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Single crystals of silver chromate were prepared by slow diffusion of potassium chromate and silver nitrate
solutions in a gel-filled U-tube. The thin tabular crystals belong to the orthorhombic space group Prnma with
a=10.063(11), b = 7.029(4), ¢ = 5.540(2) A, and Z = 4. Intensity data were measured with a 8 — 26 step-scan
technique using an automated diffractometer and Mo K, radiation. The structure was solved by heavy atom
methods and refined by full matrix least-squares techniques with anisotropic thermal parameters used only
for the heavy atoms to a final residual of R = 0.064 for the 325 observed reflections used in the analysis. The
silver atoms are coordinated to the oxygen atoms of the chromate to generate an interlocking network that
propagates throughout the crystal. The two crystallographically independent silver atoms have coordinations
best described as tetragonal bipyramidal and distorted tetrahedral, respectively. The shortest Ag-O distance
is 2.34 A. The silver—oxygen interactions perturb the tetrahedron of the chromate group with Cr-O distances
of 1.69, 1.67, and 1.63(1) A and angles varying from 106.1 to 111.6(8)°. The metal atom coordination in silver

chromate is compared to that of potassium chromate.

Introduction

During recent studies on alternate methods of
growing single crystals, we were successful in grow-
ing single crystals of silver chromate. Examination
of these crystals by X-ray film techniques revealed
the possible orthorhombic space group Pnma.
Potassium chromate is also known to crystallize in
space group Pnma (1) in a cell of similar dimensions
(matching similar unit cell dimensions the equivalent
potassium chromate space group would be Pmcn).
Although the ionic radii of potassium and silver are
similar (1.33 vs 1.26) (2), these compounds exhibit
marked differences in properties, such as solubility.
Therefore, we felt it would be of interest to proceed
with the crystal structure analysis of silver chromate
in order to compare the structures of the two
compounds.

Experimental

Crystal Data:
Ag,CrO,, M =331.73. Orthorhombic Pnma,
F(000) =600 e,

* Work was performed in the Ames Laboratory of the
U.S. Atomic Energy Commission. Contribution No. 2774.

a=10.063(11), b = 7.029(4), and ¢ = 5.540(2) A
at T~ 24°C,

Z=4, V=3919 A3, D,=5.62 g/cm3, D, =
5.62 g/cm?

MoK, (A=0.7107 A), p = 123 cm™",

Thin tabular single crystals of silver chromate
were prepared by slow diffusion of potassium
chromate and silver nitrate solutions (0.5 M) in a
U-tube filled with gel. Precession and Weissenberg
photographs exhibited mmm Laue symmetry with
the following systematic absences: Ok/ when
k+1=2n+1 and hk0O when h =2n + 1. These ex-
tinctions are consistent with either space group
Pn2,a or Pnma. The unit cell parameters and their
standard deviations were obtained by a least-
squares fit to 13 independent high-order reflection
angles whose centers were determined by left-right,
top-bottom beam-splitting techniques on a pre-
viously aligned Hilger-Watts four-circle automated
diffractometer (Mo K,, A=0.71069 A). The ob-
served density was taken from the literature (3).

A crystal of approximate dimensions 0.006 x
0.100 x 0.118 mm was mounted on a glass fiber
with the b axis (0.118 mm) nearly parallel to the ¢
axis and was used for data collection. Data were
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taken at room temperature utilizing a fully auto-
mated Hilger-Watts four-circle diffractometer
equipped with scintillation counter. MoK, (A=
0.7107 A) radiation was used with balanced (Zr-Y)
filters to obtain intensity and individual background
readings. The 6-28 step-scan technique with a 4.5°
take-off angle was used to record 1056 independent
reflections within a 28 sphere of 70° (sin8/A = 0.807
A~1). A counting rate of 0.2048 sec/step of 0.01° in
6 was employed with a variable scan range of 50
steps plus 2/degf. The rest of the experimental
arrangement has already been discussed in some
detail (4). As a general check on electronic and
crystal stability, the intensities of three standard
reflections were measured periodically during the
data collection. Comparison of these values in-
dicated that no decomposition had occurred.

