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The kinetics of the conductivity changes, due to the adsorption of oxygen on partially compensated ZnO 
have been derived theoretically in the case where surface donors are present at the semiconductor surface. 

The influence of the bulk donor density and the density of the surface donor states on the chemisorption 
kinetics have been investigated by means of a numerical treatment. 

It is shown that in four cases the resistance is a linear function of time and that from this relationship the 
pressure dependence of the density of physisorbed oxygen can be deduced. 

1. Introduction 
The irradiation of ZnO with uv light results 

in a conductivity rise, which consists of a fast 
and a slow effect (1). The fast effect, correspond- 
ing to a rapid rise of the conductivity during and 
a rapid fall after illumination, turned out to be 
independent of the surrounding gas atmosphere 
and has been thoroughly studied by Heiland (2). 
However, the time dependence of the slow photo- 
conductivity effect, as well as its rate of decay 
after irradiation, are largely influenced by the 
ambient oxygen pressure. The slow photo- 
conductivity has therefore been attributed to the 
photodesorption of oxygen. Direct evidence for 
this assumption has been given by Medved (3). 
In order to explain the dark conductivity be- 
havior of sintered ZnO layers as a function of 
ambient oxygen pressure, Morrison (4) proposed 
a model, in which the physisorbed oxygen trans- 
forms to chemisorbed oxygen, by capturing 
electrons from the conduction band. Subse- 
quently Melnick (5) proposed that the holes, from 
the electron hole pairs produced under illumina- 
tion with band-gap light, move to the surface, 
where they neutralize the chemisorbed oxygen. 
The model described above can be fitted into the 

* Present address: Belgisch Instituut voor Ruimteaero- 
nomie, Ringlaan 3, B-1180 Brussels, Belgium. 

frame work of the theories of chemisorption 
developed by Aigrain and Dugas (6), Hauffe 
and Engell(7) and Weisz (8). These theories are 
based on the electron exchange between the 
adsorbate and the solid, which give rise to a space 
charge layer near the surface. The adsorption of 
oxygen on ZnO results in a depletion layer, which 
can be approximated by a Schottky barrier 
(599). 

The kinetics of the conductivity changes, due 
to the readsorption of oxygen at photodesorbed 
ZnO sintered layers have been thoroughly studied 
by Melnick (5) and Medved (9). By assuming the 
rate limiting step of the process to be the capturing 
of an electron by the adsorbed species, they 
deduced an Elovich rate equation. Such a rate 
equation, however, is only valid if the conduc- 
tivity changes due to the oxygen adsorption are 
small and if a depletion layer is formed at the 
surface. These results have been extended to single 
crystals by Van Hove and Luyckx (ZO)l. 

On the other hand it has been pointed out by 
Heiland (27) that the model proposed above 

1 The oxygen adsorption and its intluence on the 
electrical conductivity has also been studied to a great 
extent onCdS. Especially the kinetics of the chemisorption 
have received great attention in the work of SCbenne and 
Balkanski (II), Mark (12-14) and Weber (15). A summary 
of this work is reported in a recent article by Weber (16). 
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cannot explain the large conductivity changes of 
single crystals after illumination in vacuum. It 
was therefore suggested that the oxygen free 
surface would have an accumulation layer (18), 
which could be destroyed by the chemisorption 
of oxygen. The photoconductivity experiments 
of Collins and Thomas (19) indicated the existence 
of surface donor states, due to the excess Zn ions 
after illumination in vacuum. The experiments of 
Collins and Thomas were completed by the field 
effect measurements of Krusemeyer (20, 21), 
which revealed the existence of fast surface 
states. These surface states were ascribed to the 
displacement of oxygen, removed from the 
lattice by photolysis. 

The experiments of Collins and Thomas thus 
revealed that the illumination of ZnO in vacuum 
could result in an accumulation layer at the 
surface. This accumulation layer can be destroyed 
by the readsorption of oxygen. To the best of our 
knowledge no detailed study about the kinetics 
of the conductivity changes in this case are pres- 
ent. In an earlier work (22) we have reported some 
preliminary measurements, which must be 
accounted for by an accumulation layer theory. 

