical interpretation. 

It will be convenient to start with an I complex; Table I informs us that it corresponds to a bee array. 
In Section G we found that the bee array has a rhombododecahedron as coordination polyhedron, and in 
Section F we discovered that this same polyhedron is also the Dirichlet domain of the fee array (Fig. 5b). 
We can conclude, therefore, that the I complex is made up of an F complex plus all its interstices. We also 
discovered in Section F that each of these sets of interstices constitutes an array congruent to the Fcomplex. 
A simple coordinate transformation identifies the fee array with F(h = 2K) the octahedral interstices with 
F’(h = 2K + I), one set of tetrahedral interstices with F”(h = 2K + +), and the other set of tetrahedral inter- 
stices with F”‘(h = 2K + 5). Therefore, I = F + F’ + F” + F”‘. 

The author (I, 3,4,6) has developed a very simple matrix notation for these various arrays, in which the 
columns correspond to different values of K and the rows to different combinations of values of v and w. 
(N.B. Since publication of these four articles it was decided to interchange rows and columns.) Since we 
have so far been concerned only with four possible values of h: 2K, 2K + 3,2K + 1, and 2K + $ (the patterns 
repeat after two units in h), we need but four columns. The h planes have so far been either closely packed 
or not occupied at all, so that a single row is needed; an entry 1 in the matrix indicates complete occupancy, 
a 0 an empty h plane. In terms of this notation these so-called distribution matrixes become 

F=[lOOO], F”=[OlOO], F’=[OOlO], F”‘=[OOOl]. 

Figure 10 shows the geometric arrangement of these complexes as distribution over the center and vertices 
of the rhombododecahedron, and Fig. 11 shows them related to the cubic unit cell. 

Furthermore, the diamond structure can be interpreted as an fee array with one of the set of tetrahedral 
interstices occupied, so that 

D=[l lOO]=F+F”, D’[O 0 1 l] = F’ + F” (Fig. 12). 

Other possible diamond point complexes not explicitly mentioned by Hellner would be [l 0 0 l] and 
[O 1 1 01. 

The P complex could be considered as an fee array plus its octahedral interstices : 

P,=[lOlO]=F+F’; P;=[O1Ol]=F”+P”‘. 

We know that we must use the subscript 2 in these cases, because a single column corresponds to an Farray, 
i.e., four points per unit cell. Therefore, the two interpenetrating Farrays produce eight points per unit cell. 

D complex 

h=l 

D’ complex 

FIG. 12. The D complex. 
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d a d o d o d - 15 

C b c b c b c b-12 

0 d o d a d o -9 

b c b c b c b c-6 

d o d a d a d -3 

C b c b c b c b-0 I 
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b c b c b c b c--6 

d o d a d a d - -9 

C b c b c b c b --I2 

0 d a d a d o - -15 

/ / / / / / / 
-3 0 3 6 9 12 I5 

v- 

FIG. 13. Subdivision of hexagonal net into four equivalent subnets. 

In the case of the D complex the resulting cell is the smallest possible, but for the P complex the resulting 
cell consists of eight identical octants in identical orientation, which therefore contains eight of the smallest 
possible P cells. 

Finally 

hence, 
Zz=[lll l]=F+F’+F”+F”; 

D + D’ = [l 1 0 0] + [0 0 1 I] = [l 1 1 l] = Z2. 

It is also possible to indicate in the distribution matrix occupancy by a particular element. For example, 
rocksalt becomes simply [Cl 0 Na 01, diamond [C C 0 01, and sphalerite [S Zn 0 01. 

The Jcomplex is a three-quarter occupied Fcomplex. Here, the h planes are themselves partially occupied. 
Figure 13 shows the sites in such a plane, symmetrically subdivided into four mutually congruent subsets 
[cf. Loeb (I)] labeled a, b, c, and d. These four sets of sites are characterized by the parities of their u and w 
coordinates: a has odd v and w, b has odd v and even w, c has even v and w, and d has even v and odd w. 
Partial occupancy of an h plane can be indicated by a combination of zeros and ones in the appropriate 
column of the distribution matrix: 

1 

the a sites are denoted by 0 0 

0 
The J complexes are then 

1 0 0 0 
J= ’ ’ ’ o 

0 0 0 0 

1 0 0 0 

They are illustrated in Fig. 14. 

9 J’ = 
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h=O 

h=O 

J complex J’ complex 

FIG. 14. The J complex. 

It is interesting to see what the one-quarter of the F complex that is left unoccupied by J looks like. Its 
distribution matrix, which we shall for the time being call X, is 

This is a very “dilute” structure of multiplicity 1. Table I would lead us to suspect that it might be a 
P array. We know that P2 = [l 0 1 01. If we “dilute” P2 by a linear factor of 2, we occupy, in fact, only 
one-quarter of each occupied h plane, and we separate the h planes by twice:the original distance. Compari- 
son of the matrices of Xand Pz shows that, indeed, X= P. 

1 0 0 0 

*.z+p= . . I 1000 1 1 o o o = [I 0 0 0] = F. 

1000 

The same dilution procedure (replacing a column 1 by a column of a single 1 and three zeros and inserting 
a column of zeros between all adjacent columns) gives the distribution matrix for Z from Zz = [l 1 1 l] : 

The T complex is also conveniently expressed in terms of a distribution matrix, but here the repeat 
distance in h is four units instead of two: 

.o 0 0 1 0 0 0 0 
00000001 

[ 

00000001 
00010000 
00010000 
00010000 1 

:.T+T’=[10001000]=[1000]=F. 

It should be emphasized that cyclic permutations of either the rows or the columns simply correspond to 
a change in origin. The particular expressions given above result from the historical accidents of choice of 
origins made by Hellner and by this author. 