The intensity data were also corrected for
Lorentz-polarization effects and for effects due to
absorption (= 123 cm™!). The absorption correc-
tion was made using the program of Wehe, Busing,
and Levy (5); the maximum and minimum trans-
mission factors were 0.927 and 0.494, respectively.
The estimated error in each intensity measurement
was calculated by

[o(D)]? = [Cr + Cg + (0.05C1)* + (0.10Cp)?
+(0.05Cg)?)/ 42,

where Cy, Cg, Cr, and A are the total count, back-
ground count, net count, and transmission factor,
respectively. The estimated standard deviation of
each structure factor was calculated from the esti-
mated errors in the intensity by the method of finite
differences (6). Based on the measurement of sym-
metry extinct reflections, it was decided that only
those reflections for which 7> 3o(J) would be
considered observed. The results reported below are
based on the 325 remaining observed reflections. A
very low percentage of observed reflections were
obtained at the high 26 limit.

Solution and Refinement

The positions of all heavy atoms were readily
determined from a three-dimensional Patterson
function. These positional parameters along with the
assigned variable isotropic thermal parameters, were
refined two cycles in the centric space group Pnma
by a full matrix least-squares procedure minimizing
the function Zw(|F,| — |F.|)>. Examination of the
resulting electron density map revealed the oxygen
positions with the chromate group lying on a mirror
plane as required by the centric space group Pnma.
Isotropic refinement of 18 scale, positional, and
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thermal parameters converged to a conventional R
factor (R = (Z||F,| — |F.||/2'|F,|) of 0.082 and to a
weighted R-factor

R, = (Zo(|F,| — |F])*|Zw|F,|?)"?

0f 0.090. A difference electron-density map revealed
anisotropic motion of the heavy atoms. Additional
refinement using anisotropic thermal parameters for
the heavy atoms converged to a discrepancy factor
of R=0.064 and a weighted discrepancy factor
R, =0.073. The largest shift during the last cycle
was less than 0.002 times its own standard deviation.
A final electron-density difference map showed no
peak heights greater than 0.6 e/A3.

The relativistic Hartree-Fock X-ray scattering
factors for neutral atoms of Doyle and Turner (7)
were used, with those of silver and chromium
including the real and imaginary parts of anomalous
dispersion (8). Based on the agreement of the large
structure factors no extinction correction was neces-
sary. Anisotropic refinement of the oxygen positions
lowered the value of R less than 0.002 with no
appreciable shifts in the other parameters. Refine-
ment in the acentric space group produced no
significant improvement in either the R factor or
standard deviations.

The final positional and thermal parameters and
their estimated standard deviations as derived from
the inverse matrix of the final least-squares cycle are
given in Table I. The final values of the observed

TABLE 1
FINAL POSITIONAL AND THERMAL PARAMETERS FOR SILVER
CHROMATE®
Atom X y z BiPorB
Ag(l) 0.5 0.5¢ 0.5¢ 50(2)
Ag(2) 0.1340(2) 0.25¢ 0.5033(7) 81(2)
Cr 0.3161(3) 0.25¢ -0.0161(12) 22(2)
oQ) 0.1506(19) 0.25¢ —0.0677(34) 1.9(4)
0(2) 0.3502(19) 0.25¢ 0.2789(37) 1.8(4)
0(3) 0.3845(14)  0.9353(23) —0.1417(26) 2.1(2)
Atom Ba2 B3s B12 B3 B23
Ag(l) 111(4)  154(5) Oc 1N (0
Ag(2) 128(5) 167(7) (0 30(7) (03
Cr 81(7) 77(12) Oc 19(7) O°

7 Numbers in parentheses here and in succeeding tables are
estimated standard deviations in the last significant digits.

b B’s x 10%, the B;; are defined by: T'= exp[—(h? 811 + k* B2z
+ 12 By3 + 2hk B2 + 2hiBys + 2kiB;).

¢ Atomic parameter fixed by symmetry.
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UNIT CELL OF SILVER CHROMATE

F1G. 1. Stereogram of the unit cell showing heavy atom coordination polyhedra.

and calculated structure factors (x 10) are listed in
Table I1. Bond lengths and angles with their standard
deviations were calculated by OR FFE. A stereo-
gram of the unit cell is given in Fig. 1.

