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The role of ion-ion repulsion and ion-phonon coupling in superionic conduction is explored. 
It is argued that the order-disorder phase transition is not associated with the conductivity dis- 
continuity, but with a higher temperature second order phase transition which has been seen in 
some superionic conductors and which we predict for others. The specific heat, ion distribution, 
and conductivity are calculated. 

1. Introduction 

We present theoretical calculations of the 
specific heat, ion distribution, and ionic 
conductivity for the electrolyte phase of one 
type of solid electrolyte (I, 2,3,4). We consider 
primarily the cation disordered halide and 
chalcogenide solids such as AgI (5), RbAg,I, 
(6, 7, 8, 9, IO, II), and AgSI,, (ZZ), although 
our model is equally applicable to CaF, (13, 
14). Formalizing the phenomenological classi- 
fication made by Rice and Roth (Z5), we will 
call these type I superionic conductors. Type 
II and type III superionic conductors are, 
respectively, solids of the beta-alumina group 
and the defect stabilized ceramic oxides. 
Although we are primarily considering type I, 
many of our considerations are applicable to 
type II (beta-alumina) superionic conductors. 
The term “superionic conductor” (15, 26) 
was introduced because the anomalously 
large ionic conductivities approach those of 
a good liquid electrolyte (~1 P1 cm-‘). Our 
intention here is to build on the substantial 
crystallographic and thermodynamic informa- 
tion about these materials in an effort to 
identify the dynamic features contributing to 
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their special properties. The properties which 
we want to explain are the large ionic conduc- 
tivity, the low activation energy for ionic 
conduction, and the incompletely understood 
second order phase transition within the 
electrolyte phase. In the remainder of the 
introduction, we discuss the physical founda- 
tions of our model, our methods, and our 
conclusions. 

In surveying the available literature on 
phase transitions in superionic conductors, 
we find they commonly have two kinds of 
phase transition. It appears that these phase 
transitions fall into two categories, which we 
label Class I and Class II. These are, as always, 
apparent exceptions. We discuss them later. 
For the moment, we define: 

Class I. These are transitions with a dis- 
continuity in the ionic conductivity. Since this 
discontinuity is usually large (d log,, D N 2), 
we call this the “insulator-electrolyte” phase 
transition. These transitions are first order, 
with a latent heat. They often involve a change 
in lattice symmetry. Examples are the 144°C 
transition in AgI (5) and the -151°C transition 
in RbAg& (10, 22). Figure 1 shows the 
specific heat of RgAg,I, measured by 
Johnston, Wiedersich, and Lindberg (10). 

Class II. These are second order phase 
transitions with a power law divergence in the 
specific heat. The ionic conductivity is 
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FIG. 1. The specific heat of RbAg& as measured by 
Johnston, Wiedersich, and Lindberg (10). The Grst 
order transition at 121°K is an example of what we call 
Class I behavior. The second order transition at 209°K 
has a critical exponent a’= l/16 and is an example of 
Class II behavior. 

continuous at this phase transition, although 
the activation energy for ionic conduction 
appears to change. Some examples are the 
-64°C transition in RbAgJ, (10, II), the 
50°C transition in C,H6NAg,16 (8), and the 
1150°C transition in CaF, (17). The behavior 
is well illustrated by a plot of log (To) versus 
l/T, shown in Fig. 2 from the data of Geller 
and Owens (8) for silver pyridinium iodide. 

We argue that the ionic order-disorder 
transition is the Class II transition. The 
presence of appreciable disorder below this 
transition is merely a manifestation of the 
slow rise of the order parameter t(T) with 
decreasing temperature. The Class I transition 
at T, is to a partially disordered state, 5( TI) < 1, 
but only because perfect order occurs only for 
T 4 T2, and generally T,/T, > 0.6. Our model 
calculations for the electrolyte phase are in 
qualitative agreement on all experimentally 
observed characteristics of the Class II 
transitions: the specific heat, the temperature 
dependence of the ion distribution, and the 
change in activation energy. The identification 
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FIG. 2. The ionic conductivity of silver pyridinium 
iodide as measured by Geller and Owens (8). 

of disordering with the Class II transition is 
in disagreement with other recent theories, so 
we discuss some of the evidence for our 
conclusion. 

Silver iodide has both Class I and Class II 
transitions at TI = 144°C and T, = 43O"C, 
respectively. Early workers assumed the Ag+ 
disorder occurred at TI. Perrot and Fletcher 
(5) discovered the Class II transition at 430°C 
and assigned the cation disorder to it. The 
Class I transition appears to be mostly 
structural, like the transition at 137°C. 
Actually, the 430°C transition has a small 
latent heat, but we call it Class II because it 
appears to have most of the characteristics 
listed above. The cation disorder seems neces- 
sarily to be related to the 430°C transition, 
since there are only two kinds of ion, and the 
iodine ions disorder only at melting, 555°C. 

The MAg,I, compounds (M = Rb, K, NH,) 
have both Class I and Class II transitions (6,9, 
10, II). In RbAg& these occur at TI = 
-150°C and T2 = -64”C, respectively. We 
assign the Ag+ disorder to the T2 transition, 
since X-ray data show that the other ion 
species are ordered. Two recent theories (18, 
Z9) ascribe the Ag+ disorder to the transition 
at TI. We believe this is incorrect, since it 
leaves no explanation for the Class II transi- 
tion. 
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The fluorite structures provide a straight- 
forward example of Class II behavior (20). 
They have only one phase transition, and it is 
positively identified with ionic disorder. It 
has exactly the Class II characteristics specified 
above. Although the specific heat and ionic 
disorder have been measured for only two 
materials, CaF, (14) and SrClz (20), Dworkin 
and Bredig (13) have suggested that this is a 
general feature of all fluorite structures. 

