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Rice and Roth’s free-ion-like model of ionic conduction relates the oscillator frequency, the hopping 
length, the migration activation energy, and the mass of the jumping ion. They applied their formula to 
atomic self-diffusion in metals and interpreted the agreement of the calculated oscillator frequencies and the 
observed Debye frequencies as evidence for the validity and uniqueness of their model. However, an 
expression of the same form can be derived for a simple harmonic oscillator hopping type model, and 
therefore the necessity for invoking a free-ion-like model is questionable. 

The analysis of Rice and Roth (1) of the Rice and Roth (1) proceed to calculate the 
ionic conduction parameters of compounds in transport coefficients using a Boltzmann trans- 
each of the three groups of highly conducting port equation. In the low-temperature limit in 
“super” ionic conductors provides a useful which s,/kZ’+ 1, their result for the ionic con- 
basis for understanding the similarities and ductivity becomes 
differences in conduction mechanisms. For 
example, the agreement of the parameters 1 (Ze)” 

obtained for the ionic components of molten 
0 = j kT nvo loe-eoikT (1) 

metals with those obtained for the silver halides 
and chalcogenides and the /?-aluminas lends where Ze is the charge of the ion, n is the number 

further justification for describing the disordered of potentially mobile ions per unit volume and 

cations in these ionic conductors as being in a co, vo, I,, and z. characterize the free-ion-like 

liquid-like state (2, 3). state at the energy gap so. As they point out, 

Rather than using a conventional hopping this result closely resembles the Arrhenius 

model, Rice and Roth (1) introduced a free-ion- expression for the “hopping” model of ionic 

like model to describe the translational state in conductivity, which may be written as 

which the ion moves from one localized state to 
another. In this excited state, the ion of mass M 

1 (Ze)’ 
O=? kT 

__ nao 2vOe-EtkT (2) 
is assumed to propagate with a velocity v, and 
an energy E, = +Mv,,,~. The energy spectrum where a0 is the “hopping” distance, v. the ionic 
of these elementary excitations is assumed oscillator frequency, and E the migration activa- 
to be continuous for energies E, > a0 (where e. tion energy and indeed, they state that for the 
is a characteristic “energy gap”) and to vanish conventional hopping mechanism these two 
for E, < .so. The excited ion interacts with the expressions are equivalent. The energy gap ~0 is 
rest of the solid, thereby losing energy and identified with E, the mean-free path 1, with a,, 
returning to a localized state. A lifetime r, and the inverse lifetime 1 /r, with vo. 
characterizes the transitory existence of the ion Rice and Roth (I) claim, however, that one 
in the mth state and an ionic mean-free path I,,, aspect of the free-ion-like model, i.e., the free- 
is introduced through the relation 1, = v,r,. ion-like relation E, = +Mv,~, has no counterpart 

* Contribution No. 1978. in the conventional hopping model. They 
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proceed to use this expression to derive the 
relationship 

1/Z v 
0 

= L 1E 
( 1 a,M ’ (3) 

which they treat as a predibtion of the free-ion- 
like model. They apply this formula to the case of 
atomic self-diffusion in metals; the transport 
mechanism is presumed to be by means of 
vacancies. They choose the hopping distance a0 
to be the nearest neighbor distance and use the 
activation energy E determined by experiment. 
They find excellent agreement between the v. 
calculated from Eq. (3) and the observed Debye 
frequencies and consider this “to constitute 
fairly satisfactory evidence for the basic validity 
of the free-ion-like relation between E, and 
V 

9, 
IIt- 

However, a result of the form of Eq. (3) can 
be obtained for a “hopping” model using a 

classical harmonic oscillator approximation for 
the localized oscillating state. When the ion 
achieves a critical amplitude of oscillation, it 
“hops” to a nearby vacant localized state. 
Consider the case of two neighboring lattice 
sites a distance a0 apart, one containing a 
migrating ion, the second empty. Assume 
identical harmonic oscillator potentials at each 
site as shown in Fig. la. The oscillator frequency 
v for the ion at Site 1 is given by the usual expres- 
sion 

(4) 

where k is the force constant and M the mass of 
the ion. The energy E of the ion is 

E = +kA2 3 (5) 

where A is the amplitude of oscillation. Knowl- 
edge of the energy of the oscillator for a given 

SITi 2 
X’O 0 

b) SITE I SITE 2 
x=0 X=0 0 

SITE 2 
x=0 x=00 

FIG. 1. Simple harmonic oscillator potentials as approximations for the localized oscillatory state of a hopping model. 
(a) Simple harmonic oscillator potentials; (b) more “realistic” potential; (c) approximation to “realistic” potential. 
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amplitude of oscillation thus gives us a way of 
estimating the effective force constant and in 
turn enables us to calculate v. Thus from Eqs. 
(4) and (5) we find the relationship 

1 2E II2 
v=2z z * ( 1 

(6) 

The similarity of Eqs. (3) and (6) is clear. From 
Fig. la, we can find the amplitude necessary for 
the ion to have sufficient energy, the activation 
energy E, to “hop” to Site 2. This critical ampli- 
tude is obviously a,/2 so that 

Thus the v’s calculated from Eq. (7) are about 
one-third those found by Rice and Roth [Eq. 
(311. 

A more realistic potential is that shown in 
Fig. lb. For simplicity we approximate this 
potential by the one shown in Fig. lc for which 
the critical amplitude is aao. For this case 
Eq. (6) becomes 

1 2E II2 y=-- - 
( > 2xaao A4 ’ (8) 

The value of a will depend on the particular 
model. If we choose a = 0.16 so that 2na = 1, 
Eq. (8) becomes identical to the free-ion-like 
model result, Eq. (3). For fee metals, o! = 0.16 
corresponds to a critical amplitude of 0.29r, 
where r is the atomic radius. (For bee metals, 
a = 0.16 corresponds to a critical amplitude 
of 0.28r.) It is interesting to note that this is very 
close to the critical amplitude of 0.275r which 
Achar invoked in his reaction coordinate 
calculation (4) in order to obtain agreement 
between his calculated motion energy and the 
observed diffusion activation energy for the 
seven fee metals he considered. 

To summarize, there is no need to invoke a 
free-ion-like model. A simple harmonic oscillator 
“hopping” type model can be used to obtain a 
relationship between v, E, M, and a0 which is 

identical in form to that obtained from the free- 
ion-like model. A reasonable choice of a critical 
amplitude of oscillation results in frequencies 
identical to those obtained from the free-ion- 
like model. If one wishes to make one further 
identification between the two models, one can 
interpret the velocity v,,, of the free-ion-like 
model as the maximum velocity of the ion 
undergoing oscillation, i.e., the velocity at zero 
displacement. 

Finally, one can question whether the calcu- 
lated oscillator frequency for these metals 
should be expected to be identical to the Deby 
frequencies. The effective oscillator frequency 
should be related to the frequencies of those 
phonon modes with the proper phase and 
polarization to maximize the probability of a 
“hop.” The Debye frequency is defined such 
that the acoustic mode branches of lower velocity 
are more heavily weighted. Since the metals 
considered by Rice and Roth (I) have transverse 
velocities which are about half the longitudinal 
velocities, it is the tranverse modes which 
essentially determine the Debye frequency. 
Even within a transverse branch there is aniso- 
tropy so that some modes are weighted more 
heavily than others. The oscillator and Debye 
frequencies will be the same order of magnitude 
and perhaps even bear a relatively constant 
relationship to one another for the fee metals 
(4), but, in view of the differences in the physical 
significance of these quantities, it is difficult to 
argue that the two frequencies “should” be 
identical. Equality of the two seems fortuitous. 
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