Hellner uses an asterisk for composites of mutually congruent point complexes: .Z* G J + .Z’. 
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TABLE II 

SUMMARY OF MATRIX NOTATION FOR POINT COMPLEXES 

r. 0 0 01 0 0 0 0 p= [ oo”o 1 1000; P* = [l 0 1 01; 

0 0 0 0 

p= oo”o 
L J 1000; 

P* = [l 0 1 01; 

0 0 0 0 0 0 0 0 I= [ oo”o 1 1 0 1 0 ; &=[l 1 1 11 

0 0 0 0 

J=[(y]; j;;;# 

F= [l 0 0 01; F’=[O 0 1 01; 

D= [I 1 0 01; D’= [0 0 1 l] 

Pi=[O 1 0 I] 

r1 0 1 01 

F” = [0 1 0 01; F” = [0 1 0 01; F”‘=[O 0 0 I] F”‘=[O 0 0 I] 

-0 0 0 0 0 0 0 1 
00010000 
00010000 
00010000 I 

TABLE III 

INTERRELATIONS BETWEEN INVARIANT CUBIC POINT COMPLEXES 

P 

P2 + P; = I, 
P P+P’=I 

I 

J 

F 

D 

T 

I J F D T 

- 

P2fP;=12 P+J=F P+J=F 
P+P’=l I+J*=P2 F+F’=P, 
I+J*=P, 

I+J*=P, F+F’+FVF”‘=& D+ D’=I, 

Ji-J’=J* P+J=F 

The F’s are inter- 
stitially related 
FfF’=P,,etc. F+F”=D T+T’=F 
F+F”=D,etc. F’+F”=D’ 
F+F’fF”+F”=12 

D’and Dare 
interstitially 
related 

T is interstitial 
to D 

T+T’=F 
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These invariant complexes completely describe what can be equally well regarded as substitutional deriva- 
tives of the Zz complex, or interstitial derivatives of the Fcomplex. Their matrix representations and inter- 
relationships are summarized in Tables II and III. (The relations expressed in Table III can be easily proven 
using the matrices of Table II.) 

The interstitial derivatives of the Z complex are the W, S, and Vcomplexes, all of which represent distribu- 
tions over the Dirichlet domain of an Zcomplex. Wand W’ represent half occupancies of these interstices, 
as shown in Fig. 8; the entire complex of vertices is called W*: W* = W+ W’. In Fig. 8b, the distance 
x may be varied from 0 to 1. The shaded triangles should be imagined as being hinged to each other at 
their corners, being free to rotate around the body diagonal perpendicular to themselves, meanwhile sliding 
along this diagonal but remaining parallel to themselves. The black dots then represent a J’ complex when 
x = 0 (the triangles then enclose a regular octahedron), and a J complex when x = 1 (the black dots are 
vertices of a cuboctahedron), as shown in Fig. 14. When x = 4 (d5 - 1) A 0.62, the dots represent the vertices 
of a regular icosahedron, and when x = t, the dots represent a W (or W’) complex. 

One-quarter occupancy of the Dirichlet domain vertices produces the S* and V* complexes. Of every 
pair of points in a face of the cubic cell one point belongs to S*, the other to V* (Fig. 15). Note that two of 
the eight triangles have three vertices all marked V, but that there are no triangles having all vertices labeled 
S. The S* and Y* complexes are therefore not equivalent: it is not possible to subdivide the W complex 
into two equivalent halves. Furthermore, the opposite faces of the cube of Fig. 15 are not related by trans- 
lational symmetry, for a translation of one face into an opposite one turns an S site into V, and vice versa. 
Therefore, this cube can not be a unit cell, but represents one octant of a unit cell. The W complex has 
multiplicity 6, hence W, has multiplicity 48, and S* and V*, comprising half of the W, sites, each having 
multiplicity 24. Further subdivision of S* and V* into ‘S, -S, +V, and -V is accomplished by noting that 
the center of the cube of Fig. 15 lies on the middle of lines joining pairs of S’s and of Vs. The two points 
on opposite ends of such lines are arbitrarily called + and -. The result is the set of four complexes each 
comprising a quarter of the W complex and having multiplicity 12. Thus we complete the algebraic and 
geometrical interpretation of Hellner’s invariant cubic point complexes. 

K. Models 

The matrix notation described in the previous section is conveniently implemented by special models, 
consisting of space-filling modules that may contain a sphere at their center or may be empty. These can be 
stacked together in various permutations and combinations without special connectors. Some of these, 

FIG. 15. Subdivision of the Wcomplex into V* and S* complexes. 
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FIG. 16. Domuledron crystal building block. 

Moduledra crystal building blocks,? have been described previously (22). They consist of filled or empty 
tetrahedra and octahedra. Centers of close-packed spheres are represented by the vertices of the Moduledra; 
each moduledron is either empty or contains a sphere, depending on whether the interstice it represents is 
empty or occupied. Both cubic and hexagonal structures may be represented by these modules, but either 
some or all of the ions must be close-packed. 

