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An elementary but formally satisfactory localized-orbital theory is presented and shown to explain 
the basic characteristics of Mott insulators. Problems concerning the 3dorbital degeneracy, the opti- 
cal bandwidth, and the electrical bandwidth are discussed and resolved. 

We wish to present a simple conceptual 
model for the electronic structure of Mott 
insulators. This model explains the most 
prominent experimental characteristics of 
these materials in a direct and intuitive 
manner. As specific examples, we shall use 
NiO and COO. The main questions which we 
consider are: (1) Why does the ground state 
insulate? (2) Why do the insulating band gap 
and the local moment features persist above 
TN? (3) Where does the antiferromagnetic 
coupling come from? (4) Why are the observed 
optical and electrical bandwidths so very 
narrow for the 3d electrons? Questions (2) 
and (3) can be answered in a very straight- 
forward manner, but we shall see that com- 
plete answers for (1) and (4) must unfortun- 
ately be more complicated and subtle. 

Mott pointed out long ago (1) that the 
electrons of NiO and similar materials seem 
to be localized, at least in some vague pheno- 
menological sense. He was mainly concerned 
with the insulation feature (No. 1 above), 
although the other three characteristic features 
also provide strong support for the notion 
of localized electrons. If one could somehow 
provide a concrete realization of Mott’s 
intuitive picture, this should go a long way 
towards answering the above questions. We 
shall present localized orbitals with the de- 
sired properties by employing Hartree-Fock 
(HF) theory in a novel manner (2,3). 
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In the past, the main objection to localized 
orbitals has been that they seemed to conflict 
with Bloch’s theorem. In the case of a filled 
band, however, the equivalent localized 
description is known to take on a very simple 
form: A single determinant of Bloch orbitals 
is replaced by a single determinant of Wannier 
orbitals. The essence of our approach is to 
extend this filled-band relation to other 
electronic configurations, including the dis- 
ordered-local-moment configurations en- 
countered above TN. 

Consider an array of hydrogen atoms whose 
lattice structure allows a simple two-sublattice 
antiferromagnetic spin configuration. For 
sufficiently large lattice spacings in two or 
three dimensional systems, and for all lattice 
spacings in one dimension, the HF ground 
state of this system will be Slater’s antiferro- 
magnetic band state (4, 5). This provides an 
insulating band gap A w (U-W), where U is 
the one-site Coulomb repulsion integral and 
W is the width of the occupied Slater band. 
Thanks to the doubling in size of the magnetic 
unit cell, one now has a filled-band configura- 
tion, so this state permits a simple Wannier 
orbital description. (The Bloch -+ Wannier 
transformation must be applied separately 
to each sublattice.) Furthermore, one can set 
up (and actually solve) the HF equations of 
Slater’s theory directly in terms of the self- 
consistent Wannier orbitals, 
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Ajn = (~j191~Dn)~ (2) 

where 9 is the usual Fock operator consisting 
of kinetic, ionic, direct, and exchange terms. 
A calculation done in this nondiagonal (non- 
canonical) representation is completely equi- 
valent to one carried out in the usual Slater- 
Bloch representation where the i matrix 
becomes diagonal (= canonical repre- 
sentation). 

The thermal HF version (6) of this theory 
is closely analogous to the Stoner theory of 
band ferromagnetism. It predicts that the 
band gap and the strength of the individual 
moments should both vanish at a TN of order 
$A; above this TN the result is a paramagnetic 
metal, contrary to experiment. We conclude 
that although the Slater theory is satisfactory 
at T = 0, it gives a very wrong picture of the 
thermal excitations. This theory must be 
modified to demonstrate the existence of low- 
energy (-t*/U) excitations corresponding to 
disordering of the local moments. (The RPA 
approach has demonstrated the existence of 
spin wave excitations (5), but this approach 
does not describe the highly disordered 
configurations for T 2 TN.) 

We now consider Ising-like electronic 
configurations, where the net spin polariza- 
tion at each site is either “up” or “down”. 
There are 2N such Ising configurations, and 
we assume that each ooze should correspond 
to a different self-consistent solution of the 
HF equations. There should be 2N different 
HF solutions of this Ising character, at least 
when the lattice spacing (or the U/t ratio) 
is sufficiently large. Most of these Ising con- 
figurations have such low symmetry that the 
magnetic unit cell becomes very large, usually 
as large as the entire crystal. Bloch periodicity 
is still maintained, but in a far weaker sense 
than usual, since there is now a different 
magnetic sublattice for each Ising configura- 
tion. This picture was proposed some years 
ago (7), but it had never gained acceptance. 
This is probably because the existence of these 
2N different solutions had never been demon- 
strated, and because it was observed (7) 
that this approach did not suffice to explain 
why the ground state of Co0 is not 
metallic. 
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To put the existence problem in perspective 
we take the basic question to be “Can HF 
theory support local moments for magnetic 
sublattice configurations with unusually large 
unit cells, and with unusually low symmetry 
within these unit cells ?” To settle this question, 
we constructed a one-dimensional model in 
which the nonlocality of the exchange po- 
tential could be treated exactly by standard 
numerical methods (2). The system consists of 
an infinite row of “one dimensional hydrogen 
atoms,” with a Coulomb-like interaction 
which is rounded off near the origin and cut 
off smoothly at large distances, 

