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Mott and Littleton’s method is applied to calculation of the enthalpy of formation of Schottky and Frenke 
defects in the NaN03 crystal. The values obtained are equal, respectively, to 2.4 and 1.08 eV. In agreement with 
the experiment, it can be concluded that the Frenkel disorder is predominant in NaN03. 

A point defect such as a vacancy or an interstitial 
ion in a crystal causes a distortion. This is important 
close to the defect, and decreases when the distance 
increases. 

Three approaches have been used for the investi- 
gation of atomic displacements. In Eshelby’s (I) 
treatment the defect is considered as a point 
singularity in an elastic continuum. The second 
method, used by Kanzaki (2), Matsubara (3), and 
Hardy (4, 5) seems better than the first because it 
recognizes the discrete nature of a real lattice 
throughout the calculations. But we have not used 
this method, as certain data necessary for calculation 
are unknown for NaNO,. Chronologically speaking, 
the third method is the earliest: in fact Mott and 
Littleton (6) first carried out calculation of the 
enthalpy of formation of the Schottky defect in 
alkali halides, taking as their starting point a Jost’s 
theory (7) which emphasized-as early as 1933-the 
importance of polarization phenomena in the 
creation of a defect. In this treatment the equilibrium 
of nearest neighbors is considered in detail and the 
rest of the medium is regarded as a polarized con- 
tinuum. This theory has since been subjected to a 
number of modifications and improvements (8-12) 
which enable values to be obtained that agree well 
with experimental results. 

But all these calculations were made for elements 
with a cubic structure and for monoatomic ions, 
which can be likened to spheres, i.e., in relatively 
simple cases. We proposed to extend this method to 
more complex crystals such as that of NaNO,. This 
salt crystallizes in the rhombohedral system up to 

melting temperature and has a polyatomic anion 
which, in this work, we have likened to a cylinder of 
height 2.2 A and 2.3 A radius. 

I. Polarization of a Crystal 

The presence of a defect of charge q in an ionic 
crystal gives rise to polarization of ions and a 
distortion of the network. Mott and Littleton (6) 
showed that displacement of an ion is given by 
the equation 

and dipolar moments induced by displacements and 
electronic polarizability on the positive and negative 
ions at a distance from the charge q could be 
expressed, respectively, 

(2) 

and 

In Eqs. (l), (2), and (3), r is the distance from the 
charge q to the ion considered, v is the average 
volume taken up by an ion in the network and the 
coefficients M’, M+, and A4- have the following 
values : 

M’==2cr+ 
2a L 12, 
cr++cc-4n ( ) 5 

and 
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where cr is the relative dielectric constant, u the 
polarizability of displacement, CC+ and CL- the 
electronic polarizabilities of the anions and cations. 

The NaNO, crystal being anisotropic, the 
quantities E,, a, a+, and a- are represented by 
tensors. In practice, for lack of complete numerical 
data we have been obliged to use average values. For 
example, for the dielectric constant E, we have taken 
the value 6.65 obtained on pellets (13). In the case 
of a- we have inferred the addivity of the polariz- 
abilities of the ions of a crystal. Under these con- 
ditions the Lorentz formula becomes: 

a+ + a- 1 n2 - 1 ___~ 
2 3EaV=n2f 

a- = 4.1 x 10P40 MKSA was obtained, taking the 
geometrical average of the product of ordinary and 
extraordinary indexes for II (14), and the value 
0.44 x 10P40 MKSA given by Shockley (1.5) for a+. 

Finally, the method advocated by Mott and 
Littleton (I) was used to calculate a. It was found 
that a = 2.65 x 10V4’ MKSA. And from this: 
M’ = 3.7 x 10e2; M+ = 4.3 x 10d2; and M- = 9.5 x 
10-2. 

Equations (l), (2), and (3) enable induced dipoles 
and displacements of ions at a distance from the 
charge q to be determined, but they are not suffic- 
iently precise when the calculations concern the 
nearest neighbors of a defect. Their dipoles and 
their displacement 
equations: 

and 

must be calculated using the 

F, + F, = 0, (4) 

where the resultant of the electrostatic forces acting 
on the ion considered is called Fe, that of the 
repulsive forces F,, and the charge of the considered 
ion q’. 

