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Superlattices, formed by ordering one kind of defect among the sites of a cubic lattice, may be 
generated by the repetition of an octahedral unit which has a defect at its center and six more defects 
at its vertices. The superlattices are severely restricted in number by requiring the vertices of the unit 
to be equidistant from the center at a radius, R, and mutually separated by at least the same distance, 
R. Such a restriction applies to cation superlattices in pyrochlores, type-Csesquioxides, and UY60rz, 
and to the formal anion vacancies which relate UYsO12 to fluorite. At each value of R, several 
superlattices may be possible, involving different fractions, l/n, of the cubic sites, and these are 
catalogued for R values less than (14)1/2uA (where al is the cell edge of the cubic lattice). Parallel 
defect-rich rows may occur for the highest values of l/n at a given R, but in most cases the restriction 
disperses defects efficiently, i.e., tends to satisfy repulsions between defects, as is demonstrated 
by computed electrostatic potentials. The stability of such ordered dispersals of defects (relative to 
their randomized alternatives) decreases as n increases, except where an increment in n involves 
an increase in R. Variations in the stability of super-lattice phases in Pro, may be of this type. Site 
potentials in the superlattices are related empirically to n1j3 using reduced variables involving R. 
High symmetry is not essential to the efficient dispersal of point defects. 

Introduction 

Complicated crystal structures may some- 
times be related to a simpler structure by the 
superlattice ordering of defects (vacant sites, 
interstitial atoms and/or substituted ions). 
Thus, the pyrochlore A&O, type and the 
type-C sesquioxides can be formally derived 
from the cubic fluorite structure by the order- 
ing of vacant anion sites. These particular 
fluorite-related structures retain cubic sym- 
metry (albeit with a doubled cell edge), but 
high symmetry is not essential to the stability 
of superlattices based on a cubic lattice; this is 
demonstrated (Fig. 1) by the homologous 
fluorite-related oxides Pr,Oz,-z (n = 7, 9, 10, 
11, 12) which are either triclinic or monoclinic 
for n > 9 (1). For n > 9, the location of anion 
vacancies within the unit cells is not known 
because of technical and experimental diffi- 
culties, but there is an apparent family relation- 

ship among the homologs (2) and at high 
temperatures the same composition range is 
spanned by the continuous a-phase in which 
anion vacancies are randomized. Ordering 
among cation sites, if present, is expected to 
be of secondary importance only, and the 
system is therefore regarded as a paradigm in 
the study of superlattice ordering among the 
sites of a cubic lattice: In the absence of a 
symmetry requirement, what distinguishes the 
observed superlattice structures from the 
many which are possible at each composition? 

Predictions of the location of “vacancies” in 
Pr,,0Znm2 (n > 9) have been further prompted 
by their utility as models in trial-and-error 
structure determinations. The usual approach 
(Z-3) is to arrange the vacancies in the same 
planes, rows, or rows of pairs, which are then 
spaced differently for the various homologues. 
Such thinking is stimulated by the success of 
the crystallographic shear concept which 
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FIG. 1. The condensed phase diagram for Pro,.,- 
PrOz (2). Single phase regions are labelled by Greek 
characters; two-phase regions are unlabelled. -----, 
assumed phase boundaries; . . . . ., metastable phase 
boundaries. 

applies to reduced transition metal oxides; 
moreover, appropriate planes or rows, etc., 
may be perceived (indeed, are inevitable) in 
the more anion-deficient fluorite-related struc- 
tures such as Pr,O,, and the type-C sesqui- 
oxides. Viewed differently, these hypotheses 
assume the persistence, over a range of con- 
centrations of defects, of the one or two super- 
lattice vectors which define the particular 
defect aggregate. This paper examines alterna- 
tive hypotheses which are concerned, instead, 
with the relative sizes of several of the shortest 
superlattice vectors. 

