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B-Cas(POy), crystallizes in the rhombohedral space group R3c with unit cell parameters a =
10.439(1), ¢ = 37.375(6) A (hexagonal setting) and cell contents of 21 [Ca;(PO.),]. The structure was
refined to R, =0.026, R=0.030 using 1143 X-ray intensities collected from a single crystal by
counter methods. Corrections were made for absorption, secondary extinction, and anomalous

dispersion.

The structure is related to that of Bay(VQy),, but has lower symmetry because of the widely
different ionic sizes of Ca and Ba. Seven [Ca3(PO,).] units occupy a volume corresponding to eight
[Bai(PO,).] units. The requirement of the ¢ glide in §-Cas(PQ,), has been shown in the least squares
refinements to be attained by disorder of one cation over two sites. This disorder has a far-reaching

effect on the structure.

Introduction

We determined the structure of pure
B-Cay(PO,), as part of a study of the effect
of magnesium as an impurity in the
B-Ca;(PO,), structure. Our studies of Mg-con-
taining f-Ca,;(PO,),, which will be published
in a separate paper, run the full range of
magnesium incorporation in f-Ca,(PO,),.

Because a component of dental calculus
of individuals in areas where the drinking
water contains magnesium ions had been
reported to be essentially whitlockite (1),
we decided to determine the crystal structure
of whitlockite. The material in dental calculus
is too fine-grained for use in single crystal
studies, so we had to seek more suitable
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material. In view of the known stabilization
of whitlockites by Mg, and in view of our pre-
vious difficulties with multiple substitution
of P, Si, and V in the same sites in

Ca;(PO,),Si0,

(2), where only general conclusions could
be drawn, we decided to synthesize material
with known amounts of only one impurity,
the dentally important magnesium ion, and
to systematically study the location and role
of this impurity in the crystal structure.
The hydrothermal material proved difficult
to grow and the various levels of impurity
difficult to obtain. Mineral whitlockite
seemed replete with impurities of various
kinds which would mitigate the population
analysis of the impurity sites. ' We therefore
decided to grow samples of the supposedly
identical material f-Ca,(PO,), with various
amounts of Mg as an impurity. Later, Gopal
and Calvo (3) were to show that whitlockite
is different from our material because it
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contains some HPO, groups, with a corres-
ponding reduction in the number of cations.
Pending the successful growth of a similar
series of hydrothermal material, we continued
our work on magnesium containing
B-Cay(PO,), as a pilot study of the effects of
impurities.

Background

The chemistry of “Ca;(PO,),” in its various
forms has led to almost as much confusion as
that of the apatites. Immediately below the
melting point of 1800°C (4), Ca,(PO,),
exists as the phase &Cay(PO,), (5), which
forms a continuous solid solution with the
highest temperature form, «, of Ca,SiO,.
The continuous solid solution is believed to
have a structure related to that of «-K,SO,
(6), with systematic cation vacancies in pro-
portion to the PO,/SiO, ratio. Structures such
as Cas(PO,),Si0, (2) are lower temperature
distortions of the &-Ca,(PQ,),/x-Ca,SiO,
solid solution.

The phase a-Ca,(PO,), is stable between
1120°C and 1470°C (4) in the absence of
impurities. The detailed structure of o-
Cay(PO,), is unknown at present, but our
preliminary results reveal that it too is related
to the a-K,SO, structure. The determination
is complicated by the existence of a pseudo-
cell (with " = b/3) and by the large size of the
real cell (a=12.887(2), b=127.280(4), c=
15.219(2) A, B = 126.20(1)°).

In the pure state, f-Cas(PO,), is the phase
stable below 1120°C, although the inclusion
of small cations as impurities stabilizes the
f-Cay(PO,), structure to temperatures above
1350°C. f-Cay(PO,), then persists until near
room temperature in a system free of moisture.
Two further phase changes in p-Ca,(PO,),
have been suggested (7) to occur near and below
room temperature. f-Ca;(PO,), was long
considered to be equivalent to the mineral
whitlockite (8, 9) and to the material produced
in an aqueous system. Mackay (/0) considered
the possibility of whitlockite (i.e., the mineral)
having the idealized formula Ca, H,(PO,);,
when all cations were considered to be Ca.
Keppler (17) stated from an examination of
published analyses and densities that the for-
mula should be considered to be [6Ca,(PO,),
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2MHPO,] where M is a small cation such as
Mg, Mn, or Fe.

