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The crystal growth rate in a chemical vapor transport process using a closed system is analyzed on 
the basis of a one-dimensional configuration. A simplified model of vapor transport enables one to 
obtain a set of equations yielding the rates of reaction without a complete evaluation of the partial 
pressure gradients. This linear set comprises as many equations as independent chemical reactions. 
The effect of finite interface kinetics is formally taken into account. The efficiency of a one-reaction 
process is given by a function involving the mole fractions of the gaseous species and the stoichio- 
metric coefficients in the formula equation. The features of such a productivity function are dis- 
cussed. Maximum growth rate is achieved if the gaseous components are present in stoichiometric 
quantities. The concept of the productivity function is illustrated by chemical vapor transport sys- 
tems involving binary and ternary gaseous phases. Proceeding from a two-phase source material, 
stability criteria that define stable one-phase and stable two-phase crystal growth are given. The 
kind of deposit may be changed by altering the amount of transporting agent. It is shown that 
limited interface kinetics favors a two-phase deposit. 

1. Introduction 

Chemical vapor transport is successfully 
used for the growing of crystals of relatively 
involatile materials. To facilitate the selection 
of an efficient transport reaction, Schafer 
has stated valuable rules supported by count- 
less experiments (I). During the past several 
years numerous attempts have been made to 
provide a more accurate prediction of the 
crystal growth rate. Transport equations on 
the base of diffusion-limited vapor transport 
have been given by Mandel and his co-workers 
(2-4, Arizumi and Nishinaga (7, 8), Faktor, 
Garrett and Heckingbottom (9), and un- 
doubtedly by others. Due to their complexity, 
these procedures are generally less suited to 
preliminary evaluations of the efficiency in 
arbitrary reaction systems. 

Alcock and Jeffes have considered the 
simplest vapor transport reaction, i.e., with 

* Present address: Wolters-Noordhoff, P.O. Box 58, 
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only two gaseous compounds present (10, II). 
They have suggested that the efficiency may be 
related to a function involving the partial 
pressure of a given vapor species and the rate 
of change of this pressure with the equilib- 
rium constant for the transport reaction. 
Since the fundamentals of a transport equation 
are lacking, it is not surprising that such an 
assumption leads them to a violation of 
Schgfer’s rules. 

Our present interest is to elucidate the 
characteristics of chemical vapor transport 
processes. We seek to replace SchHfer’s 
qualitative rules by a quantitative under- 
standing. The results should be easy to apply 
even in complex situations, so that a conceptual 
simplicity is pursued. 

2. Mass Transfer in the Gaseous Phase 

To calculate the crystal growth rate in a 
closed-tube process, the one-dimensional 
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system shown in Fig. 1 will be used. The 
solid-gas interfaces are parallel planes distance 
1 apart. The chemical transport taking place 
from one temperature zone to the other, can 
be considered to consist of three steps : 

(i) Transition of source material to the 
vapor phase by means of a chemical reaction 
and the formation of gaseous compounds of 
limited stability at y = 0. 

(ii) Mass transport in the gaseous phase 
from the source zone at y = 0 to the seed site 
at ~7 = 1. 

(iii) Decomposition of the vapor phase 
and deposition of a solid phase at the solid- 
gas interface at y = I. 

It is usually a reasonable assumption that 
(ii) will be the rate determining step. Then the 
pseudo-equilibrium chemical thermody- 
namics at the solid-gas interfaces are of major 
importance. Concentration gradients in the 
gas phase caused by the temperature difference 
are the actual driving forces in mass transfer 
by diffusion. In the steady state these con- 
centration gradients can be maintained by the 
continuous supply of material at y = 0 and its 
removal from the gaseous phase at y = 1. 