Anion vacancies are virtual positive charges 
in the “continuum” of the fluorite structure, 
and therefore repel one another. At low 
vacancy concentrations, one- and two-di- 
mensional aggregates of vacancies would be 
stable only if they were conducive to the 
remaining anions relaxing from their ideal 
fluorite positions in order to be more closely 
coordinated with the cations. We demonstrate 
that the effect of such repulsions may be 
minimized without relaxation, in the alterna- 
tive structures which are selected by considera- 
tion of the relative sizes of the several shortest 
superlattice vectors. In other words, this 
alternative type of rule can ensure that defects 

are efficiently dispersed, regardless of their 
concentration. 

Because the stabilizing effect of such alterna- 
tive rules does not rely on the relaxation of the 
structure around the defects, it is also indepen- 
dent of the positions of cations relative to 
anions in the parent structure. Hence the 
rules we propose could apply to superlattices 
formed in any crystal in which cations and 
anions each lie in cubic arrays. Anion- 
deficient fluorites are the particular examples 
chosen to illustrate the rules in this paper. 

Constructing and Cataloging the Superlattices 

A lattice is characterized by a basic unit 
from which it may be generated by endless 
repetition in space. The smallest such unit is 
the reduced cell (4, S), a parallelepiped with a 
lattice site at each corner and with edges which 
are the three shortest non-coplanar vectors of 
the lattice. An alternative unit is the crystallo- 
graphic unit cell, which may be several times 
larger than the reduced cell but has the full 
symmetry of the lattice. For selecting defect 
superlattices, we refer to a third alternative, 
viz an octahedral unit with a defect at its 
center and six defects at the vertices; the 
complete superlattice of defects is generated 
by repeating the octahedron in space so that 
neighboring octahedra share edges as in Fig. 2 
where the octahedron with center at A 
shares edges with those centered on C and C’. 
Although some superlattice sites are imagined 

FIG. 2. Three adjoining octahedral units of a super- 
lattice. Crosses at A, C, and C’ are superlattice sites at 
centers of octahedra; remaining sites marked by circles 
are vertices. 
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as centers and some as vertices, they are all 
equivalent. If the superlattice is one in which 
each defect is coordinated by more than six 
defects, the shell of nearest neighbors is 
completed by some of the centers and/or 
vertices of adjacent octahedra in the lattice, 
the shapes of the octahedral units being com- 
pressed in one direction so that these defects 
are sufficiently close. 

The octahedral unit and the reduced cell are 
related simply. The vectors which join the 
center to the vertices of the octahedral unit, 
when taken in the appropriate sense and 
sequence, are the parameters a, b and c of the 
reduced cell. Correspondingly, the four pairs 
of triangles bounded by the face diagonals of 
the reduced cell are equivalent to the faces of 
the octahedral unit. Although the stack of 
octahedra accounts for all the sites of a 
superlattice it does not fill all the space between 
them (unlike a stacking of reduced cells or 
unit cells); tetrahedra such as BB’B”D 
remain. Hence, if a superlattice comprises 
I/nth of the sites of a cubic lattice (cell edge uA) 
the octahedral units will each have a volume 
4naj/3, while the reduced cell has the volume 
na:. 

We propose the restriction that the vertices 
of the octahedral unit should be equidistant 
from its center, at a separation denoted by R, 
and also that the vertices should be mutually 
separated by at least R. Such a restriction 
applies to the anion vacancies which relate 
UY,O,, (and Pr701J to fluorite; if the unit 
cell edge of the anion sublattice is a, (half the 
fluorite cell edge, aF) then R = 51j2a, and the 
octahedral unit has the shape (I) in Fig. 3. In 
the same compdund, the lattice of the six- 
coordinated U6+ cations (which are cation 
“defects” relative to fluorite) is generated by 
theoctahedral unit IIin Fig. 4, with R = 61’2aA. 
Further octahedral units, to be described 
below, apply to other fluorite-related super- 
lattices: 

(i) The face-centered cubic lattice of the 
small, six-coordinated B cations in the pyro- 
chlore type A,B,O, (R = 81’2aA). 