A model in which we assumed the presence of 
surface donor states and the complete compensa- 
tion of bulk donors has been put forward to 
explain our experiments on Li-doped ZnO 
single crystals. Some new experimental data, 
described in Part II of this series (23), could not 
be completely explained by this model, nor by 
one of the above described theories. It is felt that 
the influence of the bulk conductivity cannot be 

neglected. Therefore an extended model is 
presented which describes the conductivity 
changes in the case of an accumulation layer as 
well as in the case of a depletion layer being pres- 
ent at the surface. The validity of the model is 
discussed in (23) by comparing the theoretical 
derivations to the experimental results. It is 
shown that the agreement between the theory and 
the experiments is very satisfying. 

2. Model and Outline of the Treatment 
The model upon which the calculations are 

based is shown in Fig. 1. The basic assumptions 
are : 

1. The crystal is considered as a plate with 
thickness W, limited by two parallel infinite 
planes perpendicular to the x-axis. The origin of 
the x-axis is chosen in the middle of the crystal. 

2. In the bulk shallow donor levels are present, 
partly compensated by deep lying acceptor 
levels. All noncompensated bulk donors are 
always ionized. Therefore, if no other states were 
present, the conduction band electron density 
would equal the effective donor density no. 

3. At both sides of the crystal surface donor 
states with a surface concentration N, are present 
at an energy Es below the conduction band. A 
possible origin of these surface states would be 
the photolysis of ZnO (19). 

These states are considered to be in thermal 
equilibrium with the conduction band. Their 
occupation can therefore be described by Fermi 
statistics. 

FIG. 1. Band scheme for a n-type semiconductor of finite thickness: (a) with surface donors; (b) with surface donors 
and surface acceptors giving an accumulation layer; (c) with surface donors and surface acceptors giving a depletion 
layer. 
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4. Trapping in the bulk will be neglected, as 
well as the mobility changes due to the presence of 
space charge layers in the crystal. 

5. When the crystal is exposed to oxygen gas, 
the oxygen physisorbs at the crystal surface and 
gives rise to localized acceptor surface states with 
a surface concentration No. The physisorption 
step is in immediate equilibrium. Since one 
normally expects the number of sites where 
physisorption can take place to be much larger 
than the number of chemisorbed oxygen species, 
No will be considered as constant during the 
chemisorption mechanism. 

6. The rate of filling of the surface acceptors 
is determined by the capture probability of an 
electron in these states and not by the transport 
rate of electrons to the surface. 

7. No interaction between the surface donors 
and the adsorbed oxygen is assumed. If one would 
ascribe the surface donors to the presence of 
excess Zn at the surface, such an interaction could 
be the direct oxydation of the excess Zn. It can be 
shown, however, that the experimentally ob- 
served kinetics described in Part II (23) can 
hardly be explained if such interactions dominate. 

The list of notations used throughout the 
paper, is given in Sect. 7. 

In order to derive the time dependence of the 
conductivity during gas adsorption, the chemi- 
sorption mechanism is pictured in the following 
way. No acceptor surface states are present before 
the crystal is exposed to oxygen. Part of the 
surface donors are ionized and give off their 
electrons to the conduction band. This gives rise 
to an accumulation layer at the surface (Fig. la). 
At t = 0 the crystal is exposed to oxygen; in this 
way the surface acceptors are created, part of 
which are filled in the course of time. As long as 
No- is smaller than Ns+, the space charge layer is 
of the accumulation layer type (Fig. lb). How- 
ever, at a certain time N,-,- exceeds N,+ and a 
depletion layer originates at the surface (Fig. lc). 

Under the above assumptions the conductivity 
is given by the following set of equations : 

(1) 

N = N,+ - N,,-, (3) 

N,+ = NJ 1 + exp (E, - EJkT]-I 

1 + exp(E,jkT)$ 1 -I. (5) 
c 

In Eq. (4) an effective capture cross section S,,’ has 
been used, in order to include the effect of a 
potential barrier which may exist near the surface. 