Legeros, Tranutz, and Klein (72) state that
‘synthetic whitlockite’ forms instead of
CagH,(PO,)s-5H,0 and Cas(PO,);OH in
aqueous systems when as little as 3 mole?/
magnesium ions are present, and that mag-
nesium-free ‘synthetic whitlockite’ never forms
in aqueous systems because it decomposes to
CaHPO, and Cas(PO,);O0H. [Note that the
term whitlockite should be reserved for the
mineral as described by Frondel (8, 9).
Samples grown in aqueous systems in vitro
are referred to here as ‘synthetic whitlockite’.]
The investigations of Gopal and Calvo (3)
on the mineral whitlockite and Ito and Calvo
(I13) on synthetic whitlockite show when
compared with this work that there are, indeed,
differences between p-Cay(PO,), and the
whitlockites and that for the whitlockites
there must be at least part of the structure
where there are two hydrogen atoms for every
14 PO, groups in accord with Keppler’s
suggestion. Although the extent of possible
substitution of other cations for Ca is as yet
unknown in whitlockite, Keppler’s formuia
should at least be written (Ca, M), H,(PO,);,
or, judging from our unpublished results on
Mg-containing S-Ca,(PO,),, as

Ca;(Ca,Mg),H,(PO,)14,

to show that most of the substitution of M
for Ca occurs in two sites.

Experimental Methods and Data Processing

Samples of B-Cas(PO,), were made by
heating pressed pellets of stoichiometric
amounts of finely ground CaHPO, and CaCO,
mixed with 1% by weight of cornstarch.
Most of our preparations of pure f-Cas(PO,),
were relatively fine-grained, but we were able
to find crystals of adequate size in a sample
kept at 1400°C for 2 days (i.e., in the stability
range of a-Ca,;(PO,),)and then at 1100 + 10°C
for 1 wk. Several crystals were ground into
approximate spheres and mounted in random
orientations on goniometer heads. Their
quality and alignment were checked optically
and by precession photography. The unit cell
dimensions were determined from thirty
20 values obtained after the crystal selected
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for data collection was aligned on a Picker
4-circle! diffractometer equipped with Mo
radiation and a highly oriented graphite
monochromator. The 20 values were deter-
mined automatically usinga PDP 8/ computer
program supplied by Lenhert (14). Two equi-
valent sets of data (—h, +k, +/) were collected
using 6-20 scans to a maximum 26 of 60° at
0.125° min~* for 20 and with 40-sec back-
ground counts at each end of the scan range.
The crystal data are : ideal formula: Ca;(POy),;
unit cell at 25°C: rhombohedral with a=
10.439(1), ¢ =37.375(6) A in the hexagonal
setting; wave-length assumed, A(MoKu)=
0.70926 A; cell volume =3526.9 A3; space
group R3c; Bragg angle for monochromator =
6.46°; crystal diameter 0.134(5) mm; approx-
imate errorin intensity due to assuming crystal
is spherical, 19 in F; calculated density,
3.067 g-cm™3; u(Mo)=27.48 cm™'. 2513
reflections were measured and merged
using the program DMERGE written by
Dickens and Schroeder (unpublished) into
a unique set of 1347, of which 1143 had
I>20(I) and were used in the refinements.
The R factor between the two equivalent sets
was 0.041 measured over 905 reflections.
Details of the Ca,;(AsO,), structure, which
had then just been determined, were supplied
to us by Gopal and Calvo. To facilitate com-
parisons, their atomic labeling scheme has
been retained here and in our Mg-containing
B-Ca,(PO,), studies. We redefined the anoma-
Iously high thermal parameters in Ca;(AsO,),
to be 1 A2, substituted P for As, and refined
the structure except for the P(1)O, group,
which was omitted because of the question of
its orientation. The thermal parameters
remained “normal”, i.e., in the range 1-3 A2,
and R,, decreased to 0.16, where R,, is defined
as [Dw(|Fo| ~ |F:)*/2w|Fo|*]V?, and w=
1/62, where o2 is obtained from counting
statistics. Throughout the investigation, the

! Certain commercial equipment, instruments, or
materials are identified in this paper in order to specify
the experimentaf procedure adequately. In no case
does such identification imply recommendation or
endorsement by the National Bureau of Standards,
nor does it imply that the material or equipment
identified is necessarily the best available for the pur-
pose.
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scattering factors used were those for the
neutral atoms P and O and for the ion Ca**
(Refs. 15 and 16). The least-squares refine-
ments were carried out using the program
RFINE, which was written by L. W. Finger
of the Carnegie Institute of Washington and
augmented by Prince, Dickens, and Schroeder
at NBS. We found the atoms Ca(4), P(1),
0@9), and O(10) in a subsequent electron
density synthesis. Ca(4) is a new site not pre-
sent in the parameter set supplied for
Ca;(As0O,),. The Ca(4) site contained a peak
about half the height expected for Ca, con-
sistent with the dictates of the stoichiometry that
in the asymmetric unit (half the rhombohedral
unit cell) there should be 10.5 Ca ions for 7
PO, ions. The P(1)O, group in S-Ca,(PO,),
had the same orientation as the AsO, group
in Cay(AsO,),.