Consider a chemical vapor transport system 
in which the material transport is based on one 
or more reactions of the general type 

O = F v:* A i(% 0 + 7 vri B&) (1) 

where v:, and vri are the stoichiometric co- 
efficients of the solid or liquid compound 
A, and the gaseous compound B, in reaction 
r. The reactions take place at both interfaces 

FIG. 1. Physical arrangement of a closed-tube 
process and schematic representation of the corres- 
ponding temperature distribution. 

in opposite directions. The equilibrium con- 
stant corresponding to Eq. (1) may be written 

K, =r]lpp (2) I 
in which pI is the partial pressure of species i. 
In all cases gases will be treated as ideal. 

Since the applied temperature difference is 
relatively small, the partial pressure differ- 
ences are small as well. In other words, 
Ap, <pi with Ap, = p,(y = 1) -p,(y = 0). 

We will make use of dp,’ only if we are 
dealing with parameters that are related to 
pressure gradients rather than to the partial 
pressures themselves. For example, material 
transfer by diffusion will be expressed in terms 
of Ap,‘. 

We will trigger our theoretical analysis of the 
crystal growth rate by introducing the rate of 
reaction g,, one for each independent chemical 
reaction taking place at both interfaces. 
These rates of reaction are related to the flux 
of species i in the gaseous phase, denoted Ji, 
by 

where 0 is the cross-sectional area of the 
growth tube. Usually, these fluxes are cal- 
culated. However, note that the number of 
species generally exceeds the number of 
reactions greatly. Therefore, we will now 
present a sequence of steps leading to rela- 
tionships from which the complete set of [, 
values may be obtained straightforwardly. 
Hence, a considerable reduction of the number 
of simultaneous equations will be achieved 
by using rates ofreaction instead of individual 
fluxes. 

The assumption of uniform pressure grad- 
ients permits the flux to be written as 

D 
Ji = - IRT Ap, f &* (4) 

where D is a diffusion coefficient; R is the 
universal gas constant; T is the absolute 
temperature; and a is the laminar flow rate. 
We have assumed that D, T, v, and p1 do not 
vary appreciably with position and have used 
averaged quantities. The diffusion term, 
-D Ap,IlRT, describes the flux ofspecies i with 
respect to a general reference frame. In its 
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turn, this reference frame is moving with a 
velocity v with respect to the solid-gas inter- 
faces at either side, 

vzzRT J 
P i 7 

where P = Ii pi represents the total pressure. 
Let us say a few words on more accurate 

transport equations. Multicomponent diffu- 
sion coefficients like Dij may be used but 
nonlinear equations result. However, for 
most chemical transport reactions, these cor- 
rections are small compared to the uncer- 
tainties in the thermodynamic data. Generally, 
the use of multicomponent diffusion coeffic- 
ients is a waste of computer time (12). 

At high pressures, thermal convection must 
be taken into account. The ratio of the mass 
transfer by thermal convection and diffusion 
depends on the ampoule geometry and cer- 
tain fluid dynamical parameters of the gaseous 
phase (13, 14). All we need do is adapt 
diffusion coefficient D in Eq. (4). Such 
refinements, however, do not strike at the 
roots of the present theory. 

In fact, we need not know the fluxes of the 
individual species explicitly for our analysis. 
From Eqs. (4) and (5), in the approximation 
Alnp, = ApJp,, we obtain 

(6) 

In view of Eq. (3) and using mole fractions, 
xi =pJP, Eq. (6) becomes 

Alnpi = &$vrj-$.. (7) 
r 

We notice that the factor IRTjODP is inde- 
pendent of total pressure because of D a P-‘. 

