JOURNAL OF SOLID STATE CHEMISTRY 21, 145-154 (1977)

Structural Changes in the Solid Solution (Ti,-,V,),0; as x Varies from

Zero to One

CATHERINE E. RICE anp WILLIAM R. ROBINSON*
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907

Received October 9, 1976; in revised form January 21, 1977

The crystal structures of (Ti;-,V,),0, x =0.005, 0.01, 0.02, 0.04, 0.07, 0.30, 0.50, 0.70, and 0.90,
have been determined from X-ray diffraction data collected from single crystals. The compounds
are thombohedral, space group R3¢, and are isomorphous with ¢-alumina. The hexagonal cell
dimensions range from a = 5.154%(6) A, ¢ = 13.627(2) A, for (Tio.s0s Vo.005)203 to a = 4.9813(2) A,
¢=13.996 (1) A for (Tio,10Vo.90)205. The most pronounced effects of V3* substitution occur in the
0to 7 at% V range and can be described as an increase in the metal-metal distance along the ¢ axis
from 2.578(2) A in pure Ti,O; to 2.652(1) A in (Tio.93V0.07)203 coupled with reorganization of the
structure in order to maintain constant metal-oxygen distances. These structural changes have been
related to both the change from semiconducting to metallic behavior and the disappearance of the
150-350°C resistivity drop which occur with increasing vanadium content in (Ti,,V.),03 as x in-
creases from 0.0 to about 0.07. They are consistent with the band theory proposed by others for
this system. Indications of unusual structural behavior in the 90-100 at %, V range are also noted.

Introduction

The addition of small amounts of V,0,
to Ti,Q, produces a gradual semiconductor—
metal transition (/) much like the one observed
in pure Ti,O; upon heating through the
150-350°C region (2, 3). Both electrical
transitions are accompanied by similar dis-
tensions of the crystal lattice (4, 5), and no
change in space group occurs in either case.
These transitions have been studied extensively
by resistivity and thermoelectric measure-
ments (6, 7), specific heat measurements (8§),
Raman spectroscopy (9, 10), and ultrasonic
attenuation (//, /2). In both cases the struc-
tural and electrical changes can be explained
in terms of changes in metal-metal bond order
which accompany the closing of a small gap
between filled and empty 4 bands in the band
structure of the semiconducting phase (/,
13, 14).

In addition to showing a semiconductor—
metal transition, low-vanadium alloys in the
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(Ti;_4V,),0; system exhibit quite anomalous
low-temperature specific heat (/5), magnetic
susceptibility (/6, 17), and magnetoresistance
behavior (/8). These phenomena have vari-
ously been interpreted as indicative of spin
glass properties (/7), a pseudo-one-dimen-
sional density of states distribution (/5),
correlative effects leading to heavy polaron
formation (/9), or the existence of a narrow
impurity band near the Fermi level (20).
The role of vanadium in this system is still
not well understood.

The unit cell parameters in the (Ti;_,V,),0;
system (5, 21) show drastic deviations from
Vegard’s Law, suggesting complexity in the
intimate structural behavior. In the range
0-109%, vanadium, the change in cell para-
meters is analogous to that observed upon
heating Ti,O, through its semiconductor—
metal transition suggesting that the changes in
(Ti,_,V,),0; might be analogous to those
observed (22, 23) in Ti,0O;. In addition to the
series of high temperature crystal structures
of Ti,0;, the room temperature crystal
structures of Ti,0s, (Tig.5Ve.1),0, and V,0,
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have been determined (22-27). However,
detailed crystal structure information for
intermediate concentrations has not been
available. In light of the unusual structural,
electrical, and magnetic behavior observed in
this system, we thought it interesting to study
the changes in atomic positions which occur
as a function of x in (Ti;_,V,),0;, giving
special attention to the low-vanadium regime.
Therefore, we have determined the crystal
structures of nine such solid solutions where x
varies from 0.005 to 0.90.