Our calculation shows that the conductivity 
is continuous through a Class II transition. 
This has not been generally recognized. For 
example, Wiedersich and Johnston (II), 
despite a correct treatment of the thermo- 
dynamics of the -64°C transition in RbAg,I,, 
incorrectly conclude that the “transformation 
is not an order-disorder reaction of the Ag+ 
ions; this follows from the continuity of the 
conductivity through the transition.” Our 
results show that the opposite is the case; it 
(probably) is an order-disorder transition 
because the conductivity is continuous. 

We suspect that this misconception arises 
from the properties of AgzHgI, (21, 22, 23, 
24), the principal misfit in our classification. 
The phase transition at 54°C has a lambda- 
shaped specific heat, characteristic of a second 
order phase transition, but the ionic conduct- 
ivity is discontinuous. The transition is order- 
disorder, but the three cations have only four 
sites. This is in marked contrast to the usual 
Class II transition where the cations disorder 
over many (-3) sites per ion. In fact, perhaps 
the most firmly based prediction of our model 
is that Ag,HgI, will have a genuine Class II 
transition at some temperature well above 
54°C. With somewhat less assurance we predict 
that all superionic conductors (excluding the 
ceramic based ones which we do not discuss) 
will have something like a Class II transition. 
The qualification is due merely to the fact that 
the presence of a small energy difference 
between sites, as seems to be the case in 
p-alumina (25), prevents the order parameter 
from becoming exactly zero at finite tempera- 
tures. This is much like a ferromagnet in a 
weak magnetic field. The theorists’ idealization 
has no phase transition, but real magnets are 
little changed. 

We have not been specific about the nature 

of the long range order. Although there are 
many site per conducting ion, the mutual 
repulsion tends to form a sublattice to separate 
the ions as much as possible. Since this can 
normally be done in at least two ways, we will 
generally have, say, n1 ions on one sublattice 
and n, on another. The obvious choice for 
order parameter is then 

This is the point of view we adopt in this paper. 
We describe the hopping ions as a lattice gas 
(26) with a repulsive interaction. We treat 
the thermodynamics in what is essentially a 
Bragg-Williams approximation (27), but for- 
mulated to permit short range correlations in 
the conductivity and the number of sites per 
ion to be greater than two. We caution the 
reader that most applications of the lattice gas 
model have been to systems with attractive 
forces, analogous to a ferromagnetic Ising 
model. Our model is analogous to an unti- 
ferromagnetic Ising model, and its phase 
diagram is quite different. 

A somewhat different picture that has been 
frequently suggested is that the cations are 
arranged in ordered microdomains, and that 
the conduction involves a cooperative motion 
of an entire microdomain (2.5, 28, 29) 
Although we do not pursue this possibility 
here, we regard this question as open. The 
level of approximation used here (-Bragg- 
Williams) does not include such cooperative 
motion. However, as one improves the 
calculations to include more and more correla- 
tions, this model may even converge to a 
collective hopping picture. 

No method of calculating the ionic con- 
ductivity could be found in the literature, so 
we invented one. This we regard as a major 
theoretical result of the present paper. On a 
more practical level, our goal is to calculate 
the seven experimentally accessible numbers, 
namely the Class II transition temperature, 
the left and right specific heat critical expo- 
nents, the conductivity (roughly characterized 
by high and low temperature activation ener- 
gies and a normalization), and the site occupa- 
tion probability (another activation energy, in 
principle), from a single set of fundamental 
parameters. These typically include high and 



IONIC POLARONS IN SOLID ELECTROLYTES 313 

low frequency dielectric constants, optical 
phonon frequencies, and ion-ion interaction 
energies. We hasten to make clear that in the 
approximations made here we cannot calculate 
critical exponents. 

The physics of the conductivity calculation 
is quite simple. We describe it heuristically 
here, and we provide a careful derivation in 
Section 4. Although our numerical calcula- 
tions are for three-dimensional networks, we 
can illustrate the method more clearly for a 
two-dimensional square lattice. Fig. 3a shows 
an ion hop from site A to site B. In site A it 
had one nearest neighbor, shown by dots, 
with configurational energy U, where U > 0 
is the ion-ion nearest neighbor interaction 
energy. It has two neighbors in the final state 
at site B, so its change in energy is 

Ef-Ei=+U+ A, 

where A is the site energy difference. Such a 
transition releases an amount of energy 
U + A. In an optical emission (absorption) 
experiment this would result in a peak at the 
frequency o = (U + A)/h. For the moment, 
we neglect the interaction with lattice vibra- 
tions. Then the optical absorption spectrum is 
just a set of discrete peaks at the energies 
A - nU, where z - 1 2 n > -(z - 1). At site A 
the ion can have anywhere from zero to z - 1 
neighbors, and likewise in the final state. The 
difference between the possible initial and 
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FIG. 3. Two possible nearest neighbor configurations 
for an ion hopping from site A to site B. 

final energies has the discrete values A - nU, 
where n has the above range. Thus the 
simple lattice gas conductivity is of the form 

2-l 
CT(O) = 2 P,J (ho + nU - A). 

n=l-2 

The probability P, is that of finding an ion in 
a configuration where a hop changes its 
energy by n U. These are obtained by summing 
over all the possible configurations, two of 
which are shown in Fig. 3. The dc conductivity 
~(0) is proportional to the n = 0 amplitude 
(for A N 0). 