Till now, no use was made ofthe relationship 
between the set of Ap, values and the small 
shifts of the equilibrium constants caused by 
the temperature gradient : 

(1 - ar) AlnK, = 2 V,i Alnp, (8) 
1 

where AInK, stands for lnK,(y = 1) - 
lnK,(y = 0) and ~1, is a kinetic parameter. The 

effect of finite surface reaction rates can be 
accounted for by requiring that parameter a, 
depend on the cl ystal growth rate, according to 
some law, in such a way that 0 $ IX, < 1. 
Generally, if the growth rate vanishes, a, 
vanishes as well. c(, = 0 is the situation of per- 
fect equilibrium composition at both interfaces 
and it is the starting point for most calcula- 
tions on diffusion controlled chemical vapor 
transport processes. CC,. = 1 describes the situa- 
tion of extreme kinetic hindrance at the inter- 
faces in comparison with the mass transfer in 
the gaseous phase. In dissociative sublimation, 
for example, the gaseous phase and the growing 
crystal have the same composition. Since this 
situation does not require real diffusion, the 
material transfer is apparently not the slowest 
and rate determining step. As mentioned 
previously, we use average values for the 
partial presstires. That is why, mathematically, 
it does not matter whether the deviation from 
thermodynamical equilibrium comes from 
the kinetic hindrance at the source or at the 
seed site. This can be seen as follows. In both 
cases the average partial pressures are inter- 
mediate between the equilibrium values that 
belong to the upper and lower temperatures. 
It will be shown shortly that these partial 
pressures Vor the related mole fractions are the 
quantities that govern the characteristics of 
chemical vapor crystal growth. 

Now, we are able to couple the rates of 
reaction and the thermodynamics of the 
transport process. Substitution of Eq. (7) 
into Eq. (8) leads to a set of simultaneous 
equations 

the coefficient ars being given by 

We see that the total number of equations 
equals the number of independent chemical 
reactions. Since both the right-hand side 
of Eq. (9) and the coefficients urs are evaluated, 
easily, the rates of reaction can be derived 
without difficulty. 
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3. Productivity Function 

In the case of a one-reaction system the rate 
of reaction becomes [cf. Eq. (9)]: 

[=- g(l - a) dlnKF (11) 

where F is a productivity function defined by 

We see that the rate of reaction, and therefore, 
the crystal growth rate, are directly propor- 
tional to this productivity function. Once the 
stoichiometric coefficients are specified, the 
productivity function is entirely determined 
by the mole fractions X. It is demonstrated 
in Appendix A that F is always positive and 
takes its maximum value when x1 = & 

4 = IhI/ c IVJI 03) 
j 

which gives the maximum 

I;;, = [(F lbl)2 - (; vi)“]-‘. (14) 

From Eq. (1 l), we see that the crystal growth 
rate decreases as the kinetic parameter a 
increases. We shall postpone our discussion 
of this subject to Section 6. 

For better understanding, we present an 
apparent contradiction between the theoretical 
productivity function and the experimental 
observations. For CdS, as an example of 
dissociative sublimation, we have 

2CdS(s) %2Cd(g) + S,(g). (15) 

If the gaseous phase consists merely of Cd 
and S, in stoichiometric ratio, Eq. (13) is 
automatically satisfied and F = Fm. Moreover, 
substituting the coefficients into Eq. (14) we 
find F, = co. In order to avoid an infinitely 
fast growth rate we have cx = 1. For the gaseous 
phase, mass transfer is quite easy here; it is 
merely the flow of the gas as a whole, i.e., 
without diffusion. 

Not all the sublimation experiments belong 
to this category. The presence of an inert gas 
or an additional reaction requires a certain 
diffusion process: F,,, # 03. 

Generally, as soon as gaseous products 
are present at both sides of the transport 
equation we have F, # cc). 

Lastly, we present an expression for the 
pressure gradient in a one-reaction process. 
Combining Eqs. (7), (ll), and (12) we find 

dlnp, = &(l - a) din K 

where we have introduced 

(16) 

(17) 

S.=-lalnF -. I 2 avi 

We call Si a stabilityu friction because of its 
role in stability considerations, as will be 
shown presently. 

