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Reaction of BaQ, Nb,Os, and Nb in mole ratios of 2.4:1.6:1 in an evacuated silica capsule at 1250°C
produces a mixture of at least two products, one of which has the probable composition Bae.sNb14Si,047
(x =~ 0.23). This compound has an hexagonal unit cell of dimensions a = 9.034 + 0.004A,c=27.81 +0.024,
probable space group P6i/mcm, Z=2. Its structure has been determined from 942 independent
reflections collected by a counter technique and refined by least squares methods to a conventional R
value of 0.062. The basic structure consists of strings of four NbOg octahedra sharing opposite corners,
each string joined to the next by edge sharing of the end octahedra, so that the ¢ axis corresponds to the
length of a strand of seven corner-linked octahedra. Chains of three such strands are formed by corner
sharing between the strands. The chains in turn are joined by NbOg octahedra and Si, O, groups in which
the Si-O-Si linkage is linear. Barium atoms are in sites between the chains coordinated by 13 oxygen
atoms. A second site, 15 coordinated, probably has a small amount of barium as well; the fractional

occupancy for barium in this site is 0.076.

Introduction

The reaction of BaO, Nb,Os, and Nb in the
presence of SiO, can result in at least three
different hexagonal complex oxides containing
silicon. The first to be studied was Ba;NbSi 05
(I). This structure has infinite strings of NbOg
octahedra sharing opposite corners. These strings
extend in the ¢ direction. Each string is joined
laterally to two others by corner sharing to form
chains; the chains in turn are linked by corner
sharing with Si,O, groups and by the electro-
static attraction of Ba** ions between the chains.
A second compound, Ba;Nb,,_,Si;O44 (x ~ 0.2)
has a different structure based on a 7 layer
stacking of close-packed O, and BaOg layers with
niobium and silicon occupying sites between the
layers (2).

The compound described here, Bag, ,Nb;,Si,-
Q,, has a structure related to that of Ba;Nbs-
8i,0,6. However, it is more complex and has some
points of individual interest.
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Experimental Methods

BaO was prepared from BaQO, by heating to
1000°C in vacuo for 1 hr. It was mixed with
Nb,O, and Nb (both obtained commercially) in a
2.4:1.6:1 mole ratio; the resulting gray powder
was triturated under petroleum ether and placed
in a silica capsule, which served as both container
and reactant. The capsule was evacuated, sealed,
and placed in a furnace at 1250°C for 1 wk. Upon
removal from the furnace, the capsule was in a
partially collapsed state, and on cooling it
clouded and became crazed on the inside.

The reaction product consisted of black,
highly reflective crystals, some embedded in the
container walls, some aggregated into chunks
that appeared to have been partially melted, and
some loose and apparently single. The last-
named occurred in two distinct habits: thick
chunks only occasionally exhibiting flat faces,
and very thin hexagonal plates, rarely complete
but usually having at least one 120° angle visible.
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Examination of several of the single crystals
indicated that these two types of crystal repre-
sented two different compounds. The thin plates
proved to be Ba;Nb,,_.Si,O,, and the chunks
Bag,Nb,,Si,0,,. A rough density of 4.9 g/cm3
was measured for the aggregated crystals (by the
method of Archimedes, using water as the
displacement liquid), which presumably consist
mainly of the latter compound. This value is
probably low because of trapped air in the
aggregates.

A single chunky crystal was selected for
structure determination and ground to a sphere
of 0.14 mm diameter. Laue and precession X-ray
photographs revealed a hexagonal lattice, Laue
group 6/mmm, with hhl reflections present only
for I =2n. The probable space group is thus one
of P6ycm, P6c2, and P6s/mcm. Photographic
measurements gave @ = 9.00 A and ¢ =27.67 A.

Data for the structure solution were collected
on a Picker Nuclear computer-controlled single-
crystal diffractometer, using graphite-mono-
chromatized Mo radiation and a scintillation
counter detector, and operated in the 6-20 scan
mode. The base scan width was 2.5-2.8° in 26,
with dispersion factor of 0.692. Background was
counted for 20 sec on each side of the peak, and
three standard reflections were measured every 40
reflections. In all, three sets of data were collected.
Due to errors in interpreting the photographic
data, the first collection was based on an assumed
c value half the true one and hence missed half the
reflections. The data produced were not used in
the structure determination, although the final
cell parameters, a=9.034 +£0.004 A and c~
27.81+£0.02 A (=2x(13.906 +0.009 A), were
determined at this time by least squares refinement
on the diffractometer angles of 12 reflections.