The expression of repulsive force is obtained 
considering only interactions between nearest 
neighbors. This is the Born-Meyer model in its most 
simple form: the force between two ions of unlike 
sign at a distance r from one another may be written 
bexp [-r/p], where b and p are two constants. Then 
the total lattice energy is 

E,=-s+6bexp(-5), 69 
P 

where r. is the reticular distance, A, the Madelung 
constant of the crystal system under consideration. 
Sodium nitrate crystallizes in the rhomboedric 
system and the value A,,, = 1.719 has been obtained 

by direct computer calculation using Evjen’s 
method (16), taking as the rhombohedron angle 
6 = 102”40’ and r. = 3.24 A. In the usual way, b and 
p constants have been determined using the formulae 

and 

!I%- 
dV-” 

l dZEc= 
dV2 V/l’ 

where V is the average volume of a salt molecule in 
its solid state, and B the coefficient of isothermic 
compressibility as measured by Bridgman (27). We 
foundthatb = 1.055 x lo-i4 Jandp = 2.411 x 10-i’ 
m. 

II. Enthalpy of Formation of Schottky Defects 

It is inferred that the defect, i.e., the cationic 
vacancy of charge --e, is to be found at (O,O, 0) 
(Fig. 1). Interposing the relative displacement 
5 = x/r0 of the ion and the quantity m = -(‘/era), 
the forces Fe and Fr can be expressed: 

- z (0.9920 - E) I + 

+ 2t + 0.4664 
4 

+ 25 - 0.4289 
4 

with dl = (5’ + 0.46645 + 0.9749)‘12 and d2 = 
(t2 - 0.4289e + 0.9572)“2 and 

2(0.7796 + 5) 
(1.5292+1.5292t+[2)3’2- 

2(1.2204 + 5) 
- (2.4408 + 2.4408e + f2)3’2 - (& - 

2A438m 0 1570 
-(1-- * I 

In this last equation, the first four terms represent 
the action of the vacancy and of the five other first 
neighbors; the fifth is due to the dipoles of these five 
neighbors, and the sixth represents the force created 
by the dipoles induced on all the other ions. In fact 
we have only calculated action exercised by dipoles 
to be found in a rhombohedron centered on the 
vacancy and with an arris of 40ro, the contribution 
made by the other dipoles being negligible. 

Knowledge of m, .$ (Table I), and of potentials 
produced by dipoles on ions of the crystal, enables 
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FIG. 1. 

the potential of polarization V to be calculated. It 
is expressed thus : 

e 
I/= 47E,r, 

6m 6!$ ___ ~ 
(1 + 02 + 1+f 

+ y(7.016M+ + 

+ 4.709iK). 
I 

The first term represents potential created by 
dipoles of the first six neighbors, the second is due to 
displacement of these six ions, and the third and 
fourth result from the respective contributions of 
dipoles induced on all cations and all anions; y is a 
numerical coefficient equal to 0.91 such as the 
average volume occupied by an ionic pair is 
v = 2yr,3). 

The work that must be done to move a positive ion 
of the crystal away to infinity is given by: 

wo+=- A,,, e* -47TE r P++ve+6hexp(-rq] 
0 0 

In the same way the work Woe involved in the 
creation of an anion vacancy can be obtained. 
Enthalpy of formation W, of a pair of Schottky 
defects, taking into account that the enthalpy EC is 
obtained by bringing ions to the surface of the crystal 

TABLE I 

Cationic 
vacancy 

Anionic 
vacancy 

E 0.041 0.042 

i$f -4.86 0.050 eV -5.33 0.006 eV 
-5 0.33 eV 0.31 eV 

Es’ + E,’ W,’ = -4.5 eV W,- = -5.0 eV 

W, = -( W,’ + W,-) + EC = 2.4 eV 

is thus equal to W, = -(W,’ + Woe) + EC. Using the 
value EC = 7.1 eV calculated from (6) this gives 
W, = 2.4 eV. 

In the calculation seen below, ion displacement 
has been calculated using Mott and Littleton’s 
method, the defect causing distance being con- 
sidered as isolated in the crystal. But as Hardy (5) 
has pointed out, theoretically ion displacement is 
slightly affected by the presence of other defects. 