V(r) = V,,(r* + 4*)-l’* exp[-(r/Lj41, (3) 
A < lattice spacing < L. 

Figure 1 shows the Wannier orbitals of a 
self-consistent solution, for a seven-site 
unit cell with the assigned spin configuration 
$j,tttJ,f. This unit cell is unusually large 
(for l-D), it has no internal symmetry, and 
it presents a variety of different “local spin 
environments.” The calculation was carried 
out directly within the Wannier basis appro- 
priate for the assigned magnetic sublattices; 
Eqs. (1) and (2) were solved iteratively by an 
extension of techniques described in Ref. 
(2). 

FIG. 1. Self-consistent Wander orbitals for a 
periodic spin cotiguration of low symmetry. 
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The following features of the solution should 
be noted. 

(a) The orbitals shown are not canonical; 
the corresponding canonical orbitals 
are Bloch functions with seven-site 
periodicity. If desired, the final self- 
consistent A. matrix (2) could be di- 
agonalized numerically in order to 
generate the corresponding eigenvalues 
and eigenfunctions. 

(b) The present orbitals are obviously 
localized, thus providing a specific 
realization of Mott’s intuitive picture 
(0. 

(c) The detailed shapes of the orbitals 
are dependent on their local spin 
environments, due to the fact that 
parallel-spin orbitals must be space 
orthogonal, whereas opposite spin 
orbitals need not be, and thus the total 
HF energy depends on the spin arrange- 
ment. This gives rise to an antiferro- 
magnetic Heisenberg spin interaction, 
in full agreement with the standard 
kinetic exchange theory. In fact, these 
orbitals may be said to provide the 
natural extension of Anderson’s two- 
cation cluster model (8) to the more 
realistic case of a bulk periodic many- 
electron system. 

(d) This configuration has exactly as 
many spin-up electrons as there are 
spin-up sites, so the canonical Bloch 
band for the present spin-up sublattice 
is exactly full. The same is true for the 
spin-down band, so the Fermi level 
falls within a band gap, and the 
insulation feature of Slater’s theory 
is preserved. 

(e) Consider orbital No. 6 in Fig. 1, a 
down spin sandwiched between two 
up spins. The amplitude of this orbital 
is strongly reduced on both of the 
neighboring up sites by the Coulomb 
repulsion from these sites. (This is 
much more true for actual Mott 
insulators; Fig. 1 involves a rather 
weak interaction V, for the sake of 
illustration.) This means that the 
“net hopping integral” &, from 
(p6 to the closest available same- 

spin neighbor, qps (which looks the 
same as cpi), is very strongly reduced, 
as compared to Ai2 for example. 
In the simple antiferromagnetic con- 
figuration this hopping suppression 
applies to all of the nonvanishing 
off-diagonal ;1 elements, thus for this 
case it is obvious that the canonical 
eigenvalue bandwidth will be narrower 
by a factor of t/U than for the corre- 
sponding ferromagnetic configura- 
tion. 

It is important to note that this scheme 
involves strong orbital rearrangement, since 
each Ising configuration involves a different 
set of canonical Bloch eigenfunctions. This 
orbital rearrangement feature is what dis- 
tinguishes the present theory from Slater’s, 
and which enables the so-called strong corre- 
lations of Mott insulators to be treated within 
a single-determinant framework. It must also 
be recognized that we have focused on the 
Ising configurations purely for the sake of 
convenience, in order to justify the existence 
of a Heisenberg spin Hamiltonian. Our 
philosophy is to justify this Hamiltonian in 
the manner outlined, and then use this to 
describe other aspects of the spin dynamics. 
This is consistent with the fact that the ground 
state of Co0 is known to have four different 
magnetic sublattices (9). This philosophy 
is identical to that of the usual superexchange 
theory; we have simply embedded the latter 
theory in a more general framework. 

We have now provided answers to questions 
(2) and (3) of the opening paragraph, and 
partial answers to questions (1) and (4). 