The second collection produced usable data,
but instrument instabilities resulted in sizable
variations in the standards with time. Dividing
the data into a number of groups and scaling
each group to bring standards into agreement
gave standard deviations of the standards of 1.6,
2.6, and 5.1 9,. However, the data were still not
of very good quality, and when the conventional
R value would go no lower than 0.124 for the
final refined structure, a third set of data was
collected. It was later discovered that part of the
refinement problem arose because we were
attempting to refine a nearly centrosymmetric
structure.

The third data set included all possible
reflections with 26 < 25°, and those within the
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range 0 <h <9, -3 <k <9, and -3 < /<33 for
25° < 20 < 50°. The three standards had standard
deviations of 1.4, 2.2, and 5.4/, with no scaling
necessary. The 3329 reflections collected were
corrected for background and those related by
symmetry were averaged, reducing the data set to
670 reflections, of which 421 had intensities
greater than three times the standard deviation of
the background and were labeled observed. In
the table of structure factors, the number listed
in the column of observed F’s for unobserved
reflections is determined from I, + 26(1;,).

The data set used for the final structure
determination included all the reflections from
the third data collection plus 242 reflections of
raw intensity greater than 100 and 20 > 50° from
the second data collection. (The intensity
restriction was imposed because of the pro-
nounced inverse correlation between magnitude
and R factor for the second-set reflections.)
Lorentz and polarization corrections and a
spherical absorption correction, with ur = 0.76,
were applied by the X-ray system program
package (3), which was also used in subsequent
calculations of Fourier maps, least squares
refinements, and so forth.

Structure Determination and Refinement

The hkO reflections of the compound under
study are very similar to those of Ba;NbgSi, 0,6,
indicating a resemblance between the projections
along ¢ for the two compounds. Ba atoms were
therefore placed at 0.59, 0, z positions ; Nbat 0.24,
0, z positions and Si at 1/3, 2/3, z positions in the
present compound to correspond to Ba;Nb,-
Si40,¢. Assuming a barium at 0.59, 0, 0, a
Patterson map indicated possible niobium :z
values of 0.072, 0.211, and 0.350. The four-atom
model thus arrived at was used as the starting
point for a structure solution by difference
Fourier methods. P6,cm was chosen as the trial
space group.

The niobium position and population para-
meters and the barium x-parameter were refined
and a AF map was calculated. This was then used
to place further atoms and the cycle repeated,
with isotropic thermal parameters also being
refined on later iterations. After a few such
cycles, R was down to the 109/ range and the
model was making chemical sense. At this point
the indicated chemical formula was BagNb,,-
Si,0s, with Z =2,
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Anisotropic thermal parameters were intro-
duced for barium and niobium and all possible
parameters refined. This process reduced the R
factor by a few percent, but the parameters would
not converge. Moreover, the thermal parameters
for one niobium and several oxygens became
nonpositive definite, A weighting function
w= 1/oz* was introduced, with

1 1
°r T ) 2ALp)

X [{Ny + BG + [0.02(N7 — BG)]?}/
[Nz —BG)]'2

for observed reflections and

1 1
't~ _(BG)?

7 sy O

for unobserved reflections, where:

n number of reflections averaged

Lp Lorentz and polarization corrections

Ny total counts measured on the scan
through the peak

BG (background counts accumulated in 40

sec) x (scan time/40).
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This produced a weighted R somewhat lower than
the conventional R from the unweighted refine-
ment, but did not help the convergence problem.

A careful examination of the model revealed
that it had become nearly centrosymmetric. A
statistical analysis of the magnitudes of the
normalized observed structure factors indicated
that a true center of symmetry was present.
Accordingly, the atomic z-coordinates were
altered so as to place the center at the origin and
the probable space group became P6;/mem (No.
193). There was no further difficulty in obtaining
convergence.

Weighted refinement, however, still resulted in
nonpositive definite thermal parameters for one
niobium. Hence, the final refinement was done
with unit weights. Neutral atom scattering
factors with dispersion corrections included, from
(4), were used throughout.

The formula BagNb,,Si,Os, corresponds to a
cell in which one oxygen occupies a position
logically more suited to a barium; it is sur-
rounded by 15 oxygens, with no niobium or
silicon within bonding range. A corresponding
site in Ba;NbSi, O, is unoccupied by any species.