(ii) The simple cubic lattice formed by the 
more regularly coordinated cations in the 
type-C sesquioxides (R = 2~~). (Note, how- 

I I.7 (M,O,~) 
210 210 

FIG. 3. Diagrammatic illustration of the three 
octahedral shapes in which vertices are selected from 
cubic lattice sites lying on a sphere centered at 0, 0, 0 
with a radius of Y’*u~, so that vertices are at least 
51’2al apart. The broken lines indicate hidden edges 
for which lengths are not shown. In each case, only one 
of the possible choices of coordinates for vertices is 
shown, but no other shapes are possible. Also shown is 
the proportion of lattice sites involved in the super- 
lattice which is generated by repeating the octahedron 
in space; the oxide formula shown would arise from a 
similar superlattice of anion vacancies in the fluorite 
structure. 

ever, that the unit cell must be further multi- 
plied for the total structure, to describe 
positional relaxations of other ions.) 

(iii) The rhombohedral lattice of six- 
coordinated cations in Zr10ScQ026 (6) for 
which R = (10)1’2u,. 

Table I is an exhaustive catalog of super- 
lattices possible for 31’2u, < R < (13)1’2u,. 
Since the vertices of the corresponding octa- 
hedral units must be selected from the parent 
cubic array, the shapes of the octahedra are 
severely restricted in number for each choice 
of R. For example, a sphere of radius 51’2uA, 
centered on the lattice site chosen as the origin, 
intersects 24 other lattice sites given by the 
permutations of the coordinates (2, 1, 0) and 
their negatives. These sites may be selected to 
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FIG. 4. The four octahedral shapes in which vertices 
are selected from cubic lattice sites lying on a sphere of 
radius 61/2uA and at least 6L/2uA apart, shown dia- 
grammatically as in Fig. 3. Octahedra IA and IB 
generate the same superlattice. Octahedron III is 
really a hexagon, generating a two-dimensional 
superlattice. 

give the octahedral shapes depicted dia- 
grammatically in Fig. 3. Because of centro- 
symmetry, the coordinates of only three of the 
six sites need be specified. Other, equivalent, 
choices of sites may give the same octahedral 
shapes, but no other shapes are possible for 
R = 51’2u,. As a further result of centro- 
symmetry, any octahedron must contain three 
rectangular midplanes, each with a diagonal of 
length 2R; hence, if one edge of the midplane 
has a length Q, the other has a length of 
(4R2- Q ) . * iI2 The proportions of only one 
triangular face on an octahedron need there- 
fore be specified and the remaining edge 
lengths can be quickly written down. Since 
we require vertices to be separated by a distance 
of at least R, no edge can be less than R or 
greater than 3112R in length. The anion sites 
on the sphere need only to be examined in 
three’s to see if they form an acceptable face 
for an octahedron under these conditions. The 
allowed triangles then group themselves 
according to the octahedra in which they occur 
as faces, with no triangle occurring in more 
than one octahedral shape for a given value 

of R. When the procedure is computerized, 
the triangles and their sides are easily sorted 
by size so that the smallest faces (for example) 
may be used to characterize and enumerate the 
octahedral shapes. Note, however, that for 
some octahedral shapes an edge may take 
more than one vector form, e.g., a length of 
(18)“2 a, may arise in a (330), direction or a 
(114), direction (where the subscript A refers 
the direction to the parent cubic lattice); these 
directions correspond to different orientations 
of the octahedron (and generated superlattice) 
relative to the anion lattice, giving rise to 
different symmetries for the total structure 
(superlattice plus fundamental lattice) and 
therefore requiring separate entries in the 
catalog, Table I. For superlattices with a 
coordination number greater than six, two or 
more alternative shapes may be possible for 
the octahedral unit, and in such cases Table I 
records all possible shapes, e.g., superlattice 
I for R = 61’2u, is generated by either octa- 
hedron IA or IB. 