The structure, with the Ca(4) site half
occupied, was refined with isotropic thermal
parameters and then with anisotropic thermal
parameters to R, =0.05. Corrections were
then made for isotropic secondary extinction
and each cation site was allowed to be a
mixture of Ca ions and vacancies. The results
were occupancies of Ca(l), 0.995(4); Ca(2),
0.997(5); Ca(3), 0.979(4); Ca(4), 0.442(10);
Ca(5), 0.987(7); with R, =0.027, R =0.033.
This is a total of 10.3 Ca ions in the asymmetric
unit when the multiplicities are incorporated
(the first three are in general positions, the
last two are on a threefold axis), and shows an
error of 2%, from the theoretical value of
10.5 Ca ions. When the total Ca content was
constrained to be 10.5, the resulting occu-
pancies were : Ca(1), 1.000(4); Ca(2), 1.000(4);
Ca(3), 1.011; Ca(4), 0.475(8); Ca(5), 0.991(7);
with R, =0.030 and a value of 2.12 for the
standard deviation of an observation of unit
weight. The occupancies of Ca(l) and Ca(2)
would have refined to 1.007(4) and 1.014(4),
respectively, but were further constrained
to be between 0 and 1 by the program. The
occupancy of Ca(3) was determined by sub-
tracting the sum of the other occupancies from
the total Ca content of 10.5.

Stereo illustrations (similar to the final
figures) of the apparent thermal motions
showed that the effects of occupancy disorder
of the Ca(4) site are far-reaching, e.g. in the
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CRYSTAL STRUCTURE OF 8-Ca,(PO,),

‘01 Jo 1usuodxs ‘(10113) snTeA JUB[NWIND 13Tk sdnnuend ,
O 10} (01 X {d Pue 8D 10J .07 X 4
‘JuswAUYI
so1enbs )sBI[ JO 9[040 [RUY 9Y) UI PIJB[NO[LD SIoM pue sPBIp JueoyIuSIs Jse[ oY) U SIOTID pIepue)s aie sisayjuared ur saandiy

wyy

[“omy 1y ry T T1—]dxs wiiog ay) 9Aey sidjsweted Jue[nuInd payL
[G2#A ST + 22 P QT+ £G4 PHY AT+ 242 21 5 + 249 A T + 240 oY ' 1)) 24 T7—]dx5 ULIO} 0y 2ARY s1djowered [PUISY], ,

00 00 s— 9— 00 $~(D9— — — — — — ono
s(MD1I— 981 s—(y— — s—(2)z— — — 9-(DL— — — 0
00 00 9 - 00 9 — — — — — 9o
00 00 — 00 — s 1 — — — 9 (4] o ©)ed
00 00 — 00 — — - ()€1 — — e
9—(E)ET — 9-()9 — s—MIe  s(Di— s—LT L-(P)6— — s-(h)ee (3]
— — 9-(D¢ — — — — L~)L— — — (taLze)
90— — - L=9)ET— 9-()s— — — L~)s— — s—(De— Med
nuﬂU ﬂﬂNrU nNN_U mm~.U n:r\v NQAQ N:.U nnn.U uuub ua:.U
Ppaugal a1agm siuejauund pig
@@x @1 @91 @91 @12 @@Lz (SELTo— WBPLT0—  (5)969€0— ®)o
o o v @z (o1 L (DEETTO—  (1)S0800—  (WPI8I0 wo
aw (4] e @1z  ©u @0t (TSITO—  (19s0E0—  (M)9vTy o— 9o
@Q1—- - @1 @@L @81 @1 MDIITT0— (6sy00— ) Igoy0— ©)o
()7 (374 (s)8¢ ©z91  (9)s6 ©I8  (Megcto—  (DLEST'O—  (DS9PE0— (€)d
@x @z @9 @ty ©@©u @0z  (M8LET'0— (WT6ET0—  (WILLLYO— ®o
M- o ax @s1 @11 @z1 DeTST'0—  (ES000  (WISELTO— ©)o
@01 4141 ©)¢v @z (os ©sy  ovbro— (OILIT0— (S)T0ET0— @o
@9 @@L ©)6t @st ()95 ©)€9  (1)92600— (9)0060°0— (9)9€LT'0— Do
()74 (()ré 111 Woot  (L)991 @ss1T  (DOTET'0—  (DS9ET'0—  (D60IE0— d
00 00 91 )ov (43 ©ze  @ooroo 00 00 ono
@0 @1 @o1 ©09 (@91 @e61 (©)9¢100—  (8)99¢1'0—  (1)LOOO ®0
00 00 P)sv (£)e82 68 (9)68 00 00 00 (d
00 00 ©)z6 (6)6<1 $81 @81 (1)8597°0— 00 00 (L6660  (S)ED
00 00 €01  (0S)E6L S0z (LDsoz  (£)0S80°0— 00 00 ®16'0  HeD
©IL— (801— 90sz 66T (9807  (®)10S (190900  (@Dz8PI'0— (@I1TLTO— €001 (9O
©L1— =  es 91 (9801 @rer (D9gg0'0—  (DSLLI'0—  (Dogsso—  (€)600°T @
(3] 1 (219 €91 (S)601 ©ror  (sso1o (DITvro— @99LT0— Kroo'T (DD
179 €1 10 €€} ) a: N z (£ x Nﬁz‘_&n:._n...oo woyy