TABLE 1

ATOMIC PARAMETERS FOR Bag, (Nb,4Sis047 SPACE GROUP P63/mcm (No. 193)°

Atom: Ba(l) Ba(2)® Nb(1) Nb(2) Nb(3) Si(1)
Position: 12k 6g 12k 12k 4d 8h
x 0.5932(2) 0.6117(39)  0.2383(5) 0.2371(3) 1/3 1/3
y 0 0 0 0 2/3 2/3
z 0.1076(1) 1/4 0.0434(1) 0.1833(1) 0 0.1918(3)
Us 0.592(711) 0.695(176)
U, 1.103(64) 2401(162)  0.253(83) 0.427
U, 1.132 0.378 0.273 0.427
Uss 1.012(59) 0.47291) 0.452(76) 1.429(184)
Uy, 0.566(43) 0.189(72) 0.137(57) 0.213(62)
Uss 0.159(57) 0.327(98)  —0.098(76) 0
Uzs 0 0 0 0
Atom: o) 0oQ) 0Q3) 0@) 0] 0(6) o(7)
Position: 12k 6g 12k 12k 4c 24/ 24!
x 0.2203(26) 0.2860(44) 0.2060(38) 0.1773(24) 1/3 0.1801(20) 0.1729(22)
y 0 0 0 0 2/3 0.4898(22)  0.4841(23)
z 0.1094(7) 1/4 0.5326(9) 0.6850(7) 1/4 0.1694(4) 0.4562(5)
U 1.017(358) 1.384(633) 2.213(572) 0.631(369) 1.501(791) 0.752(254) 0.977(295)

e Errors in the last digit are given in parentheses. Where no error is shown, the parameter is not independent. Aniso-
tropic thermal vibration expressed as: expl—1/4(a*2 Uy, #* + b** Uyp k2 + c*¥2 Uy 1? + 2a*b* Uy bk + 2a* c* Uy Al +
2b* c* U,3 kD). Isotropic thermal vibration expressed as: exp[—8z2 Usin®60/2%].

® Population parameter, 0.076(11).
¢ All U’s have been multiplied by 100.
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In this case, however, leaving the site empty
results in a peak on a AF map, of approximately
the magnitude of a peak produced by omission of
one of the normal oxygens. Fully occupying the
site with oxygen results in a very large isotropic
thermal parameter for the oxygen; allowing both
population and thermal parameters to vary
results in a low occupancy factor and a negative
temperature factor. Placing a barium with a low
occupancy factor in the site and refining, how-
ever, leads to simultaneous convergence of
population and thermal parameters. Accordingly,
the probable occupant of the site is a barium of
low population parameter, and the com-
pound formula becomes Bag, Nb,,Si,0,,, with
x ~0.23. The average niobium oxidation state is
thus +4.68, presumably corresponding to a
mixture of Nb'™ and NbY. Mixed oxidation
states are known for other niobium compounds
(5), and in this case account neatly for the dark
color of the compound. The theoretical density is
5.09 g/cm?, compared to the measured (presum-
ably low) value of 4.9 g/cm3. A final difference
map showed no peak of more than 1/10 the
height of that produced by omission of an
oxygen.

The final R factor is 0.062 overall, and 0.045
for reflections from the third data collection
(presumably the more accurate reflections). The
maximum shift/error ratio in the final cycle of
refinement was 0.011. The final parameters are
given in Table I, and the unit cell contents are
shown in stereo in Fig. 1. This and subsequent

e
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FiG. 1. Stereo view of the unit cell of Bag, :Nb;4Si,O4.
Ba(1) is shown as striped circles, Ba(2) as stippled circles,
Nb as small open circles, Si as small black circles, and O as
large open circles.
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FiG. 2. Niobium and silicon coordination in Bag, .~
Nb,;4Si4047.

drawings were produced by the program ORTEP
(6), using a computer-controlled plotter.

Discussion

The basic structural unit in Bag, ,Nb,,Si,0, is
a string of four NbQy octahedra joined end to
end. These strings are joined laterally in groups of
three by further corner sharing. Figure 5 shows
four such groups and the connections among
them. It may be seen that each group of three
strings is joined to the next group along the c axis
by edge sharing of the end octahedra. Thus there
are essentially continuous triple chains of NbOg
octahedra extending along the ¢ axis. Con-
nections perpendicular to ¢ between different
triple chains are provided by Si,O, groups and
single NbOg octahedra. Four of the former and
two of the latter appear in Fig. 5. Each Si,O,
group joins three separate triple chains by
sharing corners with the second and third
octahedra of one string in each group. The single
NbOg octahedra occur at the ends of the triple
chains, so that each actually shares corners with
octahedra insix different four-octahedron strings.
This is clearly shown in Fig. 3, which shows a view
along the c-axis of a slice of the unit cell centered
around z=14, a region in which edge sharing
occurs. The end octahedra of triple chains
appear around the origins; single NbOg octahedra
are located at 1/3, 2/3 and 2/3, 1/3.