4. Binary Gaseous Phase 

Plots of the productivity function versus the 
equilibrium constant at fixed total pressure are 
given in Fig. 2 for the reaction 

m, 1) + 2-w = Jz(g> (19) 

and in Fig. 3 for 

4X@, 1) + Z,(g)+4XZ(g). (20) 

-10 -6 -6 -4 -2 0 2 4 6 6 10 

- log K 

FIG. 2. Productivity function versus equilibrium 
constant at fixed total pressure for X(s,l) + 2Z(g) + 
-=%P). 
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FIG. 3. Productivity function versus equilibrium 
constant at fixed total pressure for 4X&l) + Z,(g) % 
4X-m). 

A change in total pressure displaces the curves 
only laterally. Generally, a factor of 10 in 
P has the same effect as a factor of 10ziy~ in K. 
This is consistent with the fact that the mole 
fractions in a binary gaseous mixture and con- 
sequently the productivity function are un- 
ambiguously determined by K/Pziy* within 
the constraint of xi xI = 1. Therefore, we 
have given in Fig. 4, the productivity function 
as a function of K/P”-l for the general formula 
reaction 

nqs, 1) + Z,(g) % nXZ(g). (21) 

Before turning to more complex reactions, 
let us digress briefly to make a comment on a 
productivity function, introduced by Alcock 
and Jeffes (10, II) for the same reactions as 
given in Eqs. (19) and (20). They defined a 
productivity function 

which was claimed to be a measure of the 
amount of material transported per unit 
increment of K. Their values are reproduced 
in Figs. 2 and 3. It will be clear that such a 
productivity function has very little to do with 
the experimental growth rate. In addition 

FIG. 4. Productivity function against K/PnT1 for 
nX(s,l) + Z,(g) % nXZ(g). 

to the exaggerative influence of total pressure, 
the variation with the equilibrium position 
cannot be correct. In Fig. 3, the more the 
reaction is shifted towards the extreme left, 
the greater the growth rate. Such a dependence 
contradicts one of the basic statements given 
by Schafer: reactions for which the equilib- 
rium position is extreme are unsuitable for 
chemical transport (I). 

5. Ternary Gaseous Phase 

Reactions involving three gaseous com- 
ponents can be written 

JG Y?n(s 71) + -L(g) %nXZ(g) + m Y(g). (23) 

The composition of the gaseous components 
and their stoichiometric coefficients may be 
chosen independently. Then, the composition 
of the nongaseous phase follows from conser- 
vation constraints. As an example, we present 
the transformation of a few reactions used in 
chemical vapor transport experiments 

CWs) + I&) + CdUg) + MgL (244 
2GaAs(s) + GaI,(g) % 3GaI(g) + *As,(g), 

Wb) 
Pt(s) + 2CO(g) + Br,(g) % Pt(CO),Br,(g). 

(24~) 
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We use the following procedures (i) Take the 
correct stoichiometric coefficients : (ii) assign 
the parts of Z,, X2 and Y; (iii) subtract 2 as 
defined by Z, from XZ to obtain X; and (iv) 
derive X,, Y,. As a result, we obtain 

= Wa2~31 K%,Jl + 4Lbl~ (25b) 
PtWMPL + B-A 

+ [Pt(CO)J [BrJ- 2[CO]. (2%) 

This method may be complicated, but its 
disadvantage is fully compensated for by the 
resulting simplicity of the general mathe- 
matical problem. 

Let us now return to the basic formula 
reaction [Eq. (23)]. The presence of three 
components in the gaseous phase leaves us two 
degrees-of-freedom as to the composition in 
terms of mole fractions. In addition to the 
ratio K/P’l”r, we need a relation to specify the 
composition. We will discuss two different 
possibilities that cover most cases of practical 
interest. 

First, we consider the one-phase source, 
with only one nongaseous compound, X, Y,,,, 
present. If we introduce a transporting agent 
Z,, the gaseous products XZ and Y are formed 
in stoichiometric quantities according to 
Eq. (23), so that 

mxxz = nxr. (24) 

Again the productivity function will be 
uniquely determined by the ratio K/P*‘“-’ 
and the stoichiometric coefficients, n and m. 
If m = 0 we have the situation of a binary gas- 
eous phase, as already discussed. The effect 
of a third gas component is demonstrated in 
Figs. 5 and 6, where productivity functions 
versus KjPntm-l are displayed for n = 1 and 
n = 3, respectively. 

