Influence of Charge-Compensating Ions on the Luminescence of Vanadium-Activated Sulfates G. BLASSE AND G. P. M. VAN DEN HEUVEL Physical Laboratory, Sorbonnelaan 4, Utrecht, The Netherlands Received May 23, 1975 Samples $CaSO_4-V^{5+}$, Me^{3+} show mainly unassociated-vanadate emission if Me^{3+} is smaller than the Ca^{2+} ion and mainly associated-vanadate emission if Me^{3+} is about as large as the Ca^{2+} ion. Samples $MgSO_4-V^{5+}$, Me^{3+} show efficient yellow emission at room temperature. #### Introduction Recently the presence of associates V^{5+} _ Ln^{3+} in CaSO₄ and the occurrence of energy transfer in these associates has been reported (1, 2). Vanadium occupies the tetrahedral sulfur site and is charge-compensated by a trivalent lanthanide ion on one of the nearest-neighbor calcium sites. In this paper, we describe the luminescence of CaSO₄– V^{5+} , Me^{3+} , where Me^{3+} stands for trivalent ions smaller than the lanthanides. In addition, efficient vanadate luminescence in MgSO₄ is reported. ### **Experimental** Samples were prepared and characterized as described before. Dope concentrations were 0.1 or 0.3 at %. Optical measurements were performed as in (1, 2). #### Results and Discussion (a) $Ca_{1-x}Me_xS_{1-x}V_xO_4$ (Me = Al, Sc, Fe, Ga) The luminescence properties of these samples do not depend strongly on the nature of Me. Therefore, only the results for Me = Ga are given. Below room temperature a greenish emission can be excited by uv excitation. Figure 1 shows some excitation and emission spectra at LHeT. These reveal a rather complex luminescence behavior due to over- lapping excitation and emission bands; there seem to be at least two excitation bands, one at about 280 nm and the other at about 250 nm. Excitation into the latter yields an extra emission shoulder in the short-wavelength part of the spectrum (see Fig. 1). This shoulder was not detected for the Fe³⁺-doped sample. This behavior differs from that observed for $CaSO_4-V^{5+}$, Ln^{3+} (Ln = Y, La, Gd, Lu), where the emission band peaks at 465 nm and the excitation band peaks at 255 nm. The emission band of uncompensated CaSO₄-V⁵⁺ has its maximum at 520 nm (1, 2). A simple explanation for these differences is the following. If the compensating trivalent cation is one of the lanthanides, we have associates V^{5+} - Ln^{3+} as shown in (1, 2) with the 465 nm emission band; if the compensating cation is Al, Sc, Fe, or Ga, the degree of association is much lower. The V5+ ion occurs partly as a "free" (unassociated) V⁵⁺ ion with an emission band at 520 nm (and an excitation band at about 280 nm) and partly as an associate $V^{5+}-Me^{3+}$ with bluish emission (excitable with 250 nm radiation) as in the case of the V^{5+} - Ln^{3+} associates. A high degree of association in the case of these Me^{3+} ions is improbable, because an associate V^{5+} -Fe³⁺ is not expected to luminesce. The "killing-action" of transition metal ions on emissions like those of the vanadate group is well known (3). This also Fig. 1. Left: Relative excitation spectra of the 440 and 580 nm emission of $Ca_{0.997}Ca_{0.003}S_{0.997}V_{0.003}O_4$ at 5°K (Q gives the relative quantum output). Right: Spectral energy distribution of the emission of this sample at 5°K under 250 and 300 nm excitation. (Φ_{λ} gives the spectral radiant power per constant wavelength interval in arbitrary units.) explains the absence of the blue shoulder in the case of the Fe³⁺-doped sample. The degree of association of V^{5+} and Me^{3+} ions in $CaSO_4$ depends, therefore, on the ionic radius of the Me^{3+} ions. If these are of about the same size as or larger than the Ca^{2+} ion, the degree of association is high; if their size is considerably smaller, the