Our conductivity calculation in this paper 
will use a simple approximation to our general 
formula. The approximation is one that treats 
exactly the interaction of the hopping ion with 
its nearest neighbors before and after the hop, 
but includes the interaction of the neighbors 
among themselves only in an average sense. 
As a result, the probability P, factors into 
initial and final configuration probabilities. 
Thus, if Pi, (PI,) is the probability that the 
initial (final) site has m neighboring sites 
occupied, then 

This approximation makes the configurations 
in Figs. 3a and 3b equally probable, while in 
reality Fig. 3b is less probable because of the 
repulsive interaction between C and D. This 
excludes collective hopping effects. The effect 
of including these more distant correlations is 
being explored, and will be reported elsewhere. 
We regard this as a reasonable first approxi- 
mation from which we can learn a great deal. 
We can, in fact, draw an important qualitative 
conclusion without any calculation at all. 
The probability PO of a hop which doesn’t 
change the number of neighbors will vanish 
exponentially (in l/T) as the ions become 
ordered at low temperature. At T, the ions 
become completely disordered, so P,, increases 
rapidly below T, and is constant above T,, 
in the Bragg-Williams approximation. This 
qualitatively explains the shape of the lattice 
gas conductivity shown from direct calculation 
in Fig. 4. This is the physical origin of the 
change in activation energy at the Class II 
phase transition. 



PARDEE AND MAHAN 

I I 
0.5 I .o 1.5 

m 

FIG. 4. Conductivity of the simple lattice gas with 
two sites per ion exhibiting the break in activation 
energy. Thii particular curve was done for z = 8, 
A = 0, U = 0.94 tioLO. For computational convenience 
A was made small (0.5) but not zero. 

The cation disorder, which we have just 
extensively discussed, is one of two principal 
features of our model. The second is the 
interaction of the ion current with the lattice 
vibrations. The transition of Fig. 3 can 
contribute to the dc conductivity if the excess 
energy U + A is carried away by phonons. 
The interaction between hopping ions and 
lattice vibrations is, in fact, the only contribu- 
tion to the activation energy above T,, and 
gives (30) 

A I, N e”/na (I/E, - I/Q) 

where co and E, are the static and high fre- 
quency dielectric constants, respectively. In 
the exact expression for the characteristic 
length a is complicated, but it is on the order 
of the ion-ion separation. Polaron theory 
actually predicts a departure from the 
Arrenius form 

Q = (c/T)emAffRT), 

in that the prefactor is proportional to 
T-II2 rather than T-l, but this difference is 
difficult to detect experimentally. The point we 
stress is that the low temperature region is 
lattice gas dominated; the high temperature 
con&ction is phonon assisted hopping. 

We expect that short range correlations not 
included in the Bragg-Williams approxima- 
tion will modify our results somewhat without, 
however, changing the qualitative features. 
In particular, we mention that reducing U 
lowers T, and the activation energy below T,, 
raising the conductivity. This fact may have 
practical use in obtaining more useful solid 
electrolytes. 

The rest of the paper is organized as 
follows. The Hamiltonian is stated explicitly 
in Section 2. For conceptual convenience and 
to explore its general characteristics, we apply 
it to a hypothetical solid where the cations 
incompletely occupy a bee lattice. In Section 3, 
we use the Hartree approximation to calculate 
the specific heat and ion distribution. We use 
linear response theory to obtain the conduct- 
ivity as a function of temperature in Section 4. 
Section 5 contains a discussion of numerical 
results. 

2. The Hamiltonian 
The most striking structural characteristic 

of the type I superionic conductors is the 
availability of substantially more than one site 
per conducting cation. In RbAg,I, the 16 
silver ions per cell are distributed over 56 
sites ; in silver pyridinium iodide the 10 silver 
ions per cell have 34 sites available. The 
conducting ions are disordered, but normally 
not randomly distributed over the available 
sites. We can usually distinguish crystallo- 
graphically different types of site, which we 
expect to differ in energy. Thus, we are led to 
adopt a description based on the occupation 
of cation sites. Let the cation sites be labeled 
by an index a. Each site a is either occupied 
(n, = 1) or empty (n, = 0). The cation distribu- 
tion produces an electric field at r given by 

E(r)=-VV=-Vxnn,V,(r-r,), (1) 
a 

where VI need not be specified now, but 
represents a normal Coulomb interaction. 

Since the nonconducting sublattice always 
contains large and very polarizable anions 
(I-, for example), we expect the cation hopping 
is strongly influenced by the lattice modes. 
Consider a particular longitudinal optical 
lattice mode with phonon operators as, and a 
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flat band w(q) = w,,. Then the anion displace- 
ment at rs due to this lattice mode is (A4 = 
anion mass) 

Q(r& = 2 4(2M~o,,/h)-~‘~ (a4 - aq)eiqra. (2) 
9 

The interaction between the disordered cations 
and this lattice mode is 

HI = - s (-ZeQ(qd) * E(r,). (3) 

We have taken the nonconducting sublattice 
to consist of ions with charge -Ze. 

We expect that the cation-cation repulsion 
has a strong influence on the hopping. We 
describe it by a simple repulsive interaction 
between neighboring cations, 

H, = Z: V,,, n,n,r. (4) 
(1.’ 

Our basic Hamiltonian is then 

H,, = Ao, 1 (a,+ aq + %) + H, + HI. (5) 
P 

This Hamiltonian, together with a transfer 
interaction to be included later, is familiar in 
the small polaron theory of electronic conduc- 
tion in narrow band semiconductors (31). 
There, however, Hc is neglected, while here it 
plays a fundamental role. 