Many alloys do not contain closely packed ions. For example, in AuCu3 the combined metal ions form a 
close-packed array, but Au forms a P complex, and Cu a J complex (P + J = F), and the corners of the 
moduledra cannot be marked to distinguish Au from Cu ions. Since the centers of either set of tetrahedra 
and of the octahedra individually constitute an F array, it is possible to represent AuCU~ with tetrahedra 
or octahedra containing spheres of two different colors. The vertices of the moduledra would then not 
represent anything. Similarly, a model for spine1 could represent CuzMg if the vertices of the moduledra 
are ignored. However, where fractions of all of the four F complexes (F, F', F", and F"') are simultaneously 
occupied, moduledra cannot be used. A different module was therefore designed whose shape is that of the 
Dirichlet domain of the Z complex (Fig. 16), and which is, therefore, called Domuledron. At the center of 
the Domuledron there may or may not be a colored sphere. When Domuledra containing identical spheres 
are stacked together to fill space, the spheres constitute an Z complex. The Domuledra may be stacked with 
their square faces horizontal, in which case two Cartesian axes are horizontal, the third vertical, or with 
hexagonal faces horizontal, in which case the h axis will be vertical. In the latter mode, the centers of the 
modules constitute, in any horizontal plane, the sites of Fig. 13. Occupancy of these sites is indicated by the 
distribution matrix of a given structure, and modeled by Domuledra of different (un)occupancies. 

To guide in translating a distribution matrix into a model, a decoding device called the Crystograph$ has 
been constructed (Fig. 17). When the distribution matrix is entered on the switchbox, one value of h at a 
time, the corresponding plane is displaced on the screen in the correct position. Both the Moduledra and 
Domuledra are commensurate with the screen of the Crystograph, so that the screen in horizontal position 
can function as a floor plan for the model, which is constructed on top of it, layer by layer, from Moduledra 
or Domuledra. 

L. Classification and Representation of Actual Structures 

We have seen how crystal data can be expressed as superpositions of idealized interpenetrating arrays, 
the cubic invariant point complexes, how in the substitutional derivatives of the bee lattice (interstitial 
derivatives of the fee lattice) they can be expressed as distribution matrices, and how these matrices may in 
turn be translated into models made up of very few basic modules. We shall now consider the field of about 
2,000 cubic crystal structures reported by W. B. Pearson (28) and classify them according to how they are 
interrelated. Pearson’s structures belong to 85 different structure types, and for eleven of these experimental 

t Trademark Registered. 
2 U.S. Patent No. 3,368,290. 
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FIG. 17. The Crystograph. (a) Display panel. (b) Console. 
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data are incomplete, so that no classification is possible. In Table IV these structure types are listed in 
decreasing order of “population,” where population is interpreted as the number of different isomorphs 
reported for a given structure type. It is notable that 59 structures are bee, while only 32 are fee. However, 
147 structures belong to the AuCu, type, a substitutional derivative of the F complex. 

We have classified the 74 structure types into five groups: 

1. Substitutional derivatives of the Z complex (55 structure types, representing about 1,700 structures). 
2. Special nets having equally spaced nodes (six structure types, representing about 100 structures). 
3. Interstitial derivatives of the Z complex (six structure types, representing about 150 structures). 
4. The Mn structures (represent about 48 structures). 
5. Miscellaneous structure types that are idiosyncratic, bearing no apparent relationship either to each 

other or to other structure types (8 structure types, representing about 30 structures). 

There is some overlap between these groups because some structures could belong to more than one group, 
depending on the way of looking at it. Such overlap is very infrequent. A survey of the structures now 
follows : 

TABLE IV 

STRUCTURE TYPES IN DECREASING ORDER OF POPULATION 

Structure type 
Number of 
isomorphs Structure type 

Number of Number of 
isomorphs Structure type isomorphs 

NaCl (rocksalt) 258 
CsCl 233 
CuMg 196 
AuCul 147 
CaF, 101 
Is- WCr30) 67 
AlCu,Mn 63 
CFesW, and NiTi* 63 
Ce& and P4Th3 61 
W@=) 59 
ZnS (sphalerite) 58 
Fe& 52 
AIIMgO, (spinel) 46 
CaTiOs and ReOs 46 
a-Mn 36 
NaZn,, 36 
BiF3 36 
Cu(fcc) 32 
P-Mn2O3 31 
Cu&W% 29 
FeSi 2.5 
NiSSb 24 
AgAsMg 24 
CaB6 23 
Cd& 16 
MnzsTh 14 
Cd&e 14* 
NaTl 13 
@Mn and A12CMo3 12 

As&o 12 
co,.% 11 
cm2 11 
U&z 10 
BaHgll 10 
CU~S4V 9 
Ge,Ir3 8 
AuBeS 8 
S4TlrV 6 
GeK 6 
Cu,,Si, 6 
Zn,,Zr (E-Al,sCr2Mg,) 5 
AluW 5 
Cu,Zq 5 
CuSB(L.T.) 5* 
GeL&Nr and AIL&N2 5 
CC-PO 4 
CFe, 4 
Al&i9 4 
Pd,Se,, 4 
C (diamond) 4 
Liz2Pb5 4 
H&Pt 4 
cu*o 3 
(Al, Znh&b 3 
AuZn, and fi-UH3 2 
MgJn, 1 2 
Cu,MgSn 2* 
Fe&h, 2 

Be&.h 
y-Mod% 
Li,MnN, 
j3-Ni& 
CugFeS4 
Cu2Se 
Ca,Ge 
CallGe 
S,ZrJ 
Al& 
Cu$,Sb 
a-Al&r4Si4 
a-InlTe, 
2;-Mg,,Pd 
Cd&u, 
Cd*Na 
b%Mg, 
cou 
Si III 
&.&a3 
Ag,AuTe, 
Sb,Tl, 
Cu,SnSba 
/3-CuFeS* 
Q-Al,CurMg, 
AsCurS, 
Bi,Rh 

2 
1 
1 
1* 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1* 
1* 
1* 
1* 
1 
1 
1’ 
1 
1 
1 
1 
1* 
1* 
1 