Second, we will discuss the consequences 
of a two-phase starting material. In addition to 
the component X,Y,, there is a second solid 
or liquid phase present at the source site, 
fixing the partial pressure of species Y 

X, YJs, 1) %X,, Yk(s, 1) + (m - k) Y(g). (27) 

In Section 6 we will discuss the case in which 
X, Yk(s, 1) is present in the seed zone. Therefore, 

1 

-5 - xYm (5.1) +Z(g)fXZ(g) +mY(g) 

FIG. 5. Productivity function versus K/P" for 
XY,,,(s,l) + Z(g) + XZ(g) + m Y(g) using a one-phase 
source material. 

FIG. 6. Productivity function versus K/P"" for 
X3 Ym(s, 1) + Z,(g) * 3XZ(g) + m Y(g) using a one- 
phase source material. 

we now bypass the question of an additional 
transport reaction involving X, Y, analogous 
to Eq. (23). 

Since Eq. (27) gives us a partial pressure and 
not a mole fraction we still need the total 
pressure. Then the productivity function will 
depend on n, m, K, P, and pu. Due to the 
extension of the number of parameters to be 
specified, a general representation in graphical 
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FIG. 7. Productivity function versus the amount of 
transport agent for X, Y(s,l) + Z,(g) + 3XZ(g) + 
Y(g), K = 10s4; relative importance of the gaseous 
components on the basis of the partial pressures 
according to : (1) XZ, Y % Zs and (2) Zs 9 XZ, Y for a 
one-phase source where pxz = 3pu, and (3) XZ $ Z, g 
r,(4)XZPYYZ3,(5) Y%XZ$Zz,,(6)Z3%XZ~Y, 
(7) Zs % Y $ XZ, and (8) Y % Z, S XZ for a two-phase 
source wherepy is constant. 

form becomes impracticable. Hence, we illus- 
trate the theory by choosing a special chemical 
vapor transport process, i.e. 

x3 Y(s, 1) + z,(g)% 3X2(g) + Y(g). 
K= 10-4. (28) 

Since the equilibrium constant K is fixed, the 
productivity function can be given as a 
function of total pressure for diverse values of 
py. However, in chemical transport processes 
it is often more convenient to use a para- 
meter that is a measure of the amount of 
transporting agent. Therefore, we take instead 
of total pressure, 

z = Pxz + nPz”- (29) 

Figure 7 shows the productivity function as a 
function of z for a one-phase source and a 
two-phase source, pr = 1, 1O-2, and 10m4 atm. 
Note that the highest growth rate is achieved 
using a one-phase starting material. This is a 
general rule that follows immediately from the 
above extremum considerations. 

To obtain a clearer understanding of the 
productivity function one has to be conscious 
of the dominating effect of the minority 
component. If, for example, xz, < xxz, xy the 
productivity function takes up the asymptotic 
value F = xz,. For this reason we have men- 
tioned the relative importance of the compo- 
nents in Fig. 7. The corresponding asymptotic 

TABLE I 

ASYMPTOTIC EXPRESQONSFORTHEPRODUCTIVITYFUNCTIONOFTHE REACTION 
-xl Ym(s,l) + Z,(g) = nX2 (g) + m Y(g) 

One-phase source, pr = (m/n)pxz 

Pxz. Pr % Pz. 
Pz, B Pxzr Pr 

F= Z”+t”-l K-1 n’-” &“@ + ,,,)-I 
F = Z-(n+m-l)/(n+m) Kl/(n+m) n(m-l)/(n+m) m-m/(n+m) (n + m)-’ 

