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This paper reports the synthesis and bulk magnetic properties of a new rare-earth compound, 
EuFCl, isostructural with tetragonal PbFCl, and solid solutions of it with several LnOCl com- 
pounds, where Ln = Eu, Sm, Nd, Gd. 

Introduction 

PbFCl forms with a layered, tetragonal 
structure (space group P4/nmm) (I) in which 
the cation is surrounded by five chlorine and 
four fluorine anions which form an approxi- 
mate octahedral grouping. This grouping is 
common to compounds of the structural 
type MXY, where X and Y are highly electro- 
negative with anions having large differences 
in their ionic radii (e.g., F-Cl, O-Cl, O-S, 
O-OH). 

One class of rare-earth materials exhibiting 
this layered, tetragonal structure is the rare- 
earth oxychlorides, LnOCl (I), where Ln = 
Sm, Gd, Nd, Eu. The lanthanide element in 
these phases is trivalent and many of these 
oxychlorides have been used as hosts for 
luminescence (2). A serious drawback of these 
compounds are their high melting points 
(>22OO”C) (4), which makes crystal growth 
difficult. 

In this paper, we report the existence of a 
new rare-earth compound, EuFCl, which is 
isostructural with PbFCl and LnOCl. Solid 
solutions in the system EuFCl-LnOCl (up 
to 25 mole % LnOCl, where Ln = Eu, Sm, 
Nd, Gd) have also been prepared and bulk 
magnetic behavior determined as a function 
of temperature are also reported. 

Experimental 

EuFCl was prepared from anhydrous 
EuCl, and EuF,. Hydrated EuCl, was used 
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as a starting material in the preparation of 
anhydrous EuCl,. To do this, the 3 nines pure 
rare-earth hydrate, from Research Organic/ 
Inorganic Chemical Corp., was contained in a 
platinum boat and held at a temperature of 
180°C for 18 hr while under vacuum. A quartz 
tube immersed in a dry ice-acetone bath was 
used as a trap to collect the liberated waters of 
hydration. The resulting material was light 
yellow. This compound was removed from 
the vacuum station at room temperature and 
placed in a quartz tube with a flowing atmos- 
phere of HCI and H, in a IO/ 1 ratio and heated 
to 250°C. This temperature was maintained 
until Hz0 ceased to condense at the cooler 
end of the tube. The temperature was then 
raised to 400°C which caused further release 
of water. This temperature was maintained 
until all visible signs of water condensing on the 
tube had again disappeared. The temperature 
was raised to 500°C and the ratio of the flowing 
gas mixture was altered to one part HCl 
and 20 parts Hz. Anhydrous EuCl, will then 
reduce to anhydrous EuCl,. A white powder 
of EuCl, is produced in 4 hr which can be 
subsequently melted by increasing the furnace 
temperature to 750°C. Debye-Scherrer X-ray 
patterns (CuKcl radiation) were used to identify 
EuCl, as the only phase present. 

EuFz was prepared by reduction of anhy- 
drous, 3 nines pure EuF,, from Research 
Organic/Inorganic Chemical Corp., in a 
platinum boat at 950°C for 4 hr in a flowing 
atmosphere of 1 part HF and IO parts H,. 
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TABLE I 

CHEMICAL ANALYSIS OF EuFCl 
(wt “A 

Calculated Observed 

Eu 73.4 73.7 
Cl 17.2 17.0 
F 9.2 9.1 

100% 99.8% 

Powder X-ray diffraction patterns were 
used to identify EuF, as the only phase present. 

To prepare EuFCl, stoichiometric amounts 
of EuF, and EuCl, in a platinum boat are 
heated in a flowing atmosphere of anhydrous 
Hz + Ar. The temperature in a split furnace, 
which could be opened in order to observe 
the sample, was increased in steps of 50°C 
in order to obtain an approximate melting 
point for EuFCl. This compound was found 
to melt between 950 and 1000°C. Melts were 
usually held at temperature for 3 hr to insure 
uniform mixing and then cooled to room 
temperature at a rate of 4”C/min. Large 
single-crystal plates were obtained (1 x 1 x 
0.025 cm) in an otherwise polycrystalline 
matrix. Chemical analyses were obtained and 
are shown in Table I. 

EuFCl, 75 mole%, and LnOCl, 25 mole%, 
were made from the starting materials of EuCl,, 
Ln,O,, LnF, (where Ln = Sm, Gd, Nd, Eu), 
and EuF,. Appropriate mixtures were sealed 
in evacuated platinum tubes and heated to 

1350°C. The melt was held at this temperature 
for 3 hr and then cooled to 1000°C. At this 
time, the solid solutions were slowly with- 
drawn from the furnace in order to avoid 
thermal quenching. The tubes were examined 
before opening, to insure that no holes or 
cracks occurred in the platinum. The results 
of X-ray powder diffraction measurements 
carried out on representative samples are 
shown in Table II. 