Combining Eqs. (3), (4) and (5) we find 

d@ + 3 ev EW) dn s 
dt N, [l + n,/Nc exp (Es/kT)12 dt 

= -No uS,,‘ns. (6) 
The problem thus can be reduced to the integra- 
tion of Eq. (6). This integration can only be done 
if II, is known as a function of N. This problem is 
treated in the following sections. 

The time interval during which the chemisorp- 
tion takes place will be split up in two regions, an 
accumulation layer controlled region and a 
depletion layer controlled one. Both cases are 
discussed separately. 

3. Accumulation Layer Controlled Region 

3.1. The Density of Conduction Band Electrons 
at the Surface 

The band bending is given by the Poisson 
equation 

d2 V 
-Jy$(x). (7) 

It will be supposed that the space charge origin- 
ates from conduction band electrons and non 
compensated ionized donors. 

Putting V = 0 at x = W/2 Eq. (7) may be written 

$=Fe[n,exp($J-n,], (8) 

in the case of nondegeneracy. 
During oxygen adsorption we know, that, 

according to Gauss’ theorem 

(9) 

Putting dV/dx = 0 at x = 0 and taking into ac- 
count Eqs. (9) and (3), Eq. (8) can be easily 
integrated, which yields 

dv 2 I (-1 be2 
dx = ~T{ns[exp Cv> - exp (vdl - 

1 - n& - UC%, (10) 
277e2 
EkTN2-n,,v,, 1 [l -exp(v,J]-‘. (11) dNO- 

- = Nou-S,,‘*n,, dt 
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No further integration of Eqs. (10) and (11) is 
possible, unless by numerical methods. In 
principle it would be possible by means of Eqs. 
(8), (10) and (11) and by the use of a computer, to 
obtain the exact value of u as a function of time. 
In such a procedure, however, it is very difficult 
to see the influence of the different physical 
parameters involved. 

On the other hand an exact computer solution 
of n, as a function of N can also be found by means 
of Eqs. (10) and (11). It is shown below that it is 
possible to find an analytical expression of n, 
which is a good approximation for the exact 
computer solution of n,. This expression will be 
used for the integration of Eq. (6). 

The computer solution of n,, for different 
values of the effective bulk donor density no, is 
given by the points in Fig. 2. These points have 
been calculated by means of Eq. (11) where o. 
has been obtained by an iterative method in such 
a way that u. is a solution of 

exp (4 - exp (uo) 

I 

-l/2 

X 
1 - exp (vo) 

- no(v - vo) dv. 

A value of 0.1 cm has been chosen for W. 
Further numerical values are T= 300°K and 
E = 8.5 for ZnO (9). 

In order to find the approximated expression 
for n,, we will make use of the fact that Eqs. (10) 
and (11) can be integrated in two simple cases. 

a. Very high e&xtive bulk donor density. In 
this case Eqs. (10) and (11) can be replaced by 

and 
n0 = n, ew (vo), (12) 

27re2 
EICT N2 = no[exp (-uo) + v. - 11. (13) 

Expanding exp(-u,) for small band bending in 
Eq. (13) it follows that 

n, = $$ N2 + no + 2N/(1/2LD) (14) 

This expression has been plotted in Fig. 2 (solid 
lines). It follows that although the expression (14) 
has been derived for small values of oo, the fitting 
to the exact n, values is very satisfying over the 
whole region of interest for L, < W. 

FIG. 2. Concentration of conduction band electrons as 
a function of the positive surface charge and free electron 
density at flat energy band, for a semiconductor of 0.1 cm. 

b. Very small efective donor density. If no = 0 
Eqs. (10) and (11) reduce to 

27re2 
n s = EkT N2[1 - exp(u,)]-‘, 

which, for considerable downward bending of the 
energy bands can be simplified to 

27re2 N2 
n,=- . 

akT 

For small band bending we may write 

n, = 2Nj W. 

Knowing however that in reality no 
vanish, the function, 

2rre2 
n, = EkT N2 + no + 2N/ W, 

does not 

(15) 

has been plotted in Fig. 2 (broken lines). From 
this it can be seen that expression (15) is a good 
approximation for the exact solution of n, if 
WCL,. 
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According to Eqs. (14) and (15) the adsorption 
kinetics must be treated in two distinct cases 
namely W > L, and W c LD. 