Two-phase source, pr = constant 

F= z-lp, m-2 
F= ~“-1 K-‘p,” 
F= z”K-lp;-l 
F= z-‘p, nme2 

Pz,%PPr%Pxz 
PY % Pz. s Pxz 

F= Z-~+l/nK1/” -m/“n-l-l/n PY 
F= Z~/nKli”p-l-ml”n-2-lt~ 



- -3~ (otm) 
pxz 23 

all CL’= -z QDP(l - a1) din KI. (34) 

FIG. 8. Stability function versus the amount of This gives us the general solution [cf. Eq. (I l)]: 
transport agent for X3 Y&l) + Z,(g) t fXZ(g) + 
Y(g), K = 10-4. 5,’ = - s (1 - a,) din K,/a,, (35) 

expressions of the productivity function are where r = 1, 2. Since the coefficient arr is the 
listed in Table I. reciprocal of the productivity function it is 

The importance of the minority component always positive. If the applied temperature 
is demonstrated once more by the stability gradient permits crystal growth, dlnK, must 
function Si being proportional to dlnp, be negative. 
[cf. Eq. (16)]. Figure 8 shows that Si differs 
appreciably from zero only if species i is II. Two-Phase Deposit 
present in a minor concentration. In that case 
asymptotic values are Si = 1 /(n + rn) for XZ 

The seediconsists of A, and Az and two equa- 

and Y using a one-phase source material and 
tions must be satisfied 

Si = 1 /vi in all other cases. 
all t!Y +:a,, Gr = - IRT z(l - al) din K,, 

6. Stability Considerations (36) 

In Section 5 we met a growth reaction of the 
*me 

azl @ + a,, & = - s(l - az) din Kz. 

(37) 

In the presence of a two-phase source material Generally, we obtain 

the partial pressure of compound Y was fixed 
according to [f’ = - %[a”‘(1 - q.) AInK, 

X” Ym(s, 1) %X” Y,(s, 1) + (?rl - k) Y. (31) - a,,(1 - as) dlnK,]ja (3% 

K. KLOSSE 

Now consider the possibility of a seed con- 
sisting of both X,, Y,,, and X,, Y,. Thus, in addi- 
tion to Eq. (30), we must use a second transport 
reaction involving X, Y, 

xl Y&7 1) f -T@ % nXZ(g) + k Y(g). (32) 

We wilt consider this problem more generally 
and put the reactions in the form 

O = Al(% l> + 7 vii MS), (334 

0 = A,(% 0 -t 2 v2i 4(g), (W 1 
where vii = v21 for i # h, so that species h acts 
the part of compound Y. We must distinguish 
between the following situations. 

I. One-Phase Deposit 

As an example, Az is not present in the seed 
zone and the crystal growth is carried out 
exclusively by reaction (33a), so that 
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where r=l, s=2 or r=2, s=l, and a= 
a11a22 - 62a21. It is proved in Appendix B 
that a is always positive. 

First, let us discuss qualitatively the possible 
results. If gir > 0 and [:r > 0, a deposit will 
result consisting of A1 and A, in amounts 
proportional to the respective rates of reaction, 
i.e., two-phase crystal growth makes the con- 
dition 

[iI> 0 and p2’> 0. (39) 

On the other hand, if @ > 0 and & < 0, A2 
moves towards the source zone up to depletion 
of the seed with respect to A2. Then, a one- 
reaction process takes over and a one-phase 
deposit of Al is formed. Thus, stable one- 
phase growth of A, requires 

PI’> 0 and [iz< 0. (40) 

Note that the situation of both @ < 0 and 
&I < 0 cannot be reconciled with the premisses 
dlnK, < 0 and dlnK, < 0. To investigate 
stable one-phase growth of A,, we may 
restrict ourselves to requiring that e < 0. 
In view of Eq. (38) we get 

a,,(1 - aJ dlnK, - urs(l - ar) dlnK, > 0. 
(41) 

With the aid of the stability function [Eq. 
(17)] written in the form 

s,, = 2 - 2 vrj /arp 
( 1 

(42) 
J 

Q,, [Eq. (lo)] may be related to a,, by 

ars = arr (1 + l?( Cv8i - vri) sri) * (43) 