The method of construction does not pre- 
clude the octahedral unit from having one pair 
of faces, say BB’B” in Fig. 2, so large that the 
associated vector AD is less than R in length. 
The Bravais condition then requires the vector 
AD to be repeated endlessly, creating vacancy- 
rich rows in one direction. Apart from the 
close approach within rows, a defect’s nearest 
neighbor defects will be six in number in 
adjacent rows at a separation R. Thus, the 
octahedron I for R = 5”*u, generates parallel 
rows of defects within which defects are 
separated by 3”*a, in the [l ii], direction, as 
observed for the anion vacancies in the 
UY,O,, structure type. To detect such separa- 
tions shorter than R, the appropriate vectors 
must be calculated by adding the basic 
vectors contained within the octahedral unit. 

The cataloging procedure also selects the 
various two-dimensional hexagonal super- 
lattices which can be formed on a (11 1}1 
plane of the cubic lattice, i.e., the octahedral 
unit has degenerated to a hexagon of six defects 
with an additional defect at its center. These 
are included in Table I as the last entry for the 
R values at which they occur, e.g., octahedron 
III for R = 6112a, and octahedron II for 
R = g112a A’ 
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Relative Stability of Superlattices lattices which achieve the widest sepatations 
between (i.e., dispersal of) points confined in 

Brunner (7) has enlarged on the fact that a given volume. It is usually supposed that 
lattices which achieve the closest packings of cubic or hexagonal symmetry is a necessary 
spheres also involve the highest coordinations feature of such lattices, but computations of 
of spheres by spheres, and are the same coulombic repulsions for the superlattices in 
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Table I refute this; regardless of symmetry an 
arrangement which coordinates each defect 
with an abundance of neighboring defects is 
a more efficient dispersal of defects than other 
arrangements in which defects have fewer 
(and therefore closer) nearest neighbors. 
Similar comments apply to next-nearest 
neighbors and successive shells of neighbors. 

In most cases the “octahedron rule” places 
a lower limit of six on the coordination of 
defects by defects and therefore places a lower 
limit on the efficiency with which the defects 
are dispersed. The exceptions are the super- 
lattices which contain parallel, defect-rich 
rows, as noted in Table I, and even in these 
structures the rule acts to achieve wide separa- 
tions between defects in adjacent rows. 

The simplest comparison between super- 
lattices is made by ignoring the normal sites 
and imagining each superlattice site to be 
occupied by a point charge -e (equivalent to 
one electron) immersed in a continuum of 
neutralizing positive charge. The Ewald 
method (8) enables the potential to be 
computed at any position within such a 
lattice and Table I lists the potential 4 at 
the actual superlattice sites, assuming a, = 
2.5 A. 

For each negative charge, e, 4 is positive 
because the neutralizing continuum is a stable 
environment only partly counteracted by the 
presence of the other superlattice points 
(depending on how well they are dispersed). 
There is a tendency for 4 to decrease as the 
defect concentration decreases, i.e., as the 
volume, na:, per superlattice site increases and 
the neutralizing continuum becomes attenu- 
ated. However, there is a disproportionately 
large decrease in r$ between superlattice I for 
R/a,, = 5112 (n = 7) and the simple cubic 
superlattice at R/a,, = 2 (n = 8). This indicates 
that the former superlattice disperses defects 
more efficiently than the simple cubic super- 
lattice, and shows that the aggregation of 
defects to a separation of 3l”a, within [Iii] 
rows is more than offset by spreading an 
abundance of next-nearest defects at 5’/‘a, 
and 61/‘aA (six at each of these separations). 

To provide a more sensitive comparison of 
the efficiency of dispersal, 4 needs to be 
compensated against the general decrease 

which it suffers as n increases (i.e., as the 
concentration of defects decreases). Since 
potentials are inversely proportional to dis- 
tance, the 4 for all superlattices obeying 
the “octahedron rule” may be brought to the 
same scale by multiplying by the appropriate 
value of R. The fraction, l/n, of cubic sites 
involved in the superlattice, may be similarly 
scaled by multiplying by R3. Thus, the simple 
cubic superlattices for R = 3a, (entries V and 
VI in Table I) provide the same values of the 
reduced variables 4. R and R”/n as does the 
simple cubic superlattice for R = 2a,. If the 
few superlattices containing linear aggregates 
are excluded, a graph of 4. R versus n’13/R 
(Fig 5) shows that the remaining superlattices 
plot close to a straight line between the points 
for face-centered (FCC) and simple-cubic 
(SC) superlattices. The FCC and SC lattices 
therefore represent upper and lower limits to 
the efficiency with which the “octahedron 
rule” disperses defects. However, with the 
exception of body-centered-cubic super- 
lattices, the intermediate points in Fig. 5 
represent symmetries ranging from rhombo- 
hedral to monoclinic which can be determined 
by applying Niggli’s tables (4,5) to the shapes 
of the reduced cells. Note that the overall 
symmetry might be reduced to triclinic when 
the superlattices are superimposed on ionic 
crystal structures such as fluorite. 