* Insufficient experimental data for the purpose of classification. 
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1. Substitutional Derivatives of the I complex 
These are the 55 structure types that are considered as distributions over the bee lattice, and for which 

models can be built with Domuledra or Moduledra models. Because these represent about three-quarters 
of all cubic structure types, a subclassification is made : first, distributions over all the points of the Fcomplex 
(distribution matrix [l 0 0 01); next, distributions over all the points of the D-lattice complex (distribution 
matrix [l 1 0 01); then, distributions over all the points of the P complex (distribution matrix [1 0 1 01) and 
over an array with distribution matrix [I 1 0 I], followed by distributions over all the points of the complete 
Zcomplex (distribution matrix [l 1 1 11). Finally, there are partial occupancies of these complexes and some 
special cases. 

a. F Complex. The 32 structures whose atoms form a fee lattice are represented by structure-type Cu 
whose distribution matrix is : 

[Cu 0 0 01. 
There are 147 binary alloys whose atoms distribute themselves symmetrically over an F complex. They are 
represented by structure type AuCU~ : 

Au 0 0 0 
cu 0 0 0 I 1 cu 0 0 0 
cu 0 0 0 . 

A unique structure is Ca,Ge, in which one-eighth of the Fcomplex is occupied by Ge, the remainder by Ca: 

1 

Ge 0 0 0 Ca 0 0 0 
Ca 0 0 0 Ca 0 0 0 
Ca 0 0 0 Ca 0 0 0 
Ca 0 0 0 Ca 0 0 I 0 . 

b. D Complex. The following are structures in which the atoms distribute themselves over all locations 
of the D complex. 

Diamond : [C C 0 01. 
Anions and cations separately occupy F complexes; their juxtaposition is such that jointly they 
occupy the D complex. 
Sphalerite : [S Zn 0 01. 
Cu,S,V: The sulphide ions form a slightly distorted fee array (X = y = z = 0.235 f 4, ideally 
0.250). Cu and V occupy the tetrahedral interstices between the sulphide ions, with the tetrahedra 
around V slightly contracted. 

sv 00 
s cu 0 0 

i I 
s cu 0 0 
s cu 0 0 . 

a-InlTe, : The unit cell has 180 atoms; 108 Te form 3 x 3 x 3 fee cells of four atoms each; 72 In 
atoms occupy one-third of the tetrahedral interstices, i.e., two-thirds of the Zn sites in a sphalerite 
structure : 

[Te Inl,, 0 01. 

The occupancy of two-thirds of the In sites is very special, since graphite layer-like patterns are formed 
in all planes perpendicular to cube diagonals. The occupied sites have the following coordinates: 

hdf:(O-+v)z3or6, 

h L$: (u, w)'O3, 30, 33, 36, 63, or 66, 

h % $: (u, IV)' 06, 60, 66, 63, 36, or 33. 
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c. P Complex. There are only four structures whose atoms form a primitive cubic lattice. They are 
represented by the structure type TV - PO whose distribution pattern is 

[PO 0 PO 01. 

The P complex is made up of two interpenetrating F complexes. When one of these is occupied by Cl and 
the other by Na, the NaCl structure type, representing 258 structures, results: 

[Cl 0 Na 01. 

Closely related to the NaCl structure is Zr3 S,(?), a defect structure in which vacancies are randomly distri- 
buted over half the Na sites. In the distribution matrix the combination of Zr and vacancies is indicated by 
Zr’ : 

I 

S 0 Zr 0 S 0 Zr’ 0 
S 0 Zr’ 0 S 0 Zr 0 
S 0 Zr’ 0 S 0 Zr 0 
S 0 Zr’ 0 S 0 Zr 1 0 . 

A second defect structure of the NaCl type is y-Mo3Nz, in which three-fourths of the Na type sites are 
randomly occupied by N and vacancies. Its distribution matrix is approximately 

MO ON+N 0 
MO O-+N 0 

i 1 
MO O-+N 0 
MO 0 N 0 . 

Other, special derivatives of the NaCl structure will be discussed in more appropriate locations. 

cl. The Array [l 1 0 l] and Its Derivatives. No substance is known whose distribution matrix is [l 1 0 11. 
However, there are many derivatives of this hypothetical structure. Principal among them is the structure 
type CaF*, representing 101 structures. Its distribution matrix is 

[Ca F 0 F]. 

Also important is AgAsMg, which represents 24 structures : 

[As Mg 0 Ag]. 

Related is also Cu$e (H.T.), with the probable distribution matrix: 

[Cu Cu 0 Se]. 

Here, one-eighth of the Cu’s randomly deviate from the ideal array. Experimental data are inconclusive. 
Also distributed over the [l 1 0 l] array are the atoms of Li,MnN,. Here Li and Mn are in an ordered 

distribution over fluoride sites in a CaF, type structure. There is a slight distortion of one-fourth of the 
N atoms from an ideal fee array : x = 0.115, ideally 0.125. The distribution matrix is 

NLi7,8r Mnd 0 Oh Mndl. 
Also derived from CaFz is CusFeS,(H.T.), where 5 Cu and Fe appear to be randomly distributed over 

the F site 
ISfCuded 0 (Cu5,d%dl. 

In S-CuFe& the fluoride sites are occupied in an ordered fashion by Cu and Fe. 

LWud%d 0 Nh,4%.dl. 
In AlLi3N2 we encounter the Y** complex, which constitutes one-fourth of a P complex. The subdivision 

is not the usual one according to the parities of coordinates ZI and w, but a special one in which the sites 
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occupied by Al form Y shaped arrays in h planes, whence the name of the complex. The coordinates for 
the Y** complex obey the conditions : 

h I$,$: (v - 2h), (w -- 2/z) If 33,03,60, 36, 

h 2 -(+, 5)): (u - 2h), (w - 2h) ‘=f -(33,03, 60, 36). 