Since urr > 0 and v,~ l v,* for i # h, Eq. (41) 
may be written 

x (1 - c$ dlnK, > 0. (44) 

Starting from a two-phase material consisting 
of both A, and A,, the growth of A, is stable 
provided that 

(1 - a,) dlnK, 
(%I - v,3 &I > (1 _ a,) & Kr - 1. (45) 

Since for &I = 0 we have u, = 0, the demarca- 
tion between stable one-phase growth of A, 

and stable two-phase growth of A, + A, 
is not affected by the kinetics of A,. Thus, if a 
increases, the right-hand side of Eq. (45) also 
increases. This means that kinetic hindrance 
always favors the existence region of two-phase 
crystal growth. 

Let us illustrate the stability criterion [Eq. 
(45)] on the basis of 

X3 Us, 1) + G(g) = 3XZ(g) + Y(g), (469 
x3 Y3,*@, 1) + -G(g) = 3xz(g> + 3 Y(.d. 

(46b) 
The equilibrium constants are taken K1 = 
10e4, K2 = 10e4, 10-5, and 10-6, correspond- 
ing top, = 1, 10m2, and 10m4 atm, respectively. 
Figure 9 gives the kind of deposit as a 
function of z =pXZ + 3p,, and the ratio 
(1 - clJ dlogK,/(l - ~1~) dlogK,. We see that 
the two regions of stable one-phase crystal 
growth are separated from each other by a 
zone of two-phase growth (shaded area). 

- %z +3PZ3btm) 
FIG. 9. Two-phase crystal growth (shaded area) 

separates the existence regions of stable one-phase 
growth in the case of a two-phase source and the re- 
actions: (1) X3 Y(s,l) + Z,(g) t3XZ(g) + Y(g) and 
(2) X3 Y&s, 1) + -G(g) * 3X.W) + 3/2 Y(g) using 
K1 = 10m4 and Kz= 10m4 (py = 1 atm), 10e5 (pr = 
1O-2 atm), 10v6(p, = 10e4 atm). 
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Growth rates are presented in the upper 
part of Fig. 10 for K1 = 10e4, zllogK, = -0.4, 
K2 = 10-6, dlog& = -0.5, py = 10e4 atm, 
and CQ = CI~ = 0. The ratio of pr over the 
actual deposit and its equilibrium value over a 
two-phase seed are presented in the lower part 
of Fig. 10. The values are obtained from [cf. 
Eq. (31)]: 

dlnp, = [(l - al) fllnK, 
- (1 - Q) din &l/(1 - 2) (47) 

for a two-phase seed and from Eq. (17) for a 
one-reaction situation. 

Up to this point, no explicit relation was used 
for the kinetic parameter a. To demonstrate 
the effect of interface kinetics, we take a 

I 

FIG. 10. Growth rates in units ODP/lRT (upper 
part) and the ratio ofpr over the actual deposit and its 
equilibrium value, pro, over a two-phase seed (lower 
part) as a function of the amount of transport agent 
for the reactions : (1) X, Y(s. 1) f Z,(g) % 3 XZ(g) + 
Y(g) and (2) &Y&,1) +-%(a) +3XZ(a) + 3/2 Y(g) 
using K, = 10e4, K2 = 10m6 (pr = 10e4 atm), Aog Kl = 
-0.4, Aog K2 = -0.5, tl, = 0. Solid lines correspond 
to the situation where kinetic hindrance of X, Y 
is absent, i.e., CQ = 0. Dashed lines are based on CI~ = 
0.05 at the point where the growth of X, Y + X, Y,,, 
passes into the growth of X, Y. 

