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A single-crystal study of a sample of Ba,Nb;LiO,, provided by Dr. T. Negas has been carried out and
confirms the |(4)|(4)| layer stacking scheme (Zhdanov notation) for the eight BaO, layers per unit cell.
Of the eight MO, octahedra per cell (M = Nb or Li), four share faces in pairs, and these pairs are linked
by pairs of corner-sharing MO, octahedra. The compound has an hexagonal cell of dimensionsa = 5.777 +
0.006 A and ¢ =18.95 + 0.03 A, probable space group P63/mmc, Z = 2. The theoretical density is 6.22
g/em?; within the limit of error of the pycnometrically measured density, 6.08 + 0.06 g/cm?3. The study
was carried out with 620 independent reflections, of which 437 were considered observed, collected by
automated counter methods and refined by least-squares to a conventional R value of 0.076.

Introduction

A discussion of structure relations in mixed
metal oxides which could be described in terms
of close packed layers of composition AO,
has been given by Katz and Ward (7). Negas
et al. (2), in their studies on the crystal chemistry
of lithium in octahedrally coordinated structures,
have prepared an 8L (L = layer) compound of
composition Ba,Nb,;LiO,, and a 10L. compound
containing tungsten. Crystals of both of these
compounds were sent to us by Dr. Negas. In
this paper we report the results of a single-crystal
study of the 8L compound.

Experimental

The crystal chosen for study was a thin, clear,
almost colorless plate 0.025 mm thick, and
roughly trapezoidal in shape (parallel sides
0.37 mm and 0.25 mm, height £.25 mm). Preces-
sion photographs indicated the probable space
group to be one of P62c, P6ymc, or P6,/mmc.
The observed unit-cell parameters of a=5.79
A and ¢ =19.04 A were in agreement with those
previously reported (2). The cell dimensions
obtained by least-squares refinement using 12
well-centered reflections measured with a Picker
automated diffractometer gave a = 5.777 + 0.006
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A and ¢=18.95+0.03 A. Full rotation photo-
graphs were used to verify that the true cell
parameters were not multiples of the values
found.

Allreflections for whichk > 0,4 > k,and —32 <
[< 32, 20 < 75° were measured with a Picker
automated diffractometer with graphite mono-
chromatized Mo radiation, pulse height dis-
crimination, and a scintillation counter. The
0-20 scan technique was used at 2° 20/min.
Background was counted for 20 sec at each end
of the 2.67° scan range.

Over 2800 reflections were measured which
resulted after averaging in 620 independent
reflections of which 437 were greater than 2¢
for the background and were considered ob-
served. An absorption correction prior to
averaging was made using Prewitt’s program
ACACA (3) by integration over a 10 x 10 x 10
grid.

Statistical analysis of the reflection intensities
indicated a centric distribution. Since the Laue
group was 6/mmm and there were no systematic
absences other than hhil when I=2n+1, the
probable space group is P6;/mmc. (No violations
of this absence rule were observed on the photo-
graphs, but a couple of counter-measured
intensities just exceeded the 2o threshhold
adopted for observed reflections.)
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TABLE 1

AToMIC PARAMETERS FOR Ba,Nb;LiO,,” SPACE GROUP P6;/mmc (No. 194)

Atom Position x y z Ui’ Uss®
Ba(l) 2a 0 0 0 38(3) 93(8)
Ba(2) 2 13 2/3 3/4 40) 79(8)
Ba(3) 4f 1/3 2/3 0.1350(1) 62(3) 132(7)
Nb(2) 4f 1/3 2/3 0.5638(1) 20(3) 37(8)
u

Nb(1)¢ 4e 0 0 0.1905(3) 64(8)

O(1) 6g 1/2 0 0 125(31)

0(2) 6h 0.1594(35) 0.3187 1/4 253(48)

0Q3) 12k 0.8284(16) 0.6568 0.1188(6) 92(19)

< Thermal parameters have been multiplied by 10
b Uu = U22 = 2U12 and U13 = Uz3 =0.

¢ Nb(1) has a population parameter of 0.52. Its position is assumed to be randomly occupied by Nb and Li.

The ¢ axial length, 18.95 A, suggests an 8L
stacking sequence of BaO; layers. Two 8L
stacking sequences are possible in space group
P6;/mmec. In the Zhdanov notation, these are
|(9)}(4)|, which corresponds to 75 %; cubic layers
(adjacent layers different) and 259% hexagonal
layers (adjacent layers alike), and |1(2)1|1(2)1],

FiG. 1. Structure of Ba,Nb;LiO,,. Ba atoms are shown
as striped circles, O atoms as large open circles, Nb atoms
as small blackened circles, and Nb/Li sites as small open
circles.

which corresponds to 759, hexagonal layers and
259 cubic layers. For 81, BaMnQ;, the second
arrangement was found (4, 5). For Ba,Nb;LiO,,,
however, the first arrangement was established
from powder data by Negas et al. (2) and is
confirmed in our study.

In order to test for the lithium positions, all
the octahedral sites were assumed occupied by
niobium, and the positional and occupancy
factors were varied in a least-squares refinement
with isotropic thermal parameters.