3.2. Adsorption Kinetics for W x LD 

Defining the new variables ~1~ and N1 by 

(16) 

where NZ = NZB at t = 0 and the function v2 is 
defined by 

N2 

+ NSE %/YzW~~ (Ph2) Nz2 + 1 
7 + 1 + 712 

+ 
Wy2)N2’+ 1 + 712 ’ I (25) 

the differential Eq. (6) reduces to 

dlv, dN12/dt 
dt + Ns 0: tcrN,2 + 8,jz = -@‘I’ + rd. (18) 

It must be emphasized that according to Eq. (17) 
and taking into account that LD > W, n, is always 
negative, which implies a negative value of yl. 
Integration of Eq. (18) can be done by expansion 
in partial fractions, which yields 

t = dNm) - adN11, (1% 

where N,, is the value of N1 for t = 0 and y1 is 
defined by 

‘A NI - h/BY’” 
dN1) = 2 In N1 + (4/3)1/2 

+ ? 
WYI)NI~ + 1 

In @/yl) N12 -I- 1 + ~1 

1 (20) 

3.3. Adsorption kinetics for W > LD 

In order to integrate Eq. (6) a set of new vari- 
ables is defined by 

N2=N+g2;, 

n, = no/2. 

Equation (6) now reduces to 

adN,‘/dt 
dN,ldt + Ns caN22 + sz = -Wz2 + 3/z), 

which after integration gives 

t = v~zW2d - ~)2W2), 

(21) 

(22) 

(23) 

4. Depletion Layer Controlled Region 

If the number of adsorbed oxygen ions equals 
the number of ionized surface donors the surface 
will become electrically neutral. This results in 
the flat band situation. If further chemisorption 
then takes place the surface will become nega- 
tively charged and the energy bands are bent 
upwards. The band bending can then be ap- 
proximated by a Schottky barrier (3) the height 
of which is given by: 

y =?Tfn 
s 0 (26) 

E 

the width of the Schottky barrier L being given by 
,=N,--N,+ N’ =-* (27) 

n0 no 

Once the depletion layer is reached, it will be 
assumed that the surface donors are situated well 
above the Fermi-level so that they are all ionized. 
This implied N,+ = constant. Equation (26) is 
only valid for L, < W. If LD > Wit follows that 
L, > L and the space charge layer can no longer 
be represented by a Schottky barrier. However 
in the latter case the band bending is unimportant 
and 

n,=n,-2N’lW. (28) 

Again two distinct cases will be treated. 

4. I. Adsorption Kinetics for LD > W. 
Using Eq. (28) the differential equation for 

chemisorption can be written as 
d(no W/2 -N’) 

dt 
=-(2uS.‘N,iW)*E- N’], 

which after integration gives 

[no* W/2 -N’] = (no* W/2 - NJexp(-b) (29) 

and 

(24) ,. (30) 
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4.2. Adsorption Kinetics-for LD < W. 
In this case we can write for n, 

The differential equation for chemisorption now 
becomes 

(32) 

If V, is replaced by a series expansion about some 
mean value the Elovich equation can be deduced. 
This rate equation, however, is only a good 
approximation if the changes of N’ are small 
compared to N’. A rigorous treatment of Eq. (32) 
can be done as follows. By putting 

Eq. (32) can be written 

$ = (flyo)l12 exp (-y2). 

Integration of which gives 

t=(@~o)'/2 1 (D[(;)1’2N’]-D[(;)1’2N;]), 

(34) 

where D[(fl/yo)1’2N’] is the Dawson integral of 
(/3/~~)l/~ N’ and Nb’ the value of N’ for t = 0. 

5. Discussion 

To compare the model with the experimental 
data, the kinetics derived theoretically in the 
previous sections have been calculated numeri- 
cally and are represented in Figs. 3 and 4. 
Instead of 0, R, - R,,b has been plotted versus t, 
where R,, is defined by 

Rn=&[no + :N/W] 

and Rnb is the value of R, for t = 0. 
The choice if R, - Rnb has already been 

explained in a previous paper (22) and will become 
clear during the discussion. Two separate cases 
LD > Wand L, -C W have been treated. 