For completeness, we include an outline 
of the standard transformation to polaron 
coordinates. The interaction Eq. (3) is written 

HI = 2 (iMq* a4 - in/r, aq+)n,eiq”” (6) 
qs= 

with 
Alp = ZeNlql ~(q)/2Mw,/h)1’2 (7) 

p(q) is the fourier transform of V,(r). Then we 
can complete squares to remove H, from Ho. 
It becomes 

Ho = ho, C (Aq+ A, + 3) + 2 U,,, n,n,r. 
P UU’ 

(8) 
We have defined the displaced phonon 
operators 

A, = us - i C n,rMqeiq~r~/hcoo. (9) 
CI 

The cations are now surrounded by a distorted 
lattice of the polarized anions, reducing their 
mutual repulsion to 

U,,, = V,,, - 1 Awoa (q)eiq’@a--lur). 00) 
cl 

The coefficient cr(q) is determined by calculat- 
ing (in second order perturbation theory) the 
zero temperature phonon exchange interaction 
between cations. This enables us to identify 

4ne2 1 a(q) =- - .A , 
( 1 Ao&q2 E, &g 0 1) 

where s0 and E, are the static and high fre- 
quency dielectric constants, respectively, and 
D is the crystal volume. Note that at long 
distances we would have 

Vu,, = ZeP/(ear,,r) 
and 

U,,, = Ze2/(Eor,,,). 

Of course, these expressions are wrong at 
short (first or second neighbor) distances. 

When we introduce hopping between cation 
sites we will use cation creation and destruction 
operators; c,+ creates a cation at site a, 
n, = c,+c,, etc. We write a simple transfer 
Hamiltonian 

H’ = &, c,+c,,. :w 

Hermiticity requires tuup = t$=. We do per- 
turbation theory in the small parameter t,,,. 
We neglect H’ completely in doing thermo- 
dynamic calculations, and keep 0 (t$) in 
calculating the conductivity. 

The cation operators c, do not commute 
with the new phonon operators A,. It is not 
difficult to show that the ionic polaron opera- 
tors 

C, = c,exp 
1 
-i 2 cz1/2 (q)t(aqeiq’ra + uq+e-iq’ra) 

9 I 
(13) 

commute with the A, and satisfy the same 
anticommutation rules among themselves as 
do the c,. The inverse of Eq. (13) is 

c, = C,exp i 2 c~l’~(q) 
1 9 

x (A, exp (iqar,) + A,+ exp(-iqer,)) 
I 
. (14) 

These expressions will be needed in construct- 
ing the ionic current operator in Section 5. 

3. Thermodynamics 
We neglect the transfer interaction entirely 

in calculating thermodynamic quantities. In 
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the solids of interest the conducting ions 
occupy perhaps only one-third of the available 
sites, but the average number of cations per 
unit volume is a constant determined by the 
stoichiometry. This is the physically significant 
constraint on our lattice gas. We impose it by 
using the grand canonical ensemble, choosing 
the chemical potential to keep the average 
number of cations per unit volume equal to the 
value given by the stoichiometry. This is a 
little more complicated than the simple theory 
of order-disorder transformations in AB 
alloys, although that is a special case. 

It is conceptually helpful at this point to 
consider a hypothetical bee sublattice of 
cation sites. Suppose the (+&j) site differs in 
energy from the (000) site by an amount 
A > 0. Let the (000) site in the a cell have 
occupation number nn(= 0,l) and the (J&) site 
pa = (0,l). Then our grand canonical Hamil- 
tonian is 

Ho = h% c (Aq+A, + 3) + ua; &Pa+6 

+(A9_dZ~.-~z(nm ’ (1% 

where U > 0 and the summation index 6 runs 
over the eight nearest neighbors. 

The phonon thermodynamics is elementary. 
The phonon thermodynamic potential 

Sz,, = k,T 1 n (2 sinh (+BhwJ) (16) 

gives the familiar Einstein specific heat, 

a28 
C=-TaT2 = exp Woo) 

T2 (exp (BhoO) -1)” * (17) 

The polaron Hamiltonian is formally identical 
to the antiferromagnetic Ising model in a 
magnetic field. There is no exact calculation 
of the partition function even in two dimen- 
sions. In addition, the physically interesting 
magnetism problem is constant external field, 
corresponding to constant chemical potential. 
The constraint mentioned above, 

(n,>+(p,)=fi+j=n,, 

corresponds to constant magnetization and 
cannot be normally satisfied at constant 
chemical potential. There is one special case 
where constant chemical potential and con- 
stant n, coincide, however. For p = +zU, with 

z the ion-ion coordination number, the 
lattice gas (antiferromagnet) has a second 
order phase transition. Below the phase 
transition, 

n+p=1 

is constant. The best theoretical values for 
the specific heat critical exponent 

cd =;i~ - dlog C,/dlog (1 - T/T,) 
c 

is thought to be exactly l/S (32). This critical 
exponent is known for one superionic 
conductor, RbAgJ,, and the experimental 
value is a’ = 0.14 (33). Demonstration that this 
value is really a consequence of our Hamil- 
tonian awaits detailed theoretical study of 
RbAg& as well as a substantial extension of 
Ising model “technology.” We mention this 
as a stimulus for improvement upon the 
approximate methods to which we now turn. 

We employ a Hartree (mean field theory) 
approximation for the cation occupation 
numbers. We replace the many body Hamil- 
tonian Eq. (15) by two one-body Hamiltonians, 

H,, = n,W!P - 4, 
HP =pa(zUii + A - ,u). (18) 

These give the coupled equations 

j = (pa) = (1 + exp B(zUfi + A - p))-’ 
and (19) 

ii = (n,) = (1 + expP(zUp - &)-I. 