The good fit to a straight line shown in Fig. 5 
suggests an empirical relationship between 4 
and the volume and edge lengths of the reduced 
cell for Bravais lattices which have a coordina- 
tion number of six or more. This is the subject 
of a separate study to be published by one of 
us (T.C.P.), and Fig. 5 is captioned in these 
more general terms. 

We have drawn a distinction between two 
ways in which superlattice ordering may 
stabilize point defects in ionic crystals, viz by 
dispersing defects and by facilitating the 
relaxation of cations towards anions. It is 
possible that the “octahedron rule” favors 
relaxation also, but we have not examined this 
prospect. However, the relative importance 
of defect dispersal may be gauged from the 
potential $,, at ordered, vacant anion sites in, 
for example, the fluorite structure. 

For crystals consisting of several superposed 
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FIG. 5. The “reduced site potential,” 4. R for Bravais lattices in which the coordination number is at least six. 
4 (e/A) is the site potential when each lattice site has the electronic charge-e, immersed in a continuum of neutral- 
izing charge. R (A) is the separation between nearest neighbors and n (A”) is the volume per site. Arrows indicate 
the points for face-centered (FCC), body-centered (BCC) and simple-cubic (SC) symmetry. The points plotted 
relate to superlattices obtained by selecting l/nth of the sites of a cubic lattice, cell edge 2.5 A. 

ionic lattices, the potential at a site is obtained 
by summing the potentials which the Ewald 
method produces from each constituent 
lattice. (The effects of the neutralizing continu- 
ums cancel, provided the total structure is 
neutral.) When the superlattices of Table I are 
applied, without relaxation, to anion-deficient 
fluorite-type oxides of cell edge 5 A, 

ijo = 0.6415488( l/n - 1) + 2.269838 - 24, 

where the first term in the sum is due to the 
cations, the second is the contribution that 
would result from a complete lattice of oxide 
ions, and 24 arises from the missing anions. 

$0 has reciprocity relationships (9) with the 
potentials at the cation sites and remaining 
anions, so that the effect of vacancy ordering 
on the Madelung energy is totally reflected in 
the difference between tiO and IcIR, the average 
anion site potential when vacancies are 
randomized. Despite claims to the contrary 
(IO), tiR is given by the “partial occupancy” 
model (II) so that tjR = 1.6282892 (1 - I/n). 

Ideally, the potential at any vacant site 
should be zero. For the superlattices up to 
R = 8112aA, $R - Il/,-, is greater than tiR/2, so 
that the dispersal of vacancies achieves better 

than half the complete stabilization of 
vacancies. 

Fig. 6 is a plot of $R - J10 versus n113 for 
the dispersed superlattices of Table I, together 
with the rhombohedral and hexagonal struc- 
tures containing parallel “[ll llA strings” of 
vacancies proposed by Hyde et al. (2) and the 
structures containing (213), planes of [I Ii], 
strings proposed by Martin (3). The points 
for the “dispersed” structures fall on a series 
of straight line segments, each segment relating 
to the particular value of R/a* with which it is 
labelled. These segments are arranged en 
echelon to give a slow general decrease in 
$R - $,, as n1j3 increases (i.e., as the propor- 
tion of vacancies decreases). In contrast, the 
decrease is rapid for the “[ill] string” 
structures and catastrophic for the “(213) 
plane” structures. $R - tj,, eventually becomes 
negative for such structures, indicating that 
they are less stable than their randomized 
alternatives. 