5.1. The Debye Length is Larger than the Thick- 
ness of the Crystal 

With the aid of Eqs. (19), (20) and (35) R, - Rnb 
has been calculated as a function of time and is 
represented in Fig. 3 (solid lines) for different 

FIG. 3. R. - Rnh versus t, for different surface charges 
att=O&> W). 

values of N,. The physical constants used for 
ZnO are 

p = 180 cm2/V set and NC = 6 x 1018 cm-j. 

Furthermore the following parameters were 
chosen : 

ES = 3.844 kT, W= 0.1 cm, 
No S,,’ = 2.7 x IO-, no = lo7 cmw3. 

The calculations for curves 1 to 8 have been done 
in the assumption that No- == 0 before oxygen 
admission. In this case we can write 

1 ’ 

where N,+ is given by 

and 

n, = ‘$ (Ns+)2 + n, + ‘G. 

Parameters of curves 1 to 8 are given in Table I. 
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TABLE I 

KEY TO CURVES 1 TO 8 OF FIG. 3 

curve N, (cm3 N,+ (cm-‘) NIB (cm-z) Rnb W> t0 (se4 

1 1.207 x lOi 7 x 10” 7 x 10” 2.4801 x lo4 491.8 
2 4.643 x 1012 5 x 10” 5 x 10” 3.4722 x lo4 487 
3 1.331 x 10” 10” 1 x 10” 1.7361 x IO5 484 
4 lo9 lo9 1.002 x 109 1.7352 x 10’ 483 
5 10’ 10’ 1.234 x 10’ 1.6534 x lo9 413 
6 IO6 lo6 3.348 x lo6 1.157 x 10’0 195 
7 lo5 lo5 2.448 x lo5 2.893 x 10”’ 33.7 
8 104 104 2.358 x lo5 3.404 x 10’0 3.66 

The time to corresponds to the moment at 
which R, equals the normalized resistance RnO at 
flat band (here 3.472 x lOlo Sz). This time is 
represented by the points S in Fig. 3. From these 
points on the kinetics have been obtained by 
means of Eq. (29). 

The curves I to V have been calculated for a 
depletion layer already present at t = 0. Here the 
normalized resistance is given by 

1 
R,=--. 

1 
epW no-2N’jW’ 

The parameters of these curves are shown in 
Table II. 

The broken lines in Fig. 3 represent the kinetics 
which have been derived in a previous paper (22) 
and which are given by: 

As shown in Fig. 3 the kinetics described by 
Eqs. (19), (20) and (36) are in good agreement as 
long as the bulk conductivity at flat energy bands 
can be neglected with regard to the additional 
conductivity due to surface donor states. Further- 
more it can be seen from curves 3 and 8 that, in 
the accumulation layer controlled region, R,, - 
R,,b versus t can be represented by a linear 
relationship, if the density of the surface donors 
is such that most of them are ionized. This can be 
easily derived from Eqs. (19) and (20). Indeed if 
all surface donors are ionized Eqs. (19) and (20) 
reduce to 

1 
t = ~(-YI /3Y2 

ln NM - (-YI/W~ 
NM + (-r&Y” 

(37) 

1 1 

1 + d/Rib - 1 + cc’/Rnz * 

(36) 

Curves A, B and C have been plotted for the same 
parameters as curves I,2 and 3, respectively. 