»5(*Od)feD-f NI SHILINVEYJ OINOLY



236 DICKENS, SCHROEDER AND BROWN

TABLE O

OBSERVED AND CALCULATED STRUCTURE AMPLITUDES FOR f-Cay(PO,),*
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P(1)O, group, O(10) was not undergoing mo-
tions consistent with those of P(1) and O(9).
There was obviously appreciable positional
disorder of this PO, group and also of Ca(3)
which is bonded to O(10). A difference electron
density synthesis showed, by the presence of
abnormal asymmetry in the vicinity of Ca(3),
Ca(4), Ca(5) and the P(1)O, group, that the
scattering from these atoms was not satis-
factorily represented by the usual formulations
for thermal motion. This inadequacy was
further reflected in the occupancy parameters,
where the refinements persisted in placing
slightly more than one ion in the Ca(l),
Ca(2), and Ca(3) sites. The asymmetry in the
difference synthesis suggested that introduc-
tion and refinement of third cumulant para-
meters was needed. Accordingly, the structure
was refined with third cumulant parameters
added for all cations and the P(1)O, group,
making a total of 199 parameters. The final
refinements extended over all atoms and
included those third cumulant parameters
which earlier refinements had shown to be
significantly nonzero; in all 166 parameters
were refined. The resultant occupancies were:
Ca(1), 1.000(4); Ca(2), 1.000(4); Ca(3), 1.002;
Ca(4), 0.493(8); Ca(5), 1.000(7); with R, =
0.025, R=0.033. Without the occupancy
constraint, Ca(l) would have refined to
1.004(4) and Ca(2) to 1.007(4). The standard
deviation of an observation of unit weight in
this refinement was 2.02. The R,, factor ratio,
1.07, for refinements without and with third
cumulants, was highly significant at the 0.5%,
level as determined by R factor ratio test (/7).
The isotropic secondary extinction parameter,
r in the notation of Zachariasen (18), refined
to the reasonable value 13(5)x 10~° cm.
The subsequent difference synthesis showed
some reduction in asymmetry around the
atomic positions, as expected, and no peaks
greater than 0.5 electrons/A® (a reduction
factor of 2-4 from previous refinements).
It is now known that the positional parameters
(first cumulants) are appreciably correlated
with the third cumulants, as are the thermal
parameters (second cumulants) with the fourth
cumulants. The occupancies are correlated
with the thermal parameters and hence with
the fourth cumulants. In view of the relatively
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small amount of data (1118 observed reflec-
tions with maximum 260 = 60°) and the reason-
able values obtained for the occupancies,
refinement of the fourth cumulant parameters
for p-Cay(PO,), was not undertaken. Reten-
tion of significantly nonzero third cumulant
parameters in the refinements resulted in
statistically nonsignificant effects on the posi-
tional parameters. The atomic parameters
from the final refinement are given in Table I,
including those third cumulants which were
significantly nonzero. It is obvious that stat-
istically significant absences in the cation
sites are confined to Ca(4). The observed and
calculated structure factors from the third
cumulant refinement are given in Table II.
In the final refinement, which included third
cumulant parameters, the 12 correlation co-
efficients above 0.826 were all between z
parameters of atoms in the Ca(l), Ca(2),
Ca(3), P(2), P(3) column. Each of the occu-
pancies of the cations was correlated with a
coeflicient of less than 0.60 to one of the U,
thermal parameters. There was essentially
zero correlation of these parameters with the
extinction parameter and less than 0.20 with
the scale factor. The maximum correlation
coefficient between positional and third cumu-
lant parameters was 0.70.

Description of the Structure

Mackay (10) pointed out that the structures
of p-Cay(PO,), and whitlockite are related
to those of Ba,(PO,), and Sry(PO,), (19).
We can best describe the general features of
B-Cay(PO,), in terms of its similarity to the
Ba,;(VO,), structure (20) shown in Fig. 1.
This structure has been more precisely
determined than the isostructural Bas(PO,),
and Sr;3(PO,), structures; the cell dimensions,
a'=5762 A, ¢’ =21.29 A, show it to be a
subcell of the B-Ca,(PO,), structure with
a'==af2, ¢'==¢/2, where a and ¢ are the unit
cell dimensions of §-Cay(PO,),. The regularity
of the Ba,(VO,), structure can be seen from
Fig. 1; all atoms are in special crystallographic
positions so that the site symmetry is generally
high.

Although the Bay(VO,), structure has been
described by Susse and Buerger (20) and
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FiG. 1. A stereo illustration of the Ba;(VO,), structure with positional parameters taken from Siisse anc
Buerger (20). The origin of the coordinate system is marked by *,

FIG. 2. The VO,...Ba(2)...Ba(1)...Ba(2)... YO, column in Bas(VO,)..



CRYSTAL STRUCTURE OF -Ca;(PO,),

related to Cay(AsO,), by Gopal and Calvo
(3), for completeness we include a brief
description here. The Ba,(VO,), structure
may be thought of as containing layers of
VO, groups. Each layer has the VO, groups on
one surface oriented with one V-O vector
along [0001] and the VO, groups on the other
surface oriented with one V-O vector along
[0001]. V-O vectors from adjacent layers are
meshed together. Ba(l) ions with 12 co-
ordinated oxygens lie in the centers of these
layers, and Ba(2) ions with 10 coordinated
oxygens lie between layers. The motiv VO,...
Ba(1)...Ba(2)...Ba(1)... VO, lies parallel to
[0001] and is shown in Fig. 2.