traditional dependence on crystal growth rate 
and partial pressures V (hindrance of crys- 
tallization) according to 

f,vt > 0 

Thus, a vanishes if [ approaches zero. The 
dashed curves in Fig. 10 correspond with a, = 
0.05 at the demarcation between the two-phase 
growth of X, Y+ X, Y,,, and the one-phase 
growth of X, Y, while c(~ = 0, as above. Note 
the decrease of the growth rate of X, Yin both 
the two-phase and one-phase growth situa- 
tions. Furthermore, there is considerable 
broadening of the two-phase region. We see 
that the growth of pure X, YS12 is completely 
insensitive to kinetic hindrance at the X, Y 
side, as expected. Finally, the partial pressure 
of Y over a two-phase deposit is no longer 
a constant inasmuch as al in Eq. (47) varies 
according to Eq. (48). 

7. Summary and Conclusions 

The crystal growth rate for a chemical vapor 
transport process in a closed system has been 
discussed. To elaborate on this, the process 
was supposed to be a combination of simul- 
taneous chemical reactions. A relatively 
simple model of vapor transport [Eq. (5)] 
leads to a set of equations that are linear in 
rates of reaction [Eq. (9)]; the coefficients 
depend on mole fractions and stoichiometric 
coefficients [Eq. (IO)]. 

We have introduced a productivity function 
that is proportional to the crystal growth rate 
in a one-reaction system [Eq. (I2)]. It has been 
shown that a function designed by Alcock and 
Jeffes (IO, II) falls in this regard. We have 
proved that maximum efficiency coincides with 
stoichiometry of the gaseous phase [Eqs. 
(13) and (14)]. General reaction types in- 
volving binary and ternary gaseous phases 
have been used to illustrate the theory. We 
have demonstrated the predominant effect 
of a minority gaseous component on crystal 
growth rate (Table I). 

Using a two-phase starting material we 
have analyzed the conditions under which 
one-phase and two-phase deposits may be 
expected. A stability criterion has been formu- 
lated and discussed [Eq. (45)]. We have shown 
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that limited interface kinetics decrease the 
growth rate and favors two-phase deposits. 
Moreover, the demarcation between one- 
phase and two-phase growth is essentially 
changed by kinetics of the adjacent one-phase 
material. 

Appendix A 

For completeness we will discuss the ex- 
tremum of the productivity function F by 
considering 

where the mole fractions are restricted by 
0 < X, < 1 and xi xi = 1. The latter restraint 
can be used to eliminate, say, x,. Thus we 
have 

W/F) =-g+?t, 
axi c2 Xh2 i # 12. 

From the extremum condition a(l/F)/ax, = 0 
and the restriction zi xi = 1, we obtain & as 
the value of xi for which both l/F and F are 
extreme 

?i = lvil/ 2 Ivjl* 
j 

This result leads to the extremum 

Frn = I/[(; IviI)’ - (7 Vi)‘] 
which is always positive. The kind of extremum 
is found by expanding l/F in the neighbor- 
hood of I/F,,, 

1 /F(X) = 1 /F(a) + + i zh (XI - ai) 

x (Xj - .fj) ay;f)) 

= l/Fm + 2 (x* -;,, J 
i,.i#h 

> 

’ 

Recalling that zi+h (Xi - Zi) = -(Xh - ah), We 

obtain 

l/F(x) = l/Fm + T $(x, - ~4)’ 

which describes the behavior of a minimum. 
As a conclusion, we state that the productivity 
function F as a function of composition shows 
one maximum and is always positive. 

Appendix B 

The coefficients a in Eq. (37) are given by Eq. 
(10) 

which, since v,i = Vsi = Vi for i # h, may be 
rewritten 

ars = 
c 

Vi2 v?h vsh 

y.+- 
i#h ’ xh 

- 
(zhvi+“+‘) (,zhvi +%h)* 

Substitution into 

a=alla22-a12a21 
gives 

The factor in brackets is just a reciprocal 
productivity function of a reaction with nrole 
fractiorz xJC~+~ xi, where species h is missing. 
Therefore, as proven in Appendix A, a must 
be definitely positive. 
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