degree of association is low. The influence of the association degree on the vanadate luminescence is drastic. ## (b) $Mg_{1-x}Me_xS_{1-x}V_xO_4$ (Me = Al, Cr, Fe) In view of the results of the calcium system and the small difference between the ionic radii of Al³⁺ and Mg²⁺ we expected that Al³⁺ and V⁵⁺ would be associated in MgSO₄. At 300°K, samples MgSO₄–V⁵⁺, Al³⁺, and MgSO₄–V⁵⁺ show efficient yellow emission under long as well as shortwave uv excitation. At 300°K, samples MgSO₄–V⁵⁺, Cr³⁺ and MgSO₄–V⁵⁺, Fe³⁺ show yellow emission under shortwave uv excitation only. MgSO₄–V⁵⁺, Cr³⁺ shows strong red emission under longwave uv excitation at liquid N₂ temperature. In Fig. 2 we have drawn some representative excitation spectra and in Fig. 3 emission spectra. The following facts are noteworthy. - (i) The spectra for MgSO₄-V⁵⁺, MgSO₄-V⁵⁺, Cr³⁺ and MgSO₄-V⁵⁺, Fe³⁺ are practically the same. - (ii) The excitation spectra of MgSO₄-V⁵⁺, Al³⁺ show an excitation band with a maximum at 330 nm that is not present in the spectra of samples with other compensating ions. It seems probable that in MgSO₄ a large number of different luminescent vanadate centers is present. Our samples crystallize in the low-temperature MgSO₄ structure (the CrVO₄ structure) with Mg²⁺ in octahedral and S⁶⁺ in tetrahedral coordination (4). There is only one crystallographic position for Mg as well as for S. From our results we deduce the following approximate model. The emission and excitation spectra observed for MgSO₄-V⁵⁺ and the Cr³⁺ and Fe³⁺ compensated samples are due to "free" V⁵⁺ ions. In fact these spectra show an analogy with the spectra for the "free" V⁵⁺ ions in CaSO₄. (Compare Fig. 1 with Figs. 2 and 3.) Any associates V5+-Cr3+ and V5+-Fe3+ are not Fig. 2. Relative excitation spectra of the 460 and 560 nm emission of $Mg_{0.997}Al_{0.003}S_{0.997}V_{0.003}O_4$ (broken lines) and $Mg_{0.997}Cr_{0.003}S_{0.997}V_{0.003}O_4$ (solid lines) at room temperature. Curves for $MgSO_4-V$ (0.3 at %) are identical to the curves for the Cr^{3+} sample. Fig. 3. Spectral energy distribution of the emission of $Mg_{0.997}Cr_{0.003}S_{0.997}V_{0.003}O_4$ (broken line) under 260 nm excitation and of $MgSO_4$ –V (0.3 at %) (solid lines) under 260 and 340 nm excitation at room temperature. expected to luminesce. The V⁵⁺ center in MgSO₄–V⁵⁺, Al³⁺ with the excitation band at 330 nm is then probably a V⁵⁺ ion associated with Al³⁺. Evidence for this follows from the observation that at 300°K, 330 nm excitation yields efficient luminescence for the Al³⁺ sample, but not for the Cr³⁺ and Fe³⁺ samples. At lower temperatures, however, the Cr³⁺ emission (red) can be excited into this band (energy transfer in a possible V⁵⁺–Cr³⁺ associate). Direct excitation of the Cr³⁺ ion, however, cannot be excluded. It is remarkable that in MgSO₄ the associate has its spectra (especially the excitation band) at longer wavelengths than the free V⁵⁺ ion, whereas in CaSO₄ the situation is reversed. This may indicate that the associate in MgSO₄ is different from that in CaSO₄ where the compensating ion in the associate occupies a regular (calcium) lattice site. It seems impossible to achieve in MgSO₄ an association that is so complete as in CaSO₄. Finally, we may add that the yellow emission of V^{5+} in MgSO₄ is probably the same as mentioned in (5) for $V_2O_7^{4-}$ in MgSO₄. #### References - W. HORDIJK AND G. BLASSE, J. Luminescence 6, 137 (1973). - W. T. DRAAI AND G. BLASSE, Phys. Stat. Sol. 21, 569 (1974). - F. A. Kröger, "Some Aspects of the Luminescence of Solids," Elsevier, Amsterdam (1948). - R. W. G. WYCKOFF, "Crystal Structures," 2nd ed., Vol. 3, Interscience, New York (1965). - Y. Kotera, M. Yonemura, and T. Sekine, J. Electrochem. Soc. 108, 540 (1961).