These equations are easily solved numerically 
to give ri and p as functions of T and ,u. We 
then solve 

fib T) + P01, T> = n, (20) 

for p(T,n,). Knowing the chemical potential 
p(T,nJ, we now know ii(T) and p(T). The 
lattice gas specific heat is 

C = (d/dT) (z Uii~ + jj A) 
= (zU + A - 2zUJ) (dJ/dT). (21) 

We define an order parameter 
5 = (fi - pyn,. (22) 

It is obvious that for n, < 1 and A > 0, 

5(T> + 1, 
T-+0. (23) 
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It is not quite so obvious for A = 0. Although 
the sublattices are equivalent, Eq. (19) has 
two solutions for average sublattice occupa- 
tion. We define p to be the solution which 
vanishes at T -+ 0. Of course this is precisely 
analogous to spontaneous magnetization. 

As the temperature is increased, the entropy 
gained by disorder lowers the free energy 
more than the repulsion raises it, and p 
increases. For A = 0 the order parameter 
vanishes as (1 - T/T,#‘*, a typical mean field 
theory phase transition. For A small but not 
zero, as seems to be the case for some real 
solids, the same qualitative behavior is 
observed, except that the order parameter 
becomes small but positive at the specific 
heat maximum. This, of course, is not really 
a phase transition, but the physics of interest 
here is very similar. Results for the specific heat 
and average site occupation are shownin Fig. 5. 

This, we argue, is the Class II phase 
transition discussed in the introduction. As 
one cools a superionic conductor from, say, 
its melting point, at a temperature Tz the 
mutual repulsion of the disordered ions will 
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FIG. 5. Specific heat (solid curve) and fractional 
occupationj (dashed curve) of less occupied sublattice. 
Coordination number z= 8, nc = 0.6, and U = 1.25 
fi%YJ. The energy gap A = 0, and fiwLO = 15.4 meV 
is that of the beta phase of AgI. 

start to produce long range order. The transi- 
tion is second order, so as the crystal is cooled 
further, the order parameter 5 = (fi -p)/ 
(fi + j) increases continuously. In most super 
ionic conductors a Class I phase transition 
occurs at Tl before the perfectly ordered state 
(5 = 1 at T = 0) is achieved. This is the source 
of confusion over whether Class I or Class II 
is order-disorder transition. Disorder is 
introduced at the Class I transition because 
{(T,) < 1, but the order-disorder transition is 
at Tz where QT,) = 0. This explains the 
entropy change 

AS--k,(5IniJ+(l-5)ln(l-<)) 
at the Class I transition. For < N 0.9 

AS N 0.7 cal/(mole”K). 
Silver pyridinium iodide (7, 8) exhibits an 

apparent Class II transition at 50°C. Since its 
site populations have been measured over the 
temperature range -40 to 125°C we discuss the 
relevance of our model to it. It has 10 silver 
ions per unit cell. At -40°C the silver ions are 
completely ordered, with six of them in f sites 
(tetrahedral iodine coordination) and four of 
them in the c sites with octahedral coordina- 
tion. The f and c sites are not neighbors, but 
are connected by a total of 24 m sites per cell. 
Four m sites surround eachfsite at a distance 
of 1.6 A. Six m sites surround each c site at a 
distance of 2.71 A. The m sites are gradually 
populated as the temperature increases. We 
note that, experimentally, (rif) N (2,) = 2. We 
now have the chemical potential determined by 

ii + 2.4p = 1.0. 

This is a gross oversimplification, of course, 
and we make it only to point out that the data 
confirms our attribution of disorder to the 
Class II transition. Experiment is compared 
with this oversimplified theory in Fig. 6. 
Because of the naivete of the model, no effort 
was made to adjust the energy gap to give a 
detailed fit. Experimentally, the silver ions 
become fully ordered by -40°C without a 
discontinuity in the conductivity. This seems 
to refute recent theories (18, 19) that assign 
the discontinuous conductivity of the Class I 
phase transition to a Frenkel order-disorder 
transition of the cations. 
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FIG. 6. Site occupation probabilities for the three 
kinds of site measured by Geller and Owens (8). Solid 
curves are those obtained from simple model ri + 2.4 
~5 = 1. No attempt was made to fit anything except T,. 

4. Conductivity 

integration in Eq. (29, we obtain the retarded 
correlation function 

P,“v (Co) = P&o + id), 6 -+ O+. (26) 

The (real part of the) conductivity is then given 
by 

CJU) = 1 /o Im P,“y(u). (27) 
The dipole moment density operator is 

n(r) = e 1 r a3(r - r,)c,+c, + constant terms. 
1x 

(28) 

We define the current operator to be the spatial 
average over a microscopic volume v. of the 
time derivative of rc, 

J(r) z (i(r, 0)) = l/ V. 1 d35 i(r + 5,O). (29) 

The time derivative of rc is obtained by 

g(r) = (i/h> [H, n(r)] = (i/h) [H’, z(r)] (30) 

where H’ is the transfer Hamiltonian of 
Eq. (11). The result is 

JW = W‘W C k, &, d~+c,+~ - c,+~+c,), 8 
(31) . I 

We use a form of the Kubo formula of 
linear response theory to calculate the real where a is the cation site nearest r, u. includes 

part of the conductivity Q(O). Let J(x) denote only the tl site and its nearest neighbors, and 

the electric current operator in the Schroe- 

J(x, z) = exp(rH,)J(x) exp (-zH,) (24) 

where Ho is the grand canonical Hamiltonian 
of Eq. (14). Our procedure, which requires 
only one integration instead of the usual two, 

dinger representation. We define the tempera- 

is to calculate the current-current correlation 

ture dependent current operator 

function 

A,. The result is 

JW = (dfi~o) 1 L&d(G+Ca+d& a+6 

r 

- c.,8kxE+8, a). 

a, 6 = ror+8 - ra. 