Alternative Rules for Dispersing Defects 

While the octahedron rule sets a lower limit 
on the efficiency of the dispersal of defects, it 
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FIG. 6. The stability gained by ordering vacant anion sites in a fluorite-type oxide of 5 A cell edge. v0 is the 
potential at a vacant site in the ordered structure, and vR is the average anion site potential in a random structure 
of the same composition. l/n is the fraction of anion sites vacant so that MnOZn-2 is the oxide formula. The ideal 
potential at a vacant site is zero, whereas ~a = 1.6282892 (1 - l/n). The untilled circles are for hexagonal and 
rhombohedral structures containing [ll l] “strings” of vacancies (1, 2). The squares are structures containing 
[321] planes of vacancies after Martin (3). The filled circles are dispersed arrangements of vacancies, which plot 
on straight line segments labelled by values of R/2.5 where R (A) is the closest approach between vacancies. 

does not produce all the superlattices which 
surpass that limit. Note that for R = (I 3)‘/‘aA, 
superlattices IV and V both provide for l/36 
of the sites to be defective, These superlattices 
have almost identical values of 4, but two of 
the eight nearest neighbors at (13)1’2aA in IV 
are replaced by four next-nearest at (14)l”aA 
in V. This suggests that a rule requiring four 
nearest neighbors at k112aA, plus four next- 
nearest, at (k + l)‘lzu,, would disperse defects 
with efficiency similar to the octahedron rule. 

An exhaustive search for such superlattices 
produced only three within the range of 
Table I; one for k = 5l” and l/11 sites 
defective, another at k = 3 and l/23 sites 
defective, and a third at k = (11)“’ and l/32 
sites defective. For the first two of these 
tiR - J/0 is plotted on Fig. 6. The point for 
k = (5)‘i2 falls on the line for R = 5112aA, but 
subsequent points are increasingly displaced 
from the “R = klt2aA line” towards the 
“R = (k + l)r”a, line” (i.e., they disperse 
vacancies slightly better than the trend of the 
octahedron rule when the closest approach 
between vacancies is the same). 

Intergrowth Between Superlattices 

It frequently happens that octahedral units 
for differing values of R have a face of the 
same size and shape. This means that the 
corresponding superlattices, in one direction, 
will contain the same sort of parallel defect- 
rich planes, along which it is possible to match 
the superlattices geometrically in cases of 
intergrowth; the superlattices can be viewed 
as differing only in the spacing between these 
planes. A column of Table I therefore provides 
cross references between different octahedra 
which have a face in common. The two- 
dimensional superlattices are not without 
significance in this regard; they may possess 
some stability in their own right, and when they 
have geometry in common with planar net- 
works in a three-dimensional superlattice 
they may be important as planes along which 
the three-dimensional superlattice may be 
terminated. 

The midplanes of the octahedral units also 
represent defect-rich planes in the superlattice. 
At a given value of R, the same sort of mid- 
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plane usually occurs in more than one octa- 
hedral shape, and again represents a type of 
plane along which the corresponding super- 
lattices can be matched. However, when 
midplanes are used for this purpose it fre- 
quently happens that defects on opposite 
sides of the plane are brought to a separation 
less than R (T. Parks, unpublished work). 

Intergrowth would be especially favored 
between superlattices which are close in 
composition and in the values of R and 4, a 
situation which is increasingly more frequent 
for larger R and lower vacancy concentration. 
Low vacancy concentrations are also more 
likely to be involved in intergrowth because of 
the increasing occurrence of alternative super- 
lattices for the same concentration, sometimes 
at the same value of R. 