In practice, for NaNO,, experiments justify Mott 
and Littleton’s hypothesis : the density of disorder is 
at most equal to 4 x 10es and thus the minimal 
distance between two defects is on an average 
twenty times the interionic distance. According to 
formula (I) the displacement caused by the other 
defects is, therefore, negligible compared with that 
created by the neighboring defect. 

III. Enthalpy of Formation of Frenkel Defects 

To create a pair of Frenkel defects, it is necessary 
to extract a cation from the crystal and move it away 
to infinity : to do this work - W,’ must be supplied ; 
afterwards this ion is put in interstitial position and 
the work obtained is W,‘. Enthalpy of formation is, 
therefore, W, = - W,’ + W,‘. 

We have inferred that the interstitial ion moved 
into the position (f,f,+), in other words, in the center 
of the rhombohedron demarcated by the ions 
(O,O,O), (l,l,O), a LO), (LO, l), (l,O,O), (Ll, 11, 
(0, 1, l), (O,O, 1) (Fig. 2). Relative displacements 
(fj . . .) of these eight ions as well as the quantities 
mj = -(p./er,) are taken as being unknown. For 
reasons of symmetry the number of unknowns is 
reduced to eight (1 <j G 4). 

But it is necessary to introduce some supplemen- 
tary hypothesis at this point. In effect, the interstitial 

FIG. 2. 



476 CERISIER AND GAUNE 

cation in the position (+, +,+) is found on the ternary 
axis of the ion NO,- (O,O,O). In this direction the 
half-height of the anion, comparable to a cylinder, 
is 1.1 A, whereas the ionic radius in the neighborhood 
of the ionic plane is equal to 2.3 A. It follows that 
the value of repulsion energy between an anion and 
a cation is not the same, according to whether the 
latter can be found at a distance r from the former on 
the ternary axis of at the same distance r but in the 
ionic plane. In order to take this variation into 
account we have inferred that the coefficient p of the 
expression b exp [-(r/p)] was proportional to the 
sum of the ionic radii in the considered direction. It 
follows that the value for p is 1.525 x 10-l’ m in the 
direction of the ternary axis. 

On the other hand, the negative charge of the 
nitrate ion is in fact borne by the three atoms of 
oxygen, a more electronegative element than 
nitrogen, and at reduced distances this distribution 
of charges must be taken into account. According to 
Julg and Ozias (18), each atom carries the charge 
-0.518 e and the nitrogen atom +0.554 e. Coulomb’s 
force exercised on the ion NO,- by the interstitial 
ion is therefore : 

et 
f= Gg7 [ 

0.554 
(0.6489 - 

1.554(0.6489 + 6) 
[(0.6489 + (J’ + (0.1418)]3’2 1 

?.e2- 0.5 __________. 
- 4n~ ro2 (0.6489 + (J2 

Finally, when the ion (O,O,O) is in equilibrium its 
electric dipole moment p, =-ml era supports the 
equation : 

F”’ 
p, =-a-+, (7) 

and the static FL,) and repulsive forces F!‘) are such 
that Fz,) = -F!,) (8). They are expressed thus : 

F-(,, = b 1.5(0.8650 + 2(, - 0.4668&) 
r 

d, 
X 

P 

x exp(-zd,)+ 1.58exp(-$$)- 

lS(O.8912 - 2&)exp 

4 (-- 11 rod 

P3’ 

+ 3.7203m4 - 3A 
d,3 + 

4.6788m2 + 3B 1 
+ _- dj3 + (4 - 5d2 + 

+0.0111+~-~~+ 
4’ 4 

+ ciq.8652, + &2)3’2 -- 

30 1 (1.5617 + 1.7300[, + &2)3’2 ’ 

with d, = (1 + 0.86505, + [,2 + l.5515t4 + Ed2 - 
0.4668f,&,)“2; d, = 1.028 + 1.58,$,; d3 = (1.0316 - 
0.89125, + f,2)‘/2; ro’ = 2.05 A; d4 = (0.6489 + f,); 
d5 = (1.5615 + 1.7304<, + (,’ + 2.1572f2 + 522 + 
0 4666<, 52)“2; d6 = (1.2978 + f, + f3); A = (0.2807 + 
1:0787& + [,’ - 0.1514&, - 0.2333f,&)d;‘; B = 
(0.5614+l.1502~,+~,2+0.2333~,~2+0.1514~2)d;’ 
C = (0.2807 + 1.07878, + .$,2)dq1; D = (0.5614 + 
1.5102f, + f,2)dq,. 