An occupancy factor of 52 % was found for the
niobium in the 4-fold position corresponding to
the face-sharing MOg octahedra, i.e., Nb(l).
This value indicates a random filling with Nb
and Li and is what one might expect for the face-
sharing octahedra. All other occupancy factors
remained close to unity. Convergence was
obtained with unit weights at a conventional R
of 7.6% in a refinement in which anisotropic
thermal parameters were used for the barium
atoms and Nb(2), and isotropic thermal para-
meters were used for the oxygen atoms and
Nb(1). (Three reflections strongly affected by
extinction were omitted.) A weighted refinement
using a weighting scheme described in other
studies (6) lowered the weighted R somewhat
but did not change the conventional R or the
atomic parameters significantly, and the results
of the unit weight refinement are the ones
reported.

Neutral atom form factors as well as the real
and imaginary parts of the anomalous dispersion
factors were taken from the International
Tables (7). Calculations were carried out with
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TABLE I

INTERATOMIC DISTANCES AND ANGLES, BayNb;LiO;,

Distances® (A)

3ND(2)-O(1)  2.060(2)
IND(2)-0(3)  1.924(6)
Oo(-0(1)  2.888(1)
0(1)-0(3)  2.787(10)
0Q)-002)  2.762(14)
0Q)-0(2) 3.014(14)
0(2-0(3)  2.988(15)
0(3)-0(3)  2.802(7)
Nb(1)-Nb(1) 2.254(8)

2.888(2)
2.831(9)
2.889(20)
2.966(10)
3.053(3)
2.788(3)
2.905(10)
1.952(3)
2.189(8)

6Ba(1)-0(1)
6Ba(1)-0(3)
6Ba(2)-0(2)
6Ba(2)-0(3)
3Ba(3)-0(1)
3Ba(3)-0(2)
6Ba(3)-0(3)
3Nb(1)-0(2)
3NB(1)-0(3)

Angles (degrees)

0(2)-Nb(1)-0(2)
O(2)-Nb(1)-0(3)
0(2)-Nb(1)-0(3)
0O(3)-Nb(1)-0(3)
O(1)-Nb(2)-0(1)
O(1)-Nb(2)-0(3)
O(1)-Nb(2)-0(3)
0(3)-Nb(2)-0(3)
Nb(2)-0(1)-Nb(2)
Nb(1)-0(2)-Nb(1)
Nb(1)-O(3)-Nb(2)

90.0(6)
92.2(5)
176.9(3)
85.6(4)
89.0(1)
88.7(3)
176.8(5)
93.5(4)
180 (9)
70.5(2)
174.4(5)

9 Numbers preceding atom symbols indicate bond
multiplicities.

X-Ray System (8). Final position and thermal
parameters are listed in Table I, bond distances
and angles are given in Table II, and observed
and calculated structure factors in Table IIL
An illustration of the unit-cell contents (Fig. 1)
and an illustration of the small cation environ-
ment (Fig. 2) were prepared with Johnson’s
program ORTEP (9).

Discussion

The use of lithium to lower the average
oxidation state of octahedrally coordinated
cations in a variety of well-known structure types
has been discussed in a paper by Negas et al. (2)
who have described a number of the possible
stoichiometries. A related use of lithium in
reducing average oxidation states has been
described in compounds LiM"'"Mo,04 (10, 11)
which adopt structures related to that of
A}Mo,04, where A" may be any of a number of
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Fic. 2. Portion of structure showing face-sharing
octahedra linked to a corner-sharing octahedron.

divalent cations such as those of Mg, Mn, Fe,
Co, Ni, Zn, and Cd (12). (In these cases, the Li
goes into tetrahedral sites.) The use of Li* also
promotes the possibility of face sharing of
octahedra by removing the necessity for close
approaches of highly charged cations. Thus,
in the face-sharing pairs of octahedra in Ba,-
Nb;LiOy,, half of the octahedra are occupied
by Li* and half by Nb%*. To be sure, the random
arrangement would allow for Li*-Li* and
Nb3*-Nb*%* pairings, but it is more likely that
Li*-Nb%* pairings are the rule and that the
randomness is achieved by random up-down
orientations of the pairs. Also the Nb(1)-Nb(1)
distanceis only 2.25 A, which would be extremely
short for a Nb-Nb separation.

The possibility of an ordered arrangement of
Li* and Nb%* in the face-sharing octahedra
was tested by placing these ions in 2-fold posi-
tions in space group P6,mc. When full occupancy
of sites was assumed, convergence was not
obtained in least-squares refinements since the
temperature factor for Li always went strongly
negative, and the program reset it to zero.
Convergence was obtained when the population
parameters for the Li and Nb in the face-sharing
octahedra were allowed to vary and the tem-
perature factors held fixed. These population
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TABLE III

OBSERVED AND CALCULATED STRUCTURE FACTORS®
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< The columns are #, 10|F,|, 10|F.]. Unobserved reflections are marked by asterisks. Extinction-affected reflections

not used in refinement are marked by E.

parameters converged to 6.6 and 0.6 for Li and
Nb, respectively, which is again indicative of
random occupancy. The values obtained for
these population parameters are, of course,
sensitive to the temperature factor values
chosen, and mnonconvergence problems could
have been aggravated by pseudosymmetry.

However, the evidence favors the conclusion
that there is a random arrangement of Li and
Nb in the face-sharing octahedra.

With eight-layer BaMnO, and eight-layer
Ba,Nb;LiO,,, two of the six possible eight-
layer stacking sequences of close packed layers
have been observed in complex metal oxides.
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