The subtlety in the ground-state insulation 
problem is due to 3d orbital degeneracy. In 
actual Mott insulators, this tenfold degeneracy 
is partially lifted by the crystal field (CE;> 
and exchange splittings. We first consider 
NiO, whose Ni2+ ions carry eight 3d electrons. 
Using the U, U’, Jparametrization (10) for the 
intraatomic Coulomb and exchange inter- 
actions, we find a 3d band structure with the 
schematic form shown in Fig 2. This pattern 
of splittings should apply to all 2N of our 
Ising-HF configurations. Since .sr falls within 
a band gap, the physical picture described 
above is also valid for NiO, with the under- 
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NiO - 

AcF+U’-J 

FIG. 2. Schematic band structure for NiO. 

standing that the insulating gap A is now 
somewhat less than (U-lY&. (The actual 
optical gap of 3.8 eV is believed to arise from 
3d --f 4s transitions (II).) Note that AC- does 
not prevent the e,? and tz,t subbands from 
overlapping (12) ; the gap at .sF is due primarily 
to the large value of the Slater F” integral. 
It is essential to distinguish between the five 
different 3d orbital symmetries, as done by the 
UU’J parametrization for example, since the 
local p113 exchange approximation is too crude 
to explain the large insulating gap of NiO. 

In contrast to NiO, the Fermi level for Co0 
(seven 3d electrons) falls within a subband 
(the t,,J, band; see Fig. 2), so all of our Ising- 
HF configurations should be metallic. Our 
way out of this embarrassment is suggested 
by crystal field theory (23, 24) where one 
considers only a single Co2+ ion and its 
surrounding cage of six 02- ions. The crystal- 
field ground state involves three Slater de- 
terminants which are mixed by spin-orbit 
coupling (14). To describe the Ising configura- 
tions of the bulk solid, we propose wave- 
functions which are essentially direct products 
of such crystal field wavefunctions; each of 
these total wavefunctions now involves 3N 
determinants. Such wavefunctions are not 
difficult to visualize in terms of a Wannier 
basis. The connection with ordinary HF theory 
is sacrificed, but this can be partially restored 
by using the many-determinant generalization 
of HF theory (2.5). That formalism is unfor- 
tunately quite complicated, but it does main- 
tain the connection with Mott’s elementary 
argument for insulation, based on minimizing 
the total energy. There should still be a gap of 
order F” between the empty and occupied 3d 

orbitals in each determinant. A previous 
attempt to resolve this Co0 problem has tried 
to preserve a single-determinant description 
(16). We believe, however, that the large orbital 
magnetic moment (9, 14) and the detailed 
form of the excitation spectrum (13) constitute 
strong evidence in favor of the present type 
of wavefunction. 

Finally, we consider the problem of extrem- 
ely narrow 3d bandwidths deduced from optic- 
al and electrical data (II), which seem to be in 
striking disagreement with the widths of order 
2 eV obtained in conventional band calcu- 
lations (12). We saw above that the simple 
antiferromagnetic configuration should have 
its bandwidth reduced by a factor of t/U; 
taking W. M 2 eV NN 12 t, U M 10 eV gives 
t/U% l/60. However, NiO and Co0 do not 
possess such simple antiferromagnetic con- 
figurations. Above TN about half of the neigh- 
boring bonds must be ferromagnetic anyway, 
with lij =-t, so this mechanism can only 
reduce the T > TN hopping by a factor of 2. 
The 3d peak widths from photoelectron 
spectroscopy (27) are consistent with this. 
The very narrow (5 0.1 eV) optical bandwidth 
was obtained (II) from the sharpness of the 
crystal field exciton peaks (II, 13). Their 
widths are determined (23) by the exciton 
hopping matrix elements; these are known (18) 
to be of order t’/U instead of t, regardless of 
the local spin order. 

The 3d electrical bandwidth is deduced 
from the hopping of holes (Ni3+ ions in NiO) 
bound to trapping centers (Li+ impurities 
or Ni vacancies); small polaron theory is 
used to infer the hypothetical transfer of these 
holes in the absence of lattice deformation. 
The magnitude of the resulting effective near- 
est-neighbor electron hopping element “J” 
has been controversial (II, 19), but the more 
recent studies (19) conclude merely that this is 
somewhat less than 0.1 eV. Mattheiss’s 
calculation (12) gives 0.17 eV. We suggest 
that the discrepancy can be explained by re- 
arrangements of the “passive” electrons : 
polarization of the neighboring oxygen orbit- 
als, and changes in their covalent mixing with 
the 3d’s on the Ni3+ sites. We estimate that 
these effects should reduce “J” by roughly 
a factor of 3. 
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