The moiety in the f-Ca,(PO,), structure
(Fig. 3) corresponding to VO,...Ba(l)...
Ba(2)...Ba(1)...VO, in Bay(VOy,), is

P(3)0,...Ca(1)...Ca(3)...Ca(2)...P(2)0O,
(Fig.4), but it is an obviously distorted version
of the Ba/VO, column. The PO, group layers
are disrupted in the §-Ca,(PO,), structure and
there are no P-O vectors parallel to [0001].
The obvious reason for this is the smaller
coordination polyhedra of Ca in f-Cas(PO,),
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relative to the Ba coordination polyhedra in
Ba,(VO,),. The net result of this distortion
from the Ba,(VQ,), structure has been a loss
of much of the edge-type coordination and the
ejection of one PO, group and 14 Ca ions
to form the B-Ca;(PQ,), structure.

The Ca Environments

Ca(l). The environment of Ca(l) in the
B-Cay(PO,), structure is shown in Figs. 4
and 5 and detailed in Table III. Ca(l) is co-
ordinated strongly to seven oxygens (2 PO,
edges, and 3 apexes). Strong coordination of
Ca to seven oxygens (including one PO, edge)
is common in calcium phosphates. The
small size and resultant inability of Ca to
coordinate to more than eight oxygens sim-
ultaneously have obviously affecied the P(1)O,
groups on the threefold axis. The thermal
ellipsoid of Ca(l) is approximately isotropic.

Ca(2). The environment of Ca(2), given in
Table IIT and shown in Figs. 4 and 3§, is like
that of Ca(l) because Ca(l) and Ca(2) are
opposite (but crystallographically non-

FiG. 3. The f-Cas(PO.), structure. Only half of the cell is shown along c and two-thirds perpendicular to the ac
plane. The origin of the coordinate system is marked by *.
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FiG. 4. The P(2)0,...Ca(1)...Ca(3)...

equivalent) ends of the cation sequence in the
moiety  P(3)0,...Ca(l)...Ca(3)...Ca(2)...
P(2)0,. On the basis of Ca...O distances,
Ca(2) is coordinated strongly to six oxygens
and less strongly to two others, O(5) and
0O(6), of the shared PO, edges [O(6), O(7)]
and [O(5"), O(7")). The apparent thermal
parameters of Ca(2) are less isotropic than
those of Ca(1).

Ca(3). The environment of Ca(3) is given in
Figs. 4 and 6 and Table III. Ca(3) is coordin-
ated to eight oxygens, including the PO, edges
[0(5), O(8)], [O(1), O(3)], and [O(6), O(3)].
The maximum rms amplitude of Ca(3) is
toward O(10) of the P(1)O, group and suggests
that Ca(3) is in two or more different positions
depending on the position of the P(1)O,
group, which in turn depends on the occupancy
of the Ca(4) site. Some of the coordinated
oxygens have apparent thermal parameters
which correspond to large displacements
(e.g., O10), 0.23 A; O(1), 0.19 A; O(9),
0.18 A) parallel to the Ca(3)...0O bonds. This
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Ca(2)...P(3)0, column in g-Ca3(PO,).

suggests that the effect of the occupancy
of Ca(4) is transmitted through several neigh-
bor-neighbor interactions.