In the Ba;NbgSi,O,¢ structure (I), similar
triple chains of niobium-oxygen octahedra
appear, but in that case there is no edge sharing;
individual chains are infinite in length instead of
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Fic. 3. View along c axis of a section from z = 0.45 to z = 0.60 of the Ba,.Nb,4Si,O04 cell, showing NbOg groups as

solid octahedra and Ba as striped circles.

four octahedra long. The triple chains are joined
by linear Si,O, groups, as in the present com-
pound, but there is no niobium between chains.

FIG. 4. Stereo view of the barium coordination in
Bag,Nb;,Si,O47. Ba(l) is shown as an ellipsoid and
Ba(?2) as a circle.

The unit cell of BayNbgSi, 0,6 is two octahedra
high; the Bag,,Nb,,Si;O,; cell may be con-
structed by stacking up four BazNbgSi,O,6 cells,
with the top two rotated 60° relative to the bottom
two. The second and third cells are then over-
lapped so that edge sharing of NbOg octahedra is
produced, the pairs of silicons brought together
by this process are replaced by single niobiums,
and Ba(2), which occupies a site vacant in
Ba;NbgSi, 0,6, is introduced to complete the
structure.

So BayNbgSi, 0, is a fairly close relative to
Bag, . Nb,,Si,0,,. It may also be instructive to
consider some more distantly related compounds.
Except for the Si,0, groups, the framework of
the Bag,,Nb,,S8i,0,, structure is composed of
NbOg¢ octahedra sharing corners, and in some
places edges. The occurrence of a framework of
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TABLE II

INTERATOMIC DISTANCES AND ANGLES IN Bag; s Nb4Si 0,7*

Distances (A)
Ba(1)-O(1)* 3.37(2)
Ba(1)-0(1)® 3.19(1)
Ba(1)-0(3) 2.76(3)
Ba(1)-0@4) 2.99(2)
Ba(1)-0(6)? 3.04(1)
Ba(1)-0(6)* 2.83(2)
Ba(1)-0(7)? 3.09(1)
Ba(1)-0(7)3 2.84(2)
Ba(2)-0(2)! 2.94(5)
Ba(2)-0(2)? 3.15(3)
Ba(2)-04) 2.63(3)
Ba(2)-0(5) 2.80(1)
Ba(2)-0(6)? 3.34(1)
Ba(2)-0(6)? 3.27(3)
Nb(1)-0(1) 1.84(2)
Nb(1)-0(3) (atoms at different z values) 2.13(2)
Nb(1)-O(3) (atoms at about same z) 2.04(4)
Nb(1)-0(7) 1.98(2)
Nb(2)-0(1) 2.06(2)
Nb(2)-0(2) 1.91(1)
Nb(2)-0(4) 1.93(3)
Nb(2)-0(6) 2.07(2)
Nb(3)-0(7) 1.98(2)
Si(1)-0(5) 1.62(1)
Si(1)-0(6) 1.63(2)

Angles (°)
O(1)-Nb(1)-0(3) [0(3) and Nb at about same z] 95.4(8)
O(1)-Nb(1)-0(3) [0O(3) and Nb at different z’s] 167.1(12)
O(1)-Nb(1)-0(7) 93.3(7)
0O(3)-Nb(1)-0(3) (O’s at same 2) 104.0(12)
O(3)-Nb(1)-0(3) (O’s at different z’s) 76.9(9)
O(3)-Nb(1)-0O(7) [O(3) and Nb at about same z] 84.1(10), 167.5(10)
O(3)-Nb(1)-O(7) [O(3) and Nb at different z’s] 96.1(8)
O(7)-Nb(1)-0(7) 86.5(7)
O(1)-Nb(2)-0(2) 170.8(13)
O(1)-Nb(2)-0(4) 88.4(7)
O(1)-Nb(2)-0(6) 82.3(6)
0(2)-Nb(2)-0(4) 97.9(10)
O(2)-Nb(2)-0(6) 91.009)
0(4)-Nb(2)-0(4) 91.9(8)
0(4)-Nb(2)-0(6) 90.5(8), 170.4(7)
O(6)-Nb(2)-0(6) 85.7(6)
O(7)-Nb(3)-0(7) (O’s at same z) 86.0(7)
O(7)-Nb(3)-0O(7) [O’s belonging to two Nb(1) octahedra which share edges] 87.6(7)
O(7)-Nb(3)-0(7) (O’s at different z’s not belonging to edge-sharing octahedra)  101.3(7), 170.0(10)
O(5)-Si(1)-0(6) 112.5(5)
0(6)-Si(1)-0(6) 106.2(9)
Si-O-Si 180