(33) 

(32) 

We have defined 

We will need to express the current in terms of 
polaron operators C, and phonon operators 

X,, a+8(9 = exp 
1 
i 5 @(d 14 exp (-rhoo) 

x (evGq. b+6) - exp(Q - rJ> 
+ A,+exp(zk0,) (exp(-iqar,,,) 

P,,(iwJ = J’& exp (iol r) Tr [p s d3 
0 

x Jv (x, 2) Jv 0% 0,). (25) 

The density matrix p = expP(G!, - Ho) and 
the imaginary frequency wr = 217c/(@I), I= 0, 
1, 2, . . . . The thermodynamic potential 
Q. = kBT 1ogTr emBHo. After performing the z 

- exp (-iq * r))] 
I 

and, of course, 
X a,a+6 = xz, .2+8(o)* 

(34) 

(35) 
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The phonon factor in the current-current 
correlation function can be calculated exactly. 
Define 

S(T) = Wxp PC& - HA X,, .+6(Wa+~, 2. 
(36) 

After some standard operator algebra (34), 
one obtains 

S(T) = exp 
( 
- x (2N9 + l)B(q) 

9 1 

x 2 (N,/N, + 1)1112 exp (ntio,z) 
II=-al 

1” 
( 
2 c (xl (Nq f lN1’“ml 1 

’ (37) 
9 

where 

Nq = lbpWh) - l), (38) 

W = 4r)lexp(iq~r,J - 1 I” (39) 

and Z,(z) is the Bessel function of the first kind 
of imaginary argument of order n. We note 
that Nq is independent of q and define 

45 = c m) (40) 
9 

where the sum is over the Brillouin zone. Then 
Eq. (37) is succinctly written 

S(z) = exp(-& ctnh +j%o,,) 2 exp 
I#=--00 

x (nfia,(~ - fP))L (& csch3BhJ. (41) 

To calculate cr(w) we need 

P,, (io) = (e2/A2uO) z tag2 [ rma * 2 ( 2 

x 1 dz eior S(z)G(z). (42) 
b 

The polaron-polaron correlation function is 

G(T) = Tr{p,(C,+(~>C,,,(~)C,+,,C, 
f c,+,d(~)c,(~)c,+c,+,). (43) 

The density matrix zP = expj?(H, - 52,) in- 
volves only the polarons’ interaction. Even- 
tually we will be forced to approximate 
Eq. (43), but this can be done more readily 
after some rearrangement. Consider first 

G(4 = Tr{p,C,+(z)C,+,(T)C,=,C,}. (44) 

Note that at z = 0 this reduces to the trans- 
parent expression 

G(O) = Tr&G+GO - C,‘,dG+Jl 
= <%(l - %+&. (45) 

To obtain the corresponding expression for 
z > 0 we note that 

exp (zZZ,)C,+ exp(-rZ-Z,) 

= expz UC &+d - & 
( 

C,’ (46) 
d 1 

and 

ev (~fb)Ca+d exp (--%) 

= expr 
( 
pats - UC n, La. (47) 

a 1 

The sums in Eq. (44) and Eq. (45) are over 
the nearest cation neighbors of the appropriate 
site, and the subscripted chemical potentials 
include the site energy difference A, pn = p, 
pP = p - A. Denote the energy difference 
between site c( and site a + 6 by Aas = 
pa+6 - pL,. Our final expression is simplified by 
putting a prime on the sums over nearest 
neighbors to denote omission of the site 
directly involved in the hop. Thus &’ &+d 
denotes a sum over all nearest neighbors of CI 
except the site a + 6 to which the ion hops. 
This gives the convenient expression 

G(T) = ($. 4 - %+A ev n 

(48) 

The sum in Eq. (48) is over all configurations 
of the polaron lattice, and E({n}) is the energy 
of each configuration. This describes a hop 
from site c1 to site CI + 6. The other term in 
G(t) is obtained by the interchange cc f+ a + 6. 
This is an exact result for the correlation 
function G(z). It depends on the lattice gas 
form of the Hamiltonian; that is, it is valid 
only to lowest order in the transfer interaction 
t ,. However, it does not depend on the two- 
s% model, and certainly not on the bee 
lattice. We will use it as a starting point for a 
sort of cluster approximation, where we treat 
the ions nearest the hop more carefully. 
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We illustrate this for our hypothetical bee 
cation lattice. We write a Hamiltonian for the 
two sites directly involved in the hop. Our 
approximation is 

H = Ur~~p~+~ - n,($ - (z - 1) Up) 
-pa+8 (,u - A - (z - l)Ufi). (49) 

Equation (49) treats the interaction between 
the ions on the directly involved sites exactly, 
while letting them interact with their neighbors 
only through mean field theory, The partition 
function 2, implied by Eq. (49) is 

2, = 1 + f, + f, + e+ f,S, (50) 
with 

the probability that site a is initially occupied 
and site a + 6 initially empty. The other two 
factors are initial and final probability 
distributions depending on the imaginary time 
t = -iz. A site at a + 6 has probability p of 
being occupied and having energy i-U (time 
dependence eP”), and probability 1-j of being 
empty with zero energy (time independent). 
This suggests that the z dependent probability 
distribution for the hopping ion and one 
neighbor in the initial state should be 

P,(z) =fe-iru + 1 -jfj =jeezU + 1 -jj. (58) 

This is raised to the z - 1 power when all 
neighbors are included. Thus, neglecting 
neighbor-neighbor correlations, one has 

f,=expP@- A-(z- l)&) (51) 

and 

.L=expB@-(z-l1)W). (52) 