Rhombohedral “String” Structures 

The superlattices in Table I are obtained by 
selecting sites from a simple cubic lattice with 
cell edge a,, but where R/as is the square root 
of an even number, the superlattices may also 
be used as patterns for distributing defects 
over a face-centered cubic (FCC) lattice with 
a cell edge of 2a,. Mention has already been 
made of the fluorite-related structures in which 
six-coordinated cations are arranged according 
to superlattices of Table I, viz UYsO12, the 
pyrochlores, Zr10Scq026, and the type-C 
sesquioxides. Of these, UYbOlz (which is 
isostructural with I-Pr,O,, and Zr,Sc,O,,) is 
special in that the anion vacancies as well as 
the six-coordinated cations are arranged 
according to a superlattice from Table I 
(R/a, = 5’12 and 6112, respectively). It is, in 
fact, the first member of an infinite homolo- 
gous series of rhombohedral structures with 
the same geometrical properties, containing 
parallel strings of vacancies (internal spacing 
aA [ 1 ii]) and six-coordinated cations (internal 
spacing a,[222]). Typically, the arrangement 
of vacancies is given by a superlattice con- 
structed with R/aA = k”’ (k odd) while the 
corresponding superlattice of six-coordinated 
cations has R/a, = (k + l)‘12. The octahedral 
units in each case are dominated by two large 
equilateral faces (giving rise to the rhombo- 
hedral symmetry) with edges (3k - l)l/‘a, 

long, while the oxide formula is M,,02,-2 with 
n = (3k - 1)/2. The idealized unit cell in the 
hexagonal setting has a = (3k - 1)l12aF/2, but 
the other parameter is constant at c = 31”uF. 
There are gaps in the series, e.g., M,,O,, and 
Mzz04, are absent because there are no oxygen 
lattice vectors with length 7112aA or (1 5)‘12 a,, 
and the numerology of vectors with lengths 
8112aA and (16)‘~2uA is such that the corre- 
sponding cation superlattices cannot be 
constructed either. 

Besides dispersing defects efficiently, the 
UY,O,, structure favors relaxation from ideal 
fluorite positions towards closer coordination 
between cations and remaining anions (6). 
We have not yet been able to determine 
whether this property is due to the coincidence 
of two of the superlattices of Table I. If it is, 
one might expect to synthesize other structures 
low in the series, provided that appropriate 
chemical substitutions were made. Higher in 
the series the close approach of defects within 
rows becomes increasingly unfavorable (rela- 
tive to alternative structures in which the 
defects are more widely dispersed) perhaps to 
an extent which could not be overcome by any 
favorable relaxation. These prospects are the 
subject of a separate study (T.C.P.). 

Application to the Praseodymium Oxides 

Unit cell dimensions for the higher homologs 
Pr,Olb, etc., have recently been determined by 
Kunzmann and Eyring (I) using electron 
diffraction, but the positions of vacancies 
within these cells is still unknown. Kunzmann 
and Eyring have proposed that vacancies are 
separated by a,[1 1 l] in pairs, the centers of 
which are strung along the [21 i], axis, thus 
preserving some of the close approaches 
between vacancies observed in Pr,O,,. It is 
equally valid to disperse the vacancies more 
widely within the unit cells, seeking agreement 
with the arrangements shown in Figs. 3 and 4. 
Before making such comparisons, it should be 
noted that the unit cells of the “dispersed 
vacancy” models may be enlarged or lowered 
in symmetry by subsidiary ordering of cations 
and relaxations from ideal sites, i.e., the 
experimental unit cell vectors should be 
vectors of the model structures, though not 
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necessarily the shortest vectors. Thus an 
encouraging agreement is seen for Pr120Z2 
which is observed to be monoclinic with the 
idealized unit cell vectors a = +,[21i], b = 
+a,[033], c = ar[022]; the dispersed vacancy 
model is C-centered with the same a and b but 
only half the observed c vector. Pr,,Ol, is 
observed to be triclinic with a =-&[21i], 
b =-3aF~iT3~],~c~=3a,~~.iE] which,-with vacan- 
cies positioned at 0, 0, 0, and 0, 3, 3, is equiva- 
lent to the model structure mentioned under 
“Alternative Rules for Dispersing Defects.” 
For Pr9016, Kunzmann and Eyring found the 
triciinic -unit cell vectors a = 4a,[2lf], b = 
J&031], c =&[li2], which cannot be 
matched to the rhombohedral “dispersed 
vacancy” model having the pseudohexagonal 
parameters a = 6’12a,/2 and c = 3(3)lj2aF. 
However, the dispersed model bears some 
resemblance to a high-temperature modifica- 
tion found earlier (12) with the hexagonal 
parameters a = 61t2aF/2 and c = 31t2aF. The 
dispersed model derived for Pr10018 using the 
“octahedron rule” is triclinic with a = a,[lOl], 
b = &~r[O31], c = +a,[21 11, which cannot be 
matched to the observed triclinic structure 
with a = &z,[21i], b = &+[O%], c = a,[022]. 
However, as explained above. it may be 
possible to disperse defects using rules other 
than those described in this paper, if the 
emphasis on high coordination numbers is 
shifted to the second or subsequent shells of 
neighboring vacancies. 