Ca(4). The environment of Ca(4) is shown
in Fig. 7 and is given in Table III. Ca(4) has an
unusual coordination to the O(9), O(9"),
0(9”) face of the P(1)O,, group. The Ca...O(9)
bonds are long (3.041(1) A) in accord with
Pauling’s rule (21) because of repulsion
between Ca and P(1). Symmetry, site multi-
plicity and stoichiometric considerations re-
quire that there be some cation vacancies in the
structure, and the occupancy refinements
convincingly showed that these vacancies
may be considered to be only in the Ca(4)
site. Partial occupancy of this site is in accord
with the Ca...O distances, all of which are
greater than normal values of ~2.4 A. The
apparent thermal parameters of Ca(4) give
an rms amplitude of 0.14 A perpendicular to
¢ and 0.28 A along c¢. The value of 0.14 A
is comparable with values from other struc-
tures, but an rms amplitude of 0.28 A suggests
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Fi1G. 5. Comparisons of the environments of (a) Ca(1) and (b) Ca(2) in -Ca,(PO,); and (c) Ba(2) in Bay(VO,),
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TABLE IIT
INTERATOMIC DISTANCES AND ANGLES IN §-Ca;(PO,),"
Cation environments 0(4) 108.5(3)
Ca(1), O(6) 2.316(4) A 0(3), P(2), 0(4) 104.9(2)
06) 2.393(4) P(3), O65) 1.548(4) A
o) 2.421(4) 06) 1 $3204)
o) 2.449(5) oo 1.542(4
009) 2.456(5) ( 3424
/ o(8) 1.518(4)
o@) 2.503(4)
0(5), 0(6) 2.584(6)
o) 2.507(4)
0Q) 2.997(5) o 2.496(5)
: O(8) 2.471(5
Ca(2), 0(3) 2.369(4) 0(6), O(7) 2.467(6)
00) 2.371(5) 0(®) 2.481(5)
0(7) 2.398(4) 0(7), 0(8) 2.533(5)
oT) 2.419(4) 0(5), P(3), 0(6) 114.022)°
oQ) 2.437(4) o7) 107.72)
oM 2.444(5) 0(8) 107.8Q2)
o) 2.704(4) 0(6), P(3), O(7) 106.8(2)
0(6) 2.752(4) 0@ 108.9(2)
Ca(3), O(5) 2.384(4) o(7), P3), 0(8) 111.7(2)
8((3 ;zggg; PO, grc.mp environments
0(6) 2.558(4) P(1)Os:
) 0(9), Ca(2) 2.358(9) A
0@ 2.568(5) Ca(l) 2.454(8)
0(10) 2.580(4) Catd) 10012
0B 26 GO o)
009) 3.115@8) P(gg?,)’ Ca@3,3,3) 2.581(6)
Ca(4), O(1,1°,17)  2.538(5) o1), Ca2 2.
09, 9,9 3.041(11) A Ca&; zg‘;g
0(2,2,2") 3.22809) Ca(3) 2.650(5)
Ca(5),0(4,4,4") 2.238(4) 0(2), Ca(2) 2.437(4)
o(7,7,7) 22874 Ca(3) 2.568(4)
PO, group details Ca(l) - 2.997(5)
P(1),009,9,9") 1536(5) A Ca(4) 3.228(9)
o(10) 1.498(12) 0(3), Ca(2) 2.369(4)
009), 0(9) 2.512(7) Ca(3) 2.388(4)
0(9), 0(10) 2.473(12) Ca(l) 2.507(4)
009), P(1), 0(9) 109.8(4)° 0(4), Ca(5) 2,238(4)
009), P(1), 0(10) 109.2(4) Ca(1) 2.449(5)
P(2), O(1) 1.539(4) A Ca(1’) 2.503(4)
oQ) 1.532(4) P(3)O.:
o@3) 1.530(4) 0(5), Ca(3) 2.384(4)
0@) 1.537(4) Ca(l) 2.393(4)
o(1), 0(2) 2.518(5) Ca(2) 2.704(4)
oQR) 2.442(5) 0(6), Ca(1) 2.316(4)
04 2.550(7) Ca(3) 2.558(4)
0(2), 0(3) 2.594(5) Ca2) 2.752(5)
0(4) 2.490(6) O(7), Ca(5) 2.287(4)
0(3), O(4) 2.431(5) Ca(2) 2.398(4)
o(1), P(2), 0(2) 110.2(2)° Ca2) 2.419(4)
0o@3) 105.5(2) O(8), Ca(l) 2.421(4)
O@4) 112.003) Ca(3) 2.554(4)
0(2), P(2), 0O(3) 115.9(2) Ca(3) 2.611(4)

@ The number in parentheses is the standard error in the last digit as estimated in the final cycle of full-matrix
least squares refinements. It does not include the standard deviations of the cell parameters.
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FiG. 6. Comparison of the environments of (a) Ca(3) in -Cas(PO,). and (b) Ba(1) in Bas(VO,)..

FiG. 7. The environments of Ca(4) and the P(1)O, group in §-Cas(PQ,),. The apparent thermal motions as re-
vealed by the dimensions of the ellipses reveal that statistical occupancy of only half of the Ca(4) sites imposes
positional disorder on the P(2)O, groups and propagates similar disorders through the P(1)O, groups to the Ca(3)
ions.
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F1G. 8. The approximately octahedral coordination of Ca(5). The average Ca(5)...O distance is 2.263 A.

that Ca(4) is slightly disordered along c
and/or weakly bound.

Ca(5). The environment of the Ca(5) site
is given in Fig. 8 and Table III. The Ca(5)
coordination is essentially octahedral with
no shared PO, edges, and all six Ca...O
distances are relatively short, falling into the
range 2.238-2.287 A. The oxygen atoms in the
environment have small thermal parameters.
The thermal parameters of Ca(5) may be
ascribed to normal thermal motion.

The PO, Ions and Their Environments

The environments of the PO, ions are given
in Table 11T and are shown in Figs. 7 and 9.

P(1)O,. The average P-O bond length in the
P(1)O, group(Fig. 7)is 1.534 A, and the angles
are essentially all tetrahedral. That the P(1)-
0O(10) distance (1.547 A) appears to be shorter
than the P(1)-O(9) distance probably
arises from the inability of the usual
expressions for thermal motion to account
for the behavior of this ion. This is complicated
by the coordination of the Ca(4) ion to the
009, 9, 9”) face of P(1)O, since the Ca(4)
site is only partially occupied. Analysis of the
apparent thermal tensors of P(1)O, via the
TLS model (22) indicated they were incom-
patible with PO, group translations and libra-
tions. This suggests positional disorder of
P(1)O, that is very likely correlated with the
occupancy of the Ca(4) site.