The Li atoms occupy the remaining three-quarters of the fluoride sites. There is a distortion for the Li 
positions : 

x = 0.160, ideally 0.125, 

y = 0.382, ideally 0.375, 

z = 0.110, ideally 0.125. 

The N ions together form an fee array. Two-thirds of these N ions are displaced from ideal locations, For 
these the distortions are: N(2)24d: x = 0.205, ideally 0.25. 

A further derivative is /3-Mn*O,, which has a defect CaFz structure : 

[MnOx,14 - %,,I. 
The oxide ions occupy three-fourths of the F sites in such a way that the unoccupied fluoride sites form 

a Y** complex. The oxide array is somewhat distorted: 

x = 0.385, ideally 0.375, 

y = 0.145, ideally 0.125, 

z = 0,380, ideally 0.375. 

Some of the Mn are also displaced: 

Mn(2) : 24d: x = 0.970 = -0.030, instead of 0.000. 

e. I Complex. The 59 bee structures are represented by the W structure type, 

[WWWW]. 
Binary derivatives are : 

CeH,t [Ce H H H], 

NaTl [Na Na Tl Tl] 

CsCl [Cs Cl cs Cl]. 

A distorted form of the CsCl structure is that of CoU. Eight unit cells of CsCl are needed to provide a 
CoU unit cell. The distortions along the body-diagonal directions: 

for Co x = y = z = 0.294, ideally 0.25, 

and for U x = y = z = 0.0347, ideally 0.00. 

A special derivative of CsCl, CaB,, is discussed under “special nets.” 

AlCu,Mn [Al Cu Mn Cu]. 

There are several superstructures of the bee and CsCl structure types. Two of these are A14Cug and CusZn,. 
They can be derived from the CsCl structure by taking 3 x 3 x 3 unit cells of CsCI, and distributing 52 atoms 
and two vacancies in an ordered fashion over the resulting 54 bee lattice points. The occupancy of the 

7 Sometimes known as the BiF3 structure, which, however, is controversial. 
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Cs- and Cl-type locations is as follows : 
Cs sites Cl sites 

Al&+,: (Al 16,27Cu~0i27Vacd (Cu26,27Vacd 

CuJn8: (Znl,,2,Cu,o127Vacl,27) (Zn,,,27Cu,oi27Vac,,,7). 

Other ordered superstructures of the bee lattice requiring 54 bee lattice points per unit cell are Fe3Zni0 
and Sb2T1,, which are analogous as follows : 

4 Fe3Zni0 = Fe,2Zn40Vac2, 
6 Sb*Tl, = Sbi2T14,,T12. 

Finally, S4T13V can be considered a derivative of the CsCl structure type, although the S-V distance is 
considerably shortened with resulting distortion of the S array : 

Distortion : S : x = y = z = 0.175, ideally 0.250. 

f. One-Quarter and Three-Quarter Occupied h Planes. In the structures discussed so far h planes were 
either completely empty or completely occupied, albeit by more than one element. (Exceptions are those 
cases where a small fraction of sites is vacant.) Presently we consider the:following structure:types in which 
some h planes are partly occupied : 

C&O 

WOt 

ReO, 

CaTi03 

CFe4 

cu ox 0 ox cu 0 0 0 cu 0 0 0 cu 0 0 0 , 
Hg Pt Hg Pt 
Hg 0 Hg 0 I I Hg 0 Hg 0 
Hg 0 Hg 0 , 

0 0 Re 0 
ox 0 0 0 I 1 ox 0 0 0 
0x00 0, 

Fe C 0 0 
Fe 0 0 0 [ 1 Fe 0 0 0 
Fe 0 0 0 . 

Distortion : Fe : x = y = z = 0.265, ideally 0.250. 
A large number of structure types contain half occupied Fcomplexes. We have seen that a single hexagonal 

net cannot be symmetrically divided into two equivalent parts, but that one-half of the F complex can be 
symmetrically occupied by occupying respectively one-fourth and three-fourths of alternate h planes. The 
resulting array is the T complex, sometimes called the three-dimensional KagomC net because it contains 
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KagomC nets in the four directions perpendicular to the four body diagonals. The Tcomplex was shown to 
be interstitial derivative of the D complex. The distribution matrix is a function of h-module4 because of 
the different occupancy of alternate h planes in the fee array. The following structure types all contain three- 
dimensional KagomC nets. 

A12Mg04 (spinel) 

Ox Mg Al Mg Ox 0 0 

0x0 0 0 Ox 0 Al 0 
0x0 0 0 Ox 0 Al 0 
0x0 0 0 Ox 0 Al 0 1 0 

The Mg’s occupy a D complex. 

CuzMg (Laves phase) 

0 Mg Cu Mg 0 0 0 

00 0 0 0 0 cu 0 
00 0 0 0 0 cu 0 
00 0 0 0 0 cu 0 i 0 - 

(Observe that the cations in spine1 form a Laves phase!) 

Ca 0 0 0 Ca 0 X 0 

Ca, ,Ge Ca 0 X 0 Ca 0 
Ca 0 X 0 Ca 0 0 0 
Ca 0 X 0 Ca 0 0 0 I 0 0 , 

where X = random mixture of Ca and Ge. 

{Cr(l)Cr,,(3)) 

I 0 

Cr(4) Cr(2) Cr(4) 0 0 Cr(2) 0 

CO-23 0 c 0 0 Cr(4) C 
0 0 c 0 0 Cr(4) C W) 
0 0 c 0 0 Cr(4) C CW 1 Cd41 . 

Twelve Cr(3)‘s form a regular icosahedron around each Cr(1). Distortions: For C, x = 0.275, ideally 
0.250; for Cr(4), x = 0.385, ideally 0.375. 