Results 

X-ray diffraction measurements of EuFCl 
and 75% EuFCl-25% LnOCl solid solutions 
were made using a Norelco diffractometer 
with CuKa radiation. For EuFCl, Debye- 
Scherrer powder patterns were also obtained 
using CuKcl radiation with a 114.6-mm-diam. 
Straumanis-type camera. These powder pat- 
terns were used to obtain observed reflection 
intensities which could not be determined from 
the patterns of the Norelco diffractometer 
due to preferred orientation. EuFCl and 75 
mole % EuFCl-25 mole % LnOCl solid solu- 
tions were found to be isostructural with 
tetragonal PbFCl. The agreement between 
observed and calculated intensities support 
the assignment of EuFCl as isostructural with 
PbFCl. Unit-cell parameters of EuFCl and 
EuFCl-LnOCl solid solutions are shown in 
Table II. The indexed d spacings of EuFCl 
and a comparison of observed and calculated 
X-ray intensities are shown in Table III. 

Magnetic measurements on EuFCl crystals 

TABLE II 

OBSERVED AND THEORETICAL EFFECTIVE MAGNETIC MOMENTS AND UNIT-CELL PARAMETERS 
OF EuFCl AND EuFCl-LnOCl SOLID SOLUTIONS 

Compound (mole %) 
Effective moment Unit-cell parameters (A) 

Theoretical Observed a C cl& 

EuFCl 7.94 7.4 4.127 6.984 1.69 
75 % EuFCl-25 % NdOCl 7.1 6.9 4.117 6.967 1.69 
75 % EuFCl-25 % EuOCl 6.9 6.2 4.124 6.966 1.69 
75 % EuFCl-25 % GdOCl 7.94 7.65 4.120 6.967 1.69 
75 % EuFCl-25 % SmOCl 7.1 7.0 4.120 6.980 1.69 

a c/a for PbFCl is 1.76; c/a for LnOCl is 1.68-1.69. 
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FIG. 1. Plots of l/x* vs T for EuFCl and 3: 1 solid solutions of EuFCl with GdOCI, NdOCI, SmOCI, 
EuOCl . 

and the 75 % EuFCl-25 % LnOCl solid solu- 
tions were made using a pendulum magneto- 
meter from room temperature to 1.6”K (3). 
As shown in Fig. 1, the inverse susceptibility 
is linear with temperature and intersects the 
origin at 0°K. This indicates that these materi- 
als are paramagnetic and exhibit no coopera- 
tive magnetic interactions. The effective 

TABLE III 

OBSERVED AND CALCULATED d-SPACINGSAND 
INTEN~~ESFOR EUFC~ 

d c&s d ca,o obs talc hkl 

7.00 6.98 10 20 001 
3.55, 3.55, 100 100 101 
3.49, 3.49, 25 002 
2.92, 3.91s 2 65 110 
2.66* 2.665 30 50 102 
2.328 2.328 5 3 003 
2.24,, 2.238 60 50 112 
2.06, 2.063 30 35 200 
2.028 2.02, 18 16 103 
1.819 1.819 10 15 113 
1 .785 1 .783 25 30 211 
1.77, 1.77, 15 15 202 
1.628 1.62, 20 20 212 
1.60, l.608 20 20 104 
1.396 1.39, 10 5 005 
1.30, 1.30, 15 10 310 

paramagnetic moments of these materials 
(shown in Table II) are in good agreement 
with calculated values. 

Discussion 

Although the observed paramagnetic mo- 
ments are in good agreement with calculated 
moments, all of the deviations are in the direc- 
tion of making observed values smaller than 
calculated. A possible explanation for this 
effect involves the presence of small amounts 
of Eu3+ (in pl ace of EL?+) which can be 
charge compensated by the presence of oxygen 
impurities, where the effective moment of 
Eu3+ is less than that of Et.?+. 

The greatest difficulty encompassed in 
growing large crystals of EuFCl is keeping the 
compound contained in an inert atmosphere 
while molten. Over long periods of time 
(>3 hr), significant amounts of EuCI, are 
transported to the cooler end of the tube 
yielding a mixture of EuFCl and EuF,. 
Further attempts to grow large crystals in 
sealed Pt containers are being made. 

The degree of solid-solution formation in 
the EuFCl-LnOCl system shows that EuFCl 
can be doped substitutionally by Ln3+ ions 
using O*- substitutions for F- as the charge 
compensator. 
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