P(2)0,. The environment of the P(2)O,
group is shown in Fig. 9a. Each oxygen in the
P(2)0, group is coordinated to three cations.
Because O(4) is the only P(2)O, oxygen
closely coordinated to Ca, the P(2)-0O(4)
bond is the longest, as expected. From the

other O...cation distances, P(2)-O(3) would
be expected to be the next longest, but this is
not the case. However, O(2) does have the
weakest association with cations and forms
the shortest P(2)-O bond. Three edges,
[0(1), O(3)], [O(3), O(4)], and [O(2), O(4)] are
coordinated to Ca jons; all the associated
O-P(2)-O angles are less than the tetrahedral
angle, as expected. The largest angle, O(2)-
P(2)-0(3), seems to be a resultant of edge
sharing coordination in that O(2) and O(3)
have been pulled toward Ca(l) and Ca(l’),
respectively.

P(3)0,. Four edges, [O(5), O(N)], [0(5),
O(8)], [0(6), O(7)], and [O(6), O(8)], in the
P(3)0O, group are coordinated to cations
(Fig. 9b), and have associated O-P(3)-O
angles of less than the tetrahedral angle,
and conversely, the remaining two O-P(3)-O
angles are larger than the tetrahedral angle.
To facilitate comparison between the PO,
groups in f-Ca,(PO,), and the VO, group in
Ba,(VO,),, the environment of the VO,
group is given in Fig. 9.

Discussion

Figures 1-4 show the correspondence
between the Bay(VO,), and p-Ca;(PO,),
structures. Ba(1) is coordinated to 12 oxygen
atoms, which comprise six VO, edges; the
corresponding ion, Ca(3), in f-Ca,(PO,), is
coordinated to 8 oxygen atoms, including
three PO, edges. Ba(2) is coordinated to 10
oxygen atoms including three VO, edges;
both Ca(l) and Ca(2) are bonded to eight
oxygen atoms, including two PO, edges.
The distortions of the Ca coordination poly-
hedra relative to those of Ba are obvious
from the figures.
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F1G. 9. Comparison of the environments of (a) P(2)O., (b) P(3)O, in f-Ca3(PO.);, and (c) YO, in Ba(VO,),.
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The oxygens of the P(2)O, and P(3)O,
ions in B-Cayz(PQO,), (Fig. 9) are each coordin-
ated to three cations instead of the four cations
(not counting V) to which the oxygens of the
VO, group in Bay(VO,), are coordinated (Fig.
9¢). The tilts of the P(2)O, ion near the three-
fold axis are such that there is no room for
another PO, group, and instead a new cation
site, Ca(4) (Fig. 7), is created in f-Ca,(PO,),.
This cation is then bonded in an unusual
coordination to the face of the P(1)O, group
(see Fig. 7). Thus, Ca(4) occupies essentially
the site of a VO, group in Bay(VO,),. This
situation, repeated by the ¢ glide, serves to
make the f-Ca,(PO,), structure omit two PO,
groups per comparable Bas(VO,), volume,
i.e. 8 Ba;(VO,), unit cells. For charge balance,
three cations must also be omitted ; the result-
ing spaces along the threefold axis where two
Ca ions have been omitted are obvious in
Fig. 3. The third cation is omitted from one-
half of the Ca(4) sites, leaving one Ca(4)
ion for every two Ca(4) sites. The Ca(5) ion
(Fig. 8) is in another cation site not found in
the Ba,;(VO,), structure. Its small, essentially
octahedral, coordination polyhedron is very
compatible with the distortions of the PO,
group layers from the regularity of the Ba,
(PO,), structure. The remaining ion on the
threefold axis, P(1)O,, is in the center of the
PO, layers, rather than on the surfaces as
P(2)O, and P(3)0, are. Thus, the structures of
Bay(VO,), and S-Ca,(PO,), differ completely
along the threefold axis.