AuBe, 

0 Be(l) Be(2) Au 0 0 0 0 

00 0 0 0 0 Be(2) 
Note 

00 0 0 0 0 Be(2) 0 resemblance 
00 0 0 0 0 Be(2) 

0 1 
0 to Laves phase. 

S 0 S Sb 0 0 0 Sb 

Cu&Sb 0 cu 0 0 s cu s 
0 cu 0 0 s cu s 
0 cu 0 0 s cu s 0 1 

0 
0 . 

S Al,,,(l) Al(2) AI,,,(l) 

i s 0 0 0 

S 0 0 0 

AlzS3 S 0 Al(2) 
s 0 0 0 S 0 Al(2) 
s 0 0 0 S 0 Al(2) 0 I 

0 
0 . 

S(1) Co(2) Co(l) Co(2) 
I S(2) 0 0 0 

S(1) 0 0 0 
w&l S(2) Co(2) 0 Co(2) 

S(2) 0 0 0 S(2) Co(2) 0 Co(2) 
S(2) 0 0 0 S(2) Co(2) 0 Co(2). 

Distortions: S(2) : x = 0.2591, ideally 0.2500; CO(~): x = 0.1268, ideally 0.1250. 
I. 

E-Al, &r2Mg, 

Mgt2) 0 0 WgtlW,d2)) Cr Wgtl)Al&)~ 0 
Cr Al(l) 0 Al(l) M@) Al(l) 0 Al(l) 
Cr Al(l) 0 Al(l) M&9 Al(l) 0 Al(l) 
Cr Al(l) 0 Al(l) MS) Al(l) 0 0 1 Al(l) . 



262 LOEB 

The Al(2) form truncated tetrahedra of equal edge lengths (Laves Polyhedra) around Mg(1). The side of 
these polyhedra is such that their hexagonal faces perpendicularly bisect line segments from Mg(1) to 
Mg(2). There is a very large distortion of the Al( 1) array: x = 0.1407, ideally x = 0.250. The only justification 
for indexing Al(l) as is done here is that the only invariant lattice complex with multiplicity 48 is J2*, which 
has a distribution matrix as given for Al(l) above. Alternately, the Al’s could be considered as octahedral 
clusters centered on a D complex (multiplicity 8). In that case, the distribution matrix would be: 

[ 

Mgt2) ALAI) 0 WgtlMWN Cr Wg(l)Al,LW 0 Al,(l) 
Cr 0 0 0 Mgt2) 0 0 0 
Cr 0 0 0 M@) 0 0 0 
Cr 0 0 0 M@) 0 1 0 0 3 

Mn(3) 0 Mn(4) Mn(l) Mn(4) 0 Mn(3) 0 

M%‘& 

1 

Mn(4) Th Mn(3) Mn(2) Mn(3) Th Mn(4) Mn(2) 
Mn(4) Th Mn(3) Mn(2) Mn(3) Th Mn(4) Mn(2) 
Mn(4) Th Mn(3) Mn(2) Mn(3) Th Mn(4) I Mn(2) . 

The Mn(3) is distorted : x = 0.178, ideally 0.125, 

Mn (4) : x = 0.378, ideally 0.375, 
Th : x = 0.203, ideally 0.250. 

These distortions are consistent with the substitution for Mn of three vacancies and six Th atoms per 
32 Mn in a bee array. 

i 

Cu(2) 0 Cu(1) Si(1) Cu(1) 0 Cu(2) 0 

Cul &k& 
Cu(1) Mg Cu(2) Si(2) Cu(2) Mg Cu(1) Si(2) 
Cu(1) Mg Cu(2) Si(2) Cu(2) Mg Cu(1) Si(2) 
Cu(1) Mg Cu(2) Si(2) Cu(2) Mg Cu(1) I Si(2) . 

This structure is closely related to that of Mnz3Th6. Distortions: Cu(2): x = 0.1684, ideally 0.125, Cu(1): 
x = 0.3770, ideally 0.375, and Mg : x = 0.1824, ideally 0.250. 

i 

Fe(2) 0 Fe(l) 0 Fe(2) 0 C 0 

CFe3W3 Fe(2) W C W Fe(2) W Fe(l) W 
Fe(2) W C W Fe(2) W Fe(l) W 
Fe(2) W C W Fe(2) W Fe(l) I W . 

Distortions : Fe(2) : x = 0.825, ideally 0.875 ; W: x = 0.195, ideally, 0.250. 

i 

Ni 0 Ti(l) 0 Ni 0 0 0 

NiTi 
Ni Ti(2) 0 Ti(2) Ni Ti(2) Ti(1) Ti(2) 
Ni Ti(2) 0 Ti(2) Ni Ti(2) Ti(1) Ti(2) 
Ni Ti(2) 0 Ti(2) Ni Ti(2) Ti(1) I Ti(2) . 

Distortions: Ni: x = 0.215, ideally 0.250; Ti(2): x = 0.810, ideally 0.875. 

1 

Al(l) Cr 0 Si 0 0 0 0 

cc-Al,sCr,Si, Al(3) 0 Al(2) 0 Al(3) Cr Al(2) Si 
Al(3) 0 Al(2) 0 Al(3) Cr AI(2) Si 
Al(3) 1 0 Al(2) 0 Al(3) Cr Al(2) Si . 

Distortions: Al(2): x = 0.315, ideally 0.250, and Al(3): x = 0.565, ideally 0.500 (distortion exactly A); 
Cr : x = 0.342, ideally 0.375. 