By formulating it that the other ions are in 
equilibria, a system is obtained made up of four 
pairs of equations set out as follows : 

F$j’ = -F(j) r (8) 

pm = !?!e! e , 
a+ 

with 1 <j G 4. For each group of values f, . . . m, . . . 
we have calculated the coefficients 

FI;” _ F’(j) 
A) yj = --- Fp) 

where Fy’ and FL(j) are numerical values of force 
FYI, calculated, respectively, starting from Eqs. (8) 
and (9). The quantities yj are not simultaneously 
null: the system of eight equations allows of no 
solution. This can be essentially attributed to four 
reasons : 

(1) Mott and Littleton’s model is too simple 
(B-12). It does not take into account the phenomena 
of elasticity and repulsion between second nearest 
neighbors. 

(2) For a, a+, a-, and E, we have been obliged to 
use average values. In other words we assume that 
these quantities are isotropic. 

(3) The values of b and p in the expression of the 
repulsive force between the anion (O,O,O) and the 
interstitial ion are approximate. 

(4) The number of unknowns has been kept to 
eight, but this is too high for the model chosen. By 
taking only two unknowns it is possible to obtain a 
system that allows of solutions, but then displace- 
ments and dipoles of the other ions of the rhombo- 
hedron must be calculated using formulae (1) and (2) 
or (3). However, as it has already been pointed out, 
these are not precise enough when the calculations 
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concern ions in the neighborhood of the defect (at a 
distance less than or equal to ro). So, rather than use 
this latter method we have adopted a group of values 
E 1 . . . ml . . . which verify approximately the system 
of eight equations. These solutions which are 
E, = 0; t2 = 0.27; t3 = -0.05; f4 = O.O9;m, = 0.013; 
m, = 0.005; m3 = 0.15; m4 = 0.01 correspond to 

minimum. 
Polarization potential at the center of the 

rhombohedron is : 

-y(A4++MJ5.157+1.54 

with d, = (0.9272 + t2); d, = 0.6489 + f3; and 
d9 = 0.9272 + f4. 

The first term represents potential created by 
dipoles induced on the cations and the anions. The 
two following ones express displacement of each of 
the eight neighbors of the defect, and the last four 
are due to the dipoles induced on these eight 
neighbors. Potential being initially null at the point 
<+,I,+) electrostatic energy involved is reduced 
Es’ = f Ve and repulsion energy is expressed thus 

E,’ = 3b exp 
c 

r,(0.9272 + &) - ~..~---__ 
1 

+ 

P 

+ bexp 
t 
_ al.028 + 1.586) 

P’ 13 

giving W,’ = Es’ + E,’ = -3.42 eV. Enthalpy 

to 

of 
formation of Frenkel defects is thus W, = -Wo’ + 
W,+= 1.08 eV. 

IV. Comparison with the Experiment 

Enthalpy of formation of the Schottky defects 
which we have calculated is W, = 2.4 eV and that of 
the Frenkel defects is much lower: it is equal to 1.08 
eV. This is sufficiently small (to the figure for a 

Schottky pair) for the concentration of Nai 
interstitial to be preponderant even at melting point, 
and this conclusion of a theoretical origin, is well 
confirmed by experimental results : ionic conduc- 
tivity (19) has shown that Frenkel’s disorder is 
actually predominant in sodium nitrate. 

The calculated value of W, is 1.08 eV, whereas the 
experimental value is 1.14 eV. The difference 
reaches 6 y0 only. It is the precision to be expected in 
using Mott and Littleton’s theory. In order to 
increase the precision of results one would have to be 
able to take into account anisotropies of electronic 
polarizabilities, ion displacements, and dielectric 
constants, an impossible task at the moment as these 
are unknown data. In addition, correcting terms 
proper to elasticity phenomena around defects and 
to repulsion forces between second nearest neighbors 
could then be made to intervene. 
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