We treat the uninvolved neighboring ions in 
the same approximation as we used for the 
thermodynamics; this gives a partition func- 
tion 

G,(T) N ti(l -p) (Pi(Z))‘-’ (Pa>‘-‘. (59) 

Actually, Eq. (56) is a refinement over 
Eq. (59) in two minor respects. One of these 
is that the mutual repulsion tends to increase 
the conditional probability (that a is occupied 
and a + 6 is empty) above the random value 
iql -p), so 

Z=Zl (1 +e B(P-d-zuii)y-l (1 + eB~mJp))z-l* 

(53) 

un/m ' (1 -f,/Q +f,N AlAl +.a* 

With no additional approximations we obtain 

Gl(z) = (e-r”/Zl>f, 

The other effect is that the average micro- 
environment of a hopping ion differs slightly 
from that of an average ion, in that a hopping 
ion has at most z - 1 neighbors, thus 

x {(@~mJ$9-rU + lp(P-zui9 + 1))2-1 
x {eBoL-d-zuii)+ru) + l/eB’“-d-‘uii’ + I>,-1. (54) 

ii = l/(1 -t (esufi/fn)) > l/(1 + (l/f,)). 

This simplifies to 

G,(z) = (e-‘“/Zlf.{Ee-ru + 1 - ii>,-1 
x {#e”” + 1 -p}“-‘. (55) 

The other term in G(T) is 

Both correlation effects increase the conduct- 
ivity, a fact which may suggest the desirability 
of including further correlations. 

G,(z) = (eTd/Zl)fa {Ae*U + 1 - ii>‘-1 
x {jTemru + 1 -$?>=-I. (56) 

Equation (55) and (56) have an intuitive 
interpretation. G,(z), of course, describes a 
hop from an “n” site c1 to a “p” site CI + 6. 
Except for two correlation effects to be 
mentioned in a moment, 

It is now straightforward to obtain the 
conductivity. We consider only the isotropic 
case, +> = 44. Our formulas are 
simplified by defining the temperature depen- 
dent weights W,, 

w, = 2 
k=l-z 

(‘; ‘) (1;;) $ (1 - $-l-k 

xjk-‘(l -jj)z-l+.i-k. (60) 

Terms in the summation are omitted which 
have a negative integar factorial in the 
denominator. 

f,/Zl - fit1 -a>, (57) The weight W, is the probability of a 
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configuration where a hopping ion changes its 
number of nearest neighbors byj. Then 

b(w) = (7-ce2/A2vo) (1 - e+“)/oZ, C ts2 

x (r6* 2)” exp(-,I, ctnh &o,) 

x .=z, exd-+nM PAwd 
z-l 

x Z,, (A, csch +/%I+,) x 1 
j=l-2 

x Wj (‘n G(~cD~ + CO - A -jU) 
+fpb(nhw, + co + A +jU)). V-51) 

The observed absorption spectrum will not 
normally be this discrete series of infinitely 
sharp lines, but will be broadened into a 
continuum. We assume that some dispersive 
effect or combination of effects does broaden 
the spectrum into a continuum without 
significantly changing its envelope. We still 
ascribe, e.g., a lattice vibration of energy 
A + 5U - hw to N phonons, with N the 
integer nearest (A + 5 U - ho)/(hwo). We 
accomplish this formally by converting the 
sum on phonon number to an integral over 
phonon energy, remembering to take the 
order of the Bessel function to be the nearest 
integer, thus avoiding introducing the un- 
physical singular behavior of Bessel functions 
of large negative noninteger order. 

With that convention understood, we will 
write 

and 

With 

NJ = (A fJW(~e) (62) 

K = o/coo. (63) 

and 
W) = wJ(j - (z - w3 (64) 

s = I csch (#hw,,) (65) 
the frequency dependent conductivity is 

a(o) = z (ta,/2)2 27ce2/A2vo 
x sinh ~j’fiw/oZ,~o, 
x exp[-2, coth #Iho 
+ PO1 - 34 - 3W - I)41 

+ excJ) IN(j)+K (S)l. 

We consider a special case to obtain a better 
understanding of this expression. For n, = 1 
and A = 0 we have p = &zU. At low tempera- 
tures 

p = 1 - ri = exp(+zU) (67) 

and, so, 

Wj=e+zBu(jf 1 -z) 

The argument of the Bessel functions vanishes 
exponentially, so 

Z,(s) z I” exp(+ntio,)/n!. (69) 
The dominant term is j = z - 1. Collecting all 
the temperature dependent factors, we have 

Ta(0) z const x exp(-/XI(z - 1)). (70) 

Thus at low temperatures the dc conductivity 
activation energy is proportional to the mutual 
repulsion of the hopping ions. Although we 
set A = 0, the result is similar for A # 0, 

To(O) N const x exp(-(z - 1)bU - PA). (71) 

The first term is much more important than 
the second for superionic conductors, where 
the site energy differences are small or zero. 
The activation energy is also influenced by the 
ion concentration, but we do not have a simple 
expression for IZ, # 1. 