2 Errors in last digit are shown in parentheses. Superscripts on oxygens around Ba(1) and Ba(2) refer to
the order in which the symmetry-related coordinates of the general position for P6;/mcm are listed in (11).
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corner-sharing MOy octahedra is widespread in
oxide structures. Examples include the ReO,
structure (7), the hexagonal tungsten bronze
structure (8), and the tetragonal tungsten bronze

; o
structure {9). The last-named is of particular

interest here. Infinite strings of WO octahedra
are joined by a complex pattern of inter-string
corner-sharing, so that a projection along the
strings shows three-, four- and five-sided rings of
octahedra, each ring actually corresponding to
an infinite channel bounded by strings of octa-
hedra. Large cations, e.g., K*, occupy the four-

EVANS AND KATZ

and five-sided channels, being coordinated by 12
and (10 + 5) oxygens, respectively.

In BayNbeSi;O,s and in the regions of
Bag, Nb,,Si,0,; where edge sharing does not

thenn_cidad
have tiree-siaca

channels, as well as five-sided channels that are
similar, but have two *“sides” composed of
Si,0, groups instead of octahedra. Because of
this substitution, Ba(1l) of Bag, Nb,,Si,0,, and
the barium in Ba;NbgSi, 0,4 are coordinated by
only (10 + 3) oxygens, rather than having the
(10 + 5) coordination of Ba(2) and the bronze K*.

idantinag

1
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naarl
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aceur wo
owlul, wu

FiG. 5. Arrangement of NbOs octahedra and SiO. tetrahedra in Bag,.Nb,;Si,O,4;. Bariums are represented

as in Fig. 1.
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The barium coordination in the present com-
pound is shown in stereo in Fig. 4. Each barium
has 10 oxygen neighbors located at the vertices of
a pentagonal prism, plus 3 [for Ba(1)] or 5 [for
Ba(2)] more oxygens located outside three or all
five, respectively, of the side faces of the prism.
The coordination is not regular; the Ba-O
distances range from 2.6 to 3.4 A (cf. K-O
distances of 2.8 to 3.4 A in the tetragonal bronze
K,WO0,).

Bay,  Nb,,Si,0,, differs from the bronzes, of
course, in that edge sharing occurs. We may
consider this compound, however, as being
constructed from blocks of a bronze-like
structure (essentially that of Ba;NbgSi,O,6),
which are joined by edge sharing, much as
blocks of ReQ;-type structure are joined by edge
sharing in such compounds as TiNb,O, and
TiNb,, 0, (10).

The arrangement of oxygen around niobium
and silicon is shown in Fig. 2, and Table II lists
interatomic distances and angles. As shown, the
NbOg octahedra are somewhat distorted. In the
case of Nb(1) and Nb(3), this is presumably due
to the necessity of fitting so many octahedra
together in the edge-sharing region. The dis-
tortion, and in particular the tilt away from the
vertical, of the Nb(2) octahedra are due primarily
to the fact that the oxygens of the Si,O, unit are
tightly bound by the silicons, so that the length
of the unit is more or less fixed at 4.5 A, If the
octahedra were undistorted and aligned, this
would be the Nb(2)-O(2)-Nb(2) distance, corre-
sponding to an Nb-O distance of 2.25 A. This is
rather long compared to the uswal Nb-O
distance of 1.9-2.1 A. The tilt of the octahedra
brings the niobiums closer together and reduces
the Nb(2)-O(2) distance to a reasonable 1.91 A.
In the Si,O, unit, the Si-O distances of 1.62 and
1.63 A are normal for silicon-containing oxides,
and the O-Si-O angles show only slight deviations
from the tetrahedral angle of 109.5°. The central
Si—O-Si bond is constrained to be linear, as all
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three atoms involved are located on a threefold
symmetry axis. The linear Si,O; group is rather
uncommon, but it has also been found in, for
instance, Ba;Nb4Si,0,¢ (and the correspond-
ing tantalum compound), Sc,Si,0; (/2), and
NaBa;Si,0,(0OH) (I3), and the evidence is
convincing that it does exist in Bag,,Nb;,Si,O,.

Table 111 lists observed and calculated structure
factors for the compound.
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