TABLE II 

KEY TO CURVES I TO V OF FIG. 3 

Curve NB’(cm-2) R.,(Q) 

I 104 3.543 x 10’0 
II 105 4.430 x 10’0 

III 2 x 105 5.787 x 10’0 
IV 3 x 105 8.681 x 10’0 

V 4x 105 1.736 x 10” 

For values of N > (EkT/2vre*). (1 / W) this reduces 
to 

t=; k-f +[Rn-Rnb] i 1 (38) 

For values of Nb < (ckT/2ne2)(1/ W) - (-yl/j$)1’2 
or 

Nb ( no WIT (39) 
Eq. (37) reduces to: 

which with the aid of Eq. (35) and taking into 
account the inequality (39), can be written as 
R,, - Rnb = 2epR& y. t = 2epR$,(n, uS,I No) t. (40) 

In the depletion layer controlled region the 
chemisorption kinetics are described by Eq. (29), 
which for t < T becomes 

R,, - Rnb = (2~R,,lW)aS,,‘No~t. (41) 
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I 1 Curve 6 represents the chemisorption kinetics 
/’ i in the depletion layer controlled region with 

, N,’ = lo4 and R., = 3.4729 x lo8 8. 

4 

“The broken li’ies in Fig. 4 again represent the 
kinetics given by Eq. (36). As can be seen from 
the figure the agreement between the model 
described by Eq. (36) and by Eq. (24) and (25) is 
only satisfying in the first seconds. The reason for 
this is that the influence of the bulk donor 
density becomes more pronounced in Eq. (35). 
Two regions can again be found, where, in a 
small time interval, R, - Rnb versus t can be 
described by a linear relationship. If all surface 
donors are ionized Eq. (25) reduces to 

~=L3z[arctan(~i”‘Nz~-arctan(~)L’2N2] 

(42) 
which for values of NZb % yields 

t=j[&&]=$$R,-R.,]. (43) 

If NZb < [(ekT/2ne2)*(n,,/2)]1/2, Eq. (42) becomes i 
IO’ 

FIG. 4. R. - Rnb versus I, for different surface charges at 
t=O(L,< W). 

which can be written as 

5.2. Debye Length Smaller than the Thickness of 
the Crystal 

R, - Rnb = epR$nOuS,,’ No* t (44) 

Using Eqs. (24), (25) and (35) the fully drawn 
lines of Fig. 4 have been plotted for the par- 

6 Conclusions 
* 

ameters of Table III. The effective donor density From the discussion it becomes clear that the 
is given by no = 109 cmd3, corresponding to a most interesting regions in the chemisorption 
value of RnO = 3.4722 x lo* 8. Except for n, all kinetics are those, giving a linear relationship 
other parameters have the same value as in between R, - Rllb and t. If the influence of the 
Sect. 5.1. bulk donor density is small, Eq. (38) can be used 

TABLE III 

KEY TO CURVES 1 TO 5 OF FIG. 4 

Curve N, (cm-‘) N,+ (cm-‘) NM (cm-‘) Rnb 6% to (set) 

1 1.206 x lOi 7 x 10” 7.000 x 10” 2.480 x 10“ 69.19 

2 4.64 x 10’2 5 x 10” moo x 10” 3.472 x lo4 65.40 

3 1.33 x 10” 10” 1.000 x 10” 1.735 x lo5 63.1 

4 1.003 x 1O’O 1O’O 1.004 x 1O’O 1.657 x lo6 62 

5 lo7 10’ 2.084 x 10’ 2.893 x 108 24.54 
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to derive the pressure dependence of the surface 
concentration of the physisorbed oxygen. In 
order, however, to interpret such results a 
knowledge of the bulk donor density is necessary, 
since not only Eq. (38) gives rise to a linear 
R, - R,,* versus t relationship, but also the Eqs. 
(40), (41) and (44). 

The influence of increasing surface concentra- 
tion of the surface donors can also be seen in the 
transition from the linear R, - R,, versus t 
relation, to the curves of the type of 1 and 2 in 
Fig. 3. 

7. List of Symbols and Definitions 
density of free electrons at flat energy 
bands; density of noncompensated bulk 
donors. 

27re2 1 
c( = EkT aF exp (EJkT) 

c 

,8 = $2.uSn’No 

yr = n,*u-Sn’No (i=O,1,2) 
6, = 1 + ni/Nc exp (EJkT) (i= 1,2) 
4 = l/(-r1 w2 
02 = 1 I(72 I3Y 
rlr = NC/n, *expG&lkT) (i= 1,2) 
cl = a/(2ep)2 
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