At high temperatures T > T, we have 

$=l-ri=l/2 (72) 
and 

wj = (l/2)2@ ,E ; 2j * 
( -1 

(73) 

The large argument asymptotic approximation 
for the Bessel functions is now appropriate, 

Then 

Z”(X) z e”/(27@“2. (74) 

To(O) z const T-1/2 exp(-$lfto,/4). (75) 

We see that the lattice vibrations determine 
the activation energy at high temperatures. 
The difference between the Arrhenias form 
(T-l) and Tell2 is usually too small an effect 
to be noticeable. 
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The above results are for our mixed system 
of lattice gas plus phonons. The high and low 
temperature results for the lattice gas alone 
are different, and simpler. They are given by 
W,. Thus we have from (68) and (73) 

T<Tc 
(76) 

T> T, 

Equation (76) shows that the low tempera- 
ture activation energy for the lattice gas alone 
is l/22(2 - l)U, while for the phonon plus 
lattice gas it is the smaller value (z - 1)U. Thus 
the phonon coupling changes the activation 
energy, although the activation energy does 
not depend upon the phonon parameter. 
Incidently, the above results for the lattice gas 
explain the behavior of Fig. 4. 

A central feature of our theory is that the 
observed activation energy A in good ionic 
conductors is caused by dynamical processes 
such as the cations’ interaction among them- 
selves (lattice gas) or the cation interaction 
with the anions (phonons). This is a consider- 
able departure from the traditional view that 
there is a static barrier over which the ion hops, 
and A is the barrier height. We believe the 
static barrier to be totally absent in good super- 
ionic conductors. In very poor conductors, 
such as Cu+ disordered salts, there may be an 
additional static barrier which retards con- 
ductivity, but we regard this as only a sugges- 
tion. 

5. Quantitative Aspects 

Most of the parameters we need, like 
phonon frequencies and dielectric constants, 
are presently unavailable for the solids of 
greatest interest, like RbAgJ, or even for the 
electrolyte (a) phase of AgI. To obtain rough 
estimates we take the data for the ambient 
temperature (/I) phase of AgI. The longitudinal 
optical phonon energy AwLo = 15.4 meV. The 
static and high frequency dielectric constants 
so and E, are, respectively, 7.0 and 4.9. The 
lattice constant a, = 6.47 A. An approximate 
evaluation of the integral over the Brillouin 

zone gives for the ionic polaron (high tempera- 
ture) activation energy 

A, = @hoLo E (e’/mz) U/E,) - (lie,) 
= 0.043 eV 

or 3, E 11.3. The experimental activation 
energy is about 0.1 eV, but this is for the region 
below 430°C and is influenced strongly by 
the cation-cation interaction. 

To explore our model we chose the ion-ion 
interaction energy U to fit the silver pyridinium 
iodide transition temperature (SO’C). 
Although a more careful mean field theory 
treatment could easily increase the answer by 
a factor of two (by including the proper 
coordination number), one would still find, 
as we did, that UN AmLO. This is very small 
compared to e2/eor. Of course the short 
distance interaction between the two ions is 
not at all like e2/s,,r. However, one does see 
from comparing Fig. 7 to Fig. 2 that the low 
temperature activation energy implied by this 
U is too small. A possible explanation is that 
mean field theory overestimates the transition 
temperature, as it does in the two-dimensional 
case. Somewhat disturbingly, this conjecture, 
is not supported by available three-dimension- 
al results. As we noted earlier, the special case 

T, OC 

oL.-UULJ 
I 2 3 4 5 6 7 8 9 IO 

I/T x 103, ‘K-I 

FIG. 7. Sample conductivity. The interaction energy 
U= 0.94 fiwLO chosen to fit T, = 5O”C, with fiiwLO = 
15.4meV, z= 8, n,= 1.0, Iz= 11.4. Thecurve demon- 
strates the transition from iattice gas dominated 
hopping at low temperature to phonon-assisted hop- 
ping at high temperature. 
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n, = 1, T < T,, is analogous to an Ising 
antiferromagnet in zero field. This, in turn, 
has the same transition temperature as the 
ferromagnetic Ising model Numerical analysis 
of this problem from high temperature 
susceptibility series (3.5,36) has given ksTc/ U = 
4.51 (simple cubic lattice), 6.35 (bee lattice), 
and 9.83 (fee lattice), in contrast to the mean 
field theory values 1.5, 2, 3, respectively. Thus 
the “exact” results require even smaller 
values of U. This comparison must be made 
cautiously, however. The transition tempera- 
ture, in contrast to the critical exponents, is 
very sensitive to structure, as we see from the 
above. None of the simple structures above 
exist in actual superionic conductors. Also, in 
real superionic conductors n, N 0.6 < 1, and 
this is not related to the available Ising results. 
The corresponding ferromagnetic Ising model 
has no phase transition at all. The antiferro- 
magnetic Ising model does, of course, but at an 
unknown T,. Mathematically, T,( U,n,) cannot 
be an analytic function of both variables about 
U=O,n,= 1. 

Calculation of the transfer energy ta is 
beyond the scope of this paper. It would, in 
any event, depend upon the detailed structure 
of each solid. Thus the normalization of our 
conductivity is arbitrary, or log (To) has an 
unknown additive constant. Comparing our 
results (roughly) to the conductivity 
(0.29 S2-‘cm-l) of silver pyridinium iodide at 
55°C we find t, = 0.48 fiw,,. This is probably 
too large. As we have seen, including correla- 
tions with more distant neighbors tends to 
increase 0, requiring a smaller td. If t, is of this 
order, it may be necessary to include next order 
perturbation theory in both the thermody- 
namics and the conductivity. 

There is, of course, ample room for improve- 
ment in our numerical approximations. We 
tind it very encouraging, however, that two 
underlying mechanisms, the mutual repulsion 
of the disordered ions and the polaron inter- 
action with the lattice vibrations, together give 
a unified explanation of three different kinds 
of experimental phenomena, the crystallo- 
graphy (disorder), the thermodynamics (speci- 
fic heat, entropy change at the Class I transi- 
tion), and the unusual behavior of the ionic 
conductivity. 
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