We will continue our efforts to disperse 
vacancies within the observed unit cells, 
because such structures may explain several 
features of the Pro, phase diagram (Fig. 1). 
The most puzzling of these is the absence of a 
compound Pr,O,,, since previous structural 
models (Z-3) for the Pr,02,-2 series have 
provided structures at n = 8 which do not 
depart from the trends at neighboring compo- 
sitions. However, vacancy superlattices obey- 
ing the “octahedron rule,” for example, 
possess the required variation in character. 
Without allowing for relaxation of ions from 
their ideal fluorite sites, Fig. 6 shows that an 
oxide, M,O,,, would be somewhat less 
favored (relative to the disordered state) than 
M7012 or M90,.+ Instead, Fig. 5 shows that 
the simple cubic superlattice involved in this 

M,O,, is the least efficient means of dispersing 
vacancies that can result if one requires the 
vacancy superlattice to have a coordination 
number of six or more. As mentioned above, it 
is occasionally possible at other compositions 
to find superlattices which disperse vacancies 
well with a coordination number less than six, 
but only if analogous constraints are imposed 
on the second and higher shells of neighboring 
vacancies. We could find no such alternatives 
at M,O,*, so that the simple cubic super-lattice 
remains the best means of dispersing vacancies 
at this composition but nevertheless is inferior 
to the structures possible at M,O,, or M9016. 

At high temperatures, the broad, cubic o- 
and cc-solid solutions are separated by a narrow 
but persistent gap in miscibility, centered 
approximately on the Pr,OIz composition. 
a-Pro, occupies the composition region where 
approaches of U~( 111) between vacancies are 
inevitable, with the consequential presence 
ofcations which are six-coordinated by anions. 
This phase is continuous with the metastable 
&Pr203, a type-C sesquioxide in which the 
“octahedron rule” applies not to the vacancies 
themselves but to the six-coordinated cations 
at the centers of vacancy pairs oriented 
along (1 I I)a. The a-phase, however, spans 
the region where the coordination of cations 
by anions need not fall below seven, if the 
vacancies are dispersed according to a simple 
geometrical restriction such as the octahedron 
rule. r-Pr,012 is special in that both the anion 
vacancies and six-coordinated cations are 
dispersed according to superlattices obeying 
the octahedron rule. (The dispersal of vacancies 
arises from the abundance of second and third 
nearest neighbors, which outweighs the 
approach of a,[1 1 I] between nearest neighbor 
vacancies.) Could this be the reason for the 
prominence of z-Pr,012 as a divide between the 
u and r~ regions ? 

At low temperatures, cr-Pro, is replaced by 
the discrete compounds Pr,02,-2 (n = 9, 10, 
11, 12) in a series of peritectoids. The electro- 
static potentials plotted in Fig. 6 for the 
“dispersed” structures M9016, M10018, and 
MI1O20 (which contain vacancies separated 
by 5”‘a,) are in accord with the regular 
decrease in peritectoid temperatures observed 
for the praseodymium oxides of the same 
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composition. We suggest that the curious 
eutectoid in the cc-phase near PrI,O,, (Fig. 1, 
inset) occurs because the vacancy concentra- 
tion has fallen to the point where an ordered 
compound can form with vacancies no closer 
than 61/2a A’ 
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