NOW follow structures in which linear arrays of atoms are centered on some points of the bee lattice. 
Here, the orientation of the arrays must be given as well as the location of their geometrical centers. This is - - 
done by subscripts: Ill, Iii, 111, and ii1 indicate the four body-diagonal directions. 
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FeSi. The arrays are pairs of Fe and Si atoms which lie on opposite sides of points of the F complex: 
the lattice points are not occupied themselves. The array is denoted by (FeDSi), where !J indicates the 
unoccupied lattice points. The pairs are oriented parallel to the four-body diagonals. The distribution 
matrix is : 

pjE!;i%~~~]~ 

Fe&. The Fe atoms occupy an F complex. The S atoms form pairs centered on an F complex: 

This is, therefore, a derivative of the NaCl structure, as is the following : 

Here, there is a slight distortion of the Ni array from the idealized F complex: x = 0.976 (= -0.024), 
ideally 0.000. The reason is that each Ni is surrounded by one S and one Sb, whereas in Fe&, the Fe atoms 
being surrounded by S atoms on both sides are located on an ideal F complex. 

In both Fe& and NiSSb there is some arbitrariness about where the S pairs, respectively SSb pairs are 
centered. It would be conceivable also to pair the anions differently, so that triplets (S Fe S), respectively 
(Sb Ni S) would be centered on the Fe, respectively Ni sites. The determining factor is the interatomic 
distance : 

Ni-S : 2.34 A Fe-S: 2.259 A 
Ni-Sb: z.ii i S-S: 

I 
2.171 A 

Sb-S: . 

In the FeS, case, the S atoms are closest when paired through unoccupied fee lattice sites. In NiSSb there 
is some latitude, though the Sb-S distance is smaller than the average of the NiS and NiSb distances. 

The high-temperature Si III is also related to Fe&. Here, pairs of Si atoms are centered on a primitive 
cubic complex, with orientations parallel to the body diagonals. 

i 

(SiUW, I I 0 (SiUSi)iii 0 
(SinSi),ii 0 (SiOSi),fi 0 
(SioSi)iiT 0 (SiOSi)iii 0 
(SimSi)Tii 0 (SiOSi)E, I 0 . 

2. Special Equally Spaced Nets 

Many of these structures also fit into the category just discussed, but permit more detailed description in 
the present category. 

CaB, : [CaB,CaB,]. 

This is a structure of the CsCl type, with octahedra of B, occupying the Cl positions. The size of the 
B6 octahedra is such that each Ca is surrounded by 24 B atoms at the vertices of a truncated cube whose 
edge lengths are all equal. The B atoms, therefore, form a three-dimensional net whose nodes are equally 
spaced. 
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For UBr2, data are given in an awkward manner. For proper identification of relevant patterns, it is well 
to change the notation as follows: The U atoms form an F complex at locations 0 0 0 + 3 303 , The locations 
of 48 B atoms per unit cell are commonly given as 

wherex=0.167=1:&. 
Since 

these 48 points are more conveniently described as : 

This means that each U atom is surrounded by 24 B atoms at the corners of a truncated octahedron with 
equal edges (the “Domuledron” shape). These truncated octahedra share edges, so that the boron atoms 
form a three-dimensional net with equally spaced nodes. 

To visualize the space between the truncated octahedra, note that truncated octahedra, cuboctahedra, 
and truncated tetrahedra, all of equal edge lengths, together can fill space. Each truncated octahedron shares 
its six square faces with six cuboctahedra and its eight hexagonal faces with eight truncated tetrahedra. 
Each truncated tetrahedron shares its four hexagonal faces with four truncated octahedra and its four 
triangular faces with four cuboctahedra. Each cuboctahedron shares its six square faces with six truncated 
octahedra and its eight triangular faces with eight truncated tetrahedra. The boron net of UB, z can, therefore, 
be thought of as having cuboctahedral, truncated tetrahedral, and truncated octahedral interstices, in 
ratio 1: 2: 1, of which all truncated octahedral ones are occupied by U atoms, which consequently form an 
F complex. The UB, z structure can be described by the following algorisms : 

The atoms occupy h nets on the basis of the value of (a - 2h),,, s and (W - 2h),,, 9 (cf. Fig. 18). 

h mod6-f 

012345 

00 uooooo 
03 OOOBOO 
06 OOOBOO 
30 OOOBOO 

(u -- 2h),, (w - 2h)g 33 OBOOOO 
4 36 OBOBOB 

60 OOOBOO 
63 OBOBOB 
66 0 0 0 0 0 B. 

Alternately, a distribution matrix can be given that does not give detail for the B,, cuboctahedra, but 
stresses the relative positions of the centers of these cuboctahedra and the uranium atoms: 

F-J 0 J%z 01. 
Viewed in this manner, UBlz is a derivative of the NaCl structure. 
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FIG. 18. Partial occupancy of hexagonal nets by B atoms in UB12 : the cuboctahedra are shown explicitly. 

Another example of a special three-dimensional net is C3Pu2, which represents eleven structures having 
the general chemical formula C3M2, where M is a rare earth metal or lanthanum. The metal atoms here 
form a distorted (x = 0.050, ideally 0.000) Icomplex, the distortion being along a body-diagonal direction. 
The C atoms join pairs of metal atoms such that (MCM) triplets are linear. From each metal atom, three 
bonds go in mutually perpendicular directions through carbon atoms to other atoms, according to the 
following scheme: 

Metal atom joined through C to Metal atom 
000 ooa 0033 
%a% %%OJ 
3+3 330 :g 
3tt $352 tt%3 

etc. 