Description of the Structure

The structure of silver chromate consists of
chromate groups linked together by silver atoms to
form a three-dimensional network through the
crystal. The two crystallographically independent
silver atoms have different coordination polyhedra.
Positioned on a center of symmetry, the coordina-
tion of Ag(1) can be best described as a tetragonal
bipyramid with approximate D,, symmetry. The
coordination of Ag(2), which lies on the mirror
plane, forms a badly distorted tetrahedron with
average O-Ag-O angle being 107° but ranging from
84 to 139°. Also on the mirror plane is the chromate
group which describes a slightly distorted tetra-
hedron with average Cr-O distance of 1.66 A and
angles ranging from 106.1 to 111.€(8)°. The co-
ordination of oxygens O(1) and O(2) is roughly
tetrahedral with each coordinated to three silver
atoms with bond angles of 104 to 125°. The other
independent oxygen atom O(3) is coordinated to just
two silvers, and the Cr—O(3) distance is 0.04 A
shorter than the remaining Cr-O distances. Bond
distances and angles for all the heavy atom co-
ordination polyhedra are listed in Table 111 (see also
Fig. 1). The covalent nature of the silver—oxygen
bonds is evidenced by their directional character and
comparatively short metal-oxygen distances. Litera-
ture values for average Ag-O distances for six
coordinate silver (9) and for four coordinate Cr
(VD)-O (10) are 2.42 and 1.65 A, respectively.

Potassium chromate also crystallizes in space
group Pmma with Z =4. Although the unit cell

dimensions are similar, the two structures are not
isomorphous; the equivalent potassium chromate
space group is Pmcn. The metal-atom coordination
polyhedra are very different in the two structures. In
the ionic potassium salts (K,CrO, and K,MnO,) (1)
all groups lie on the mirror planes. The potassium—
oxygen coordination is complex with little or no
directional character and exhibits nine and tenfold
coordination. Metal-oxygen distances range from
2.7 to about 3.2 A compared to the 2.34 to 2.62
Ag-O distances found in silver chromate.

The structural results on these two compounds are
in good agreement with their solubilities. Potassium
chromate is water soluble and the complex metal
coordination found in its structure is typical of ionic

TABLE I

INTERATOMIC DISTANCES AND ANGLES IN SILVER CHROMATE?

Distance Angle

A (deg)

Ag(1)-0(1) 2.35(1) O(1)-Ag(1)-0(2) 86.8(4)

Ag(1)-0(Q) 2.62(1) O(1)-Ag(1)-0(3) 87.7(4)

Ag(1)-0(3) 2.34(1) 0(2)-Ag(1)-0(3) 88.9(4)

Ag(2)-0(1) 2.38(2) 0O(1)-Ag(2)-0(2) 115.7(6)

Ag(2)-0(2) 2.51(2) O(1)-Ag(2)-0(3) 110.2(3)

Ag(2)-0(3) 2.36(2) 0(2)-Ag(2)-0(3) 84.3(4)

0O(3)-Ag(2)-0(3) 139.1(7)

Cr-0(1) 1.69(1) O(1)-Cr-0(2) 111.6(9)

Cr-0(2) 1.67(1) 0O(1)-Cr-0(3) 110.1(6)

Cr-0(3) 1.63(1) 0(2)-Cr-0(3) 109.3(6)
0O(3)-Cr-0(3) 106.1(10)

2 Symbols used refer to atom type only (Fig. 1). Symmetry
operations are not given. Ag(1) lies on a center of symmetry
so all other O-Ag(1)-O angles are related to those given.
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compounds. Silver chromate is quite insoluble in
polar solvents such as water and the more directional
metal coordination of its structure is more repre-
sentative of covalent compounds. Also, the electro-
negativity of silver (1.42) (1I) is close to that of
chromium (1.56) which is dissimilar to that of
potassium (0.91). Thus the ionic compound potas-
sium chromate crystallizes with complex potassium—
oxygen coordinations providing many near neigh-
bors to minimize the electrostatic repulsions of the
ions, while in the more covalent silver chromate
there is substantial directional silver—oxygen co-
ordination to provide maximum overlap for some
formation of covalent bonds. The differences in the
two structures is, therefore, in accord with the
different nature of the binding forces for the two
solids.
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