As was remarked in the introduction, the
assumption that the space group of

p-Cay(PO,),

is R3c has posed the question of how the
electroneutrality, the formula, and the even
parity of the space-group requirements are
to be reconciled. Refinement in space-group
R3c occurred to. the limit of the experimental
data, so that the choice of this space-group
is not contradicted. The electron-density
syntheses and the least-squares refinements
both point to the electroneutrality balance
of the whole structure arising from partial
occupancy of the Ca(4) cation site. That dis-
order should involve Ca(4) rather than some
other cation is consistent with the fact that
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Ca(4) is coordinated to the face of the P(1)O,
group in a configuration which is probably
unstable relative to the other cation configura-
tions. This instability is expected to arise from
the Ca(4)...P(1) repulsion and from the low
number (six) of oxygen atoms coordinated to
Ca(4), which therefore undergoes less overall
bonding. The above interpretation is cor-
roborated by the essentially independent
evidence of the apparent thermal motions in
the environment of Ca(4). The largest apparent
displacements of the coordinated oxygens
are parallel to the direction of the strongest
Ca(4)...0 bonding, which would be highly
improbable for true motion, and show that
these oxygens are in two or more closely re-
lated positions depending on whether the
Ca(4) site is occupied or not. Thus, the P(2)O,
orientation is correlated with the occupancy
of a given Ca(4) site. As may be seen from Fig.
7, Ca(4) has a considerable effect on the rest
of the structure. When the Ca(4) site is occu-
pied, the neighboring oxygen atoms will be
drawn in towards that site. When the site is
not occupied, the environment will relax in
some complex way. The P(2)O, groups are
obviously the averages of at least two positions
and orientations. Their thermal ellipsoids
do not yield sensible motions for the groups
as rigid bodies. As judged from the aniso-
tropies of the Ca(l) and Ca(2) ions, the posi-
tional disorder is not transmitted beyond the
P(2)O, groups, presumably because the bonds
from these Ca ions to the P(2)O, groups
are 45° or more from the Ca(4)...0(1)
vector. The P(2)O, group appears qualita-
tively to be undergoing rotations about the
P(2)-O(3) vector, but this was not borne out
in our quantitative rigid body analysis. The
P(1)O, group is also undergoing positional
disorder. The apparent motions of the P(1)
and O(9) atoms are not consistent with the
more isotropic motion of O(10). We suggest
that configurations exist where the P(1)-
O(10) vector tilts-away from the ¢ axis and
that the PO, group is also displaced along c.
The P(1)O, tilt is not transmitted through the
Ca...0(9) bonds tangential to the tilt, but it
is transmitted to Ca(3) via the Ca(3)...0(10)
bonds. The tilting of the P{(1)O, group means
that the trigonal symmetry is not upheld at the
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local level, although deviations from average
trigonal symmetry in the whole crystal are not
discernible in the experimental data. Such
effects might be discernible in the wings of the
Bragg peaks and in the background between
these peaks, and alsoin theinfrared andRaman
spectra, where the activities of the internal
modes of P(1)O, would deviate from those
expected for C, site symmetry. The apparent
motion of Ca(4) along [001] probably arises
because of local positional differences in the
coordinated P(1)O, groups. On the basis of
Ca...O distances, Ca(4) is weakly bound in
this direction implying larger amplitudes of
vibration along c¢. The P(3)O, groups are more
remote from the Ca(4) site and are thus insu-
lated from the effects of disorder. This is
confirmed by their thermal parameters.

It is surprising at first sight that the g-
Cay(PO,), phase, which is supposedly the
stable phase between ~0°C and ~1000°C in
the absence of hydrogen ions, should crystal-
lize in an arrangement which has one formula
unit missing from every unit cell. There has
obviously been considerable loss of cation—
oxygen bonds. This can be partly understood
by relating §-Ca;(PO,), to the Ba,;(VO,), type
structure. Additional and necessary chemical
context is supplied by considering the structure
of the higher temperature form, a-Ca,(PO,),,
which is metastable at room temperature.
The detailed structure of a-Cas(PO,), is not
yet known, although our unpublished deter-
mination of it has progressed to the point
where we believe it to be closely related to
Cay(PO,),Si0, (2) and Ca,Mgy(Ca, Mg),
(PO,),, (23) and hence to crystallize in the
glaserite-type structure {see Ref. (24) for a
discussion of structural types in calcium
phosphates]. Additional evidence for this
view is the similarity (25) of the powder
patterns of 2-Ca,(PO,), and Ca,Mgy(Ca, Mg),
(PO,),, [called Ca;Mg,(PO,), in Ref. (25)
and Ca,Mgs(PO,)s on ASTM card 11-231].
It therefore appears that a-Cay(PO,), is a
superstructural variant of the K;Na(SO,),
and «-K,SO, structures with systematic
cation vacancies in a-Cas(PO,), similar to
those found in the structures of Cas(PO,),
Si0, and Ca,Mgy(Ca, Mg),(PO,),,. All these
compounds necessarily have cation vacancies
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because their cation-to-anion ratios are less
than that of K;Na(SO,),. Both the « and B
forms of Ca,(PO,),, therefore, seem to include
vacancies, the former because it does not have
the 2:1 stoichiometry required for complete
emulation of the K;Na(SO,), structure and the
latter because it has the wrong cation size:
anion size ratio to crystallize in the Ba;(VO,),
arrangement. It is not yet known which factors
are significant in differentiating the energies
of a- and f-Ca,(PO,),. One possible factor is
that the a-Ca,(PO,), structure has the larger
percentage of ion vacancies (by any method of
counting). Another is that the glaserite-type
arrangement may not be stable at lower
temperatures when all the cations are of
similar size. Two such calcium phosphates
(2-Ca;(PO,), and Cas(PO,),SiO,) crystalliz-
ing in glaserite-type structures are only
metastable below about 1000°C. Ca,Mgy(Ca,
Mg),(PO,),,, which contains cations of widely
differing sizes, is seen from Ando’s phase
diagram (25) to be stable at temperatures
lower than 1175°C and to coexist with Mg-
containing f-Ca,(PO,), when the system
contains enough magnesium.
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