The distortion from the idealized bee array would appear due to the C-M bonding. 
Somewhat similar is the CoAs, structure. Here, the Co atoms form a P complex. Each Co is joined to its 

six nearest Co neighbors by a bond through an As atom; the Co-As-Co path is not a straight line, however, 
but subtends an angle of 120” at the As atom. Co-As-Co bonds lie in (110) planes. The As atoms accordingly 
occupy vertices of regular octahedra around the Co atoms, but these octahedra are skew-oriented within 
the cubical unit cell. 

Next come several structures based on icosahedral coordination. The icosahedron is regular when x = 
0.62. However, because of the impossibility of placing two five-fold axes parallel to each other, the icosa- 
hedron cannot be stacked and maintain its five-fold symmetry in its context, and is frequently distorted. 
However, its cubic symmetry (the regular icosahedron has cubicplus five-fold symmetry) is maintained; the 
distortions are such that the triangles of Fig. 14 always remain perpendicular to the cube diagonals. 

The first of these structures based on icosahedral coordination is NaZn, 3, a derivative of the CsCl struc- 
ture having a distribution matrix 

PWW 1 )Zn 1 &WWW Wn 1 &W. 
The Zn(2) form icosahedra around the Zn(1). These icosahedra are almost, but not quite, regular having 
x = 0.66 instead of the ideal x = 0.62. The distances between Zn(2) atoms on adjacent icosahedra are nearly 
the same as those on the same icosahedron; distances from a Zn(2) to its nine near neighbor Zn(2) atoms are 
in the ratios 1: 1.04: 1.08 : 1.14, there being respectively two nearest, two next nearest, and four next-next 
nearest neighbors. 
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The icosahedra have two-fold, but not four-fold rotational symmetry. They orient themselves in two differ- 
ent, mutually perpendicular directions around their two-fold axes, adjacent icosahedra always being oriented 
perpendicularly. The sodium atoms are at the centers ofcubes whose vertices are the centers of the icosahedra. 
An icosahedron turns regular triangular faces toward the sodium atoms; each sodium atom is accordingly 
surrounded by 24 Zn(2) atoms, which form the vertices of a so-called snub cube. 

For A1t2W the distribution matrix is: 

This means that groups of (WAl,,) are centered on an Zcomplex. Each W is surrounded by 12 Al atoms 
at the vertices of a nearly regular icosahedron: x = 0.595 ideally 0.62. The icosahedra face each other with 
equilateral triangles in antiprism orientation perpendicular to body diagonals of the cubic unit cell. The Al 
atoms form a nearly equally spaced net. Distances of near neighbors are in the ratios 1: 1 XXX: 1.03 : 1.04. 

3. Interstitial Derivatives of the Z Complex 
The parent structure type of this family is Cr30(“/I-W”) which represents 67 different structures. The 

oxide ions occupy an Z complex and the Cr ions occupy one-half of the interstices, i.e., a W complex. We 
have noted that p-UH, and AuZns(L.T.) may be considered interstitial derivatives of the /3-W structure. 

GeK: The Ge atoms form tetrahedral Ge clusters centered on a /3-W structure (I+ W complexes). 
Three-quarters of the K are located near interstices in fl- W: x = 0.336, y = 0.142, z = 0.064, ideally x = 0.3 13, 
y = 0.156, z = 0.00. The remaining K are located at the corners of cubes around the Ge, clusters. 

Ge,Ir,: These structures are quite idiosyncratic. Gefl) occupies a W* complex, whereas Ir forms octa- 
hedra around a bee complex and the Ge(2) form cubes around the same bee complex. 

Cu,& : The Si atoms form a distorted Z complex: x = y = z = 0.208, ideally 0.250. Cu(1) forms an S+ 
complex in the interstices. Cu(2) occupies a variable complex 143d48(e) x = 0.12, y = 0.16, z = 0.96, which 
does not appear to fit any significant pattern. 

Other structures in which the Z and W complexes occur together are : 
Ag,AuTe2 : The Te atoms occupy a slightly distorted Zcomplex: x = 0.266, ideally 0.250. This distortion 

is due to the asymmetrical environment of Ag atoms, which occupy one-fourth of the interstices, in an 
S* complex. The Au ions occupy a + Y* complex, a partial occupancy of the hexagonal net (cf. cr-In2TeJ, 
Section L under 1 b.) 

P,Th3 : The Th atoms occupy an + S complex, one-eighth of all interstices in a bee complex. The P atoms 
occupy the equipoints given in the International Tables as 143d, 16(c). This set of equipoints is a variable 
complex; for P4Th3 x = y = z = 0.083. With x = 0 this complex becomes an Z complex, but with x = i it 
becomes Y**. In view of the role of +S as a distribution over interstices in an Z complex, it is most logical 
to consider the array of P atoms as an, albeit strongly distorted, Zcomplex. 

Ce,S,: A defect structure of P,Th, which could, for the sake of analogy, be written S,(Ce,,,Vac,,&. 

4. The Mn Structures 
Both u-Mn and /I-Mn have defied a structural classification. /3-Mn and Al,CMos are closely related: 

Mn( 1) is analogous to Al, Mn(2) to MO, with the C sites in A12CMos being unoccupied in /$Mn. The Mn( l), 
respectively Al occupy a distorted (x = 0.061 i.s.0. ideally 0.00) D complex. The structure of cc-Mn is al- 
together idiosyncratic. The complicated structures of the Brillouin zones of Mn are probably responsible 
for these complex structures that do not fit a simple geometrical model, but represent various balances and 
compromises. 

5. Miscellaneous Idiosyncratic Structures 
Other structures that are too complex to fit a simple geometric model are: Cui2S,$b4, (Al, Zn),gMg,,, 

Pd,,Se,s, Be,,Ruj, Liz2PbS, BaHg, r, Bi,Rh, and Mg,Zn, , . 
These structures do not seem to relate in any way to each other or to any other structures. 
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