Experimental

Samples of (Ti,_,V,),0; (x=0.005, 0.01,
0.02, 0.04, 0.07, and 0.10) from single-crystal
boules were provided by Professor Honig of
this department. The compositions of samples
with x £ 0.10 were determined by elemental
analysis (Z, 15). The other samples were pre-
pared by the Purdue Crystal Growth Facility
by melting together the requisite amount of
Ti,0; and V,0; in a tri-arc furnace. Past
experience in this facility has shown that this
technique gives Ti/V ratios within 19 of the
nominal composition. Spheres with radii
ranging from 0.0060 to 0.0114 cm were
ground from fragments of the boules. Weissen-
berg photographs of representative crystals
confirmed the known space group R3c (no.
167) and diffractometer measurements for all
crystals were compatible with this assignment.
No evidence for ordering of vanadium was
found.

All crystals were mounted along nonprin-
cipal axes to reduce the effects of multiple
diffraction (28). Unit cell parameters and
intensities were measured using an Enraf-
Nonius CAD-4 diffractometer with graphite
monochromated MoK« radiation. Only unit
cell parameters were determined for x = 0.10.
An incident beam collimator 0.8 mm in dia-
meter at a takeoff angle of 4.0° was used with
a receiving aperture located 173 mm from the
crystal. The pulse height analyzer used with
the scintillation counter was set to admit
approximately 95% of the diffraction inten-
sity. Following centering of the crystal, a set
of 15 reflections widely separated in reciprocal
space was centered and used to determine the
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orientation matrix for use in intensity data
collection.

Precise unit cell parameters were deter-
mined by centering the Ka, (1 =0.70926 A)
peak for 50 to 60 reflections, 80° < 20 < 100°,
at both positive and negative 26 and taking the
average as the diffraction angle. Hexagonal
cell parameters and ESDs (Table I) were
calculated by least-squares refinement of the
observed 20 values using the program LCR-2
(29). Unit cell determinations were repeated
with different crystals for several samples.
In the worst case, the cell dimensions were
reproducible within 8§ ESDs (4 ESDs from the
mean) based on the least-squares fit to the
experimental data. Although the cell para-
meters might be susceptible to the effects of
possible systematic error in the diffracto-
meter, the differences between parameters
are not.

All reflections in a hemisphere of reciprocal
space with 6° < 26 < 66° were collected for
all samples. The 6-20 scanning technique with
a variable scanning speed was used with a
20 range of 1.0+ 0.2 tan 6 degrees centered
about the average peak position. The aperture
was set at 3.0+ 2.11tan @ mm wide by 6 mm
high. Each reflection was first scanned at a
rate of 20.1° min~! to determine its approxi-
mate intensity. Reflections were then scanned
twice at a slower rate necessary to accumulate
the minimum net count of 1000 counts above
background. If the results of the two slow
scans were statistically different, they were
repeated until agreement was reached. The
maximum rate for this slower scan was 20.1°
min™!. Those reflections which were too weak
to give the desired net count were scanned twice
at 1.3° min~!. The intensities of 859 of the
reflections were well above the minimum
count required, although the counting rates
were such that no coincidence corrections were
necessary. Background counts were made for
1 of the scan time at each end of both scans.
Several standard reflections were monitored
every 2 hr and did not show significant
intensity changes during the course of the data
collection period.

Integrated intensities, 7, were obtained
using the expression I=C— 2B, where C
is the sum of the counts collected during the
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two slower scans, and B is the sum of the

background counts during these scans. A E

standard deviation was assigned to each -

measured intensity using the expression o(/) =

[C +4B]"?. The data were corrected for

Lorentz polarization effects. The crystals §

were measured using a microscope with a

micrometer eyepicce, and a spherical absorp-

tion corrcction was applied (uR for the crys- o

tals ranged from 0.48 to 0.91). Averaging s

of equivalent reflections gave 120 to 126

symmetry-independent reflections for each

crystal. Reflections with I < ¢ were set equal to 2
[~}

4o and included in the refinement; there were
five or six reflections in this category for each
data set.

Refinement with both isotropic and aniso-
tropic temperature factors was carried out
for each set of intensity data using the RFINE2
program written by Finger (30). The initial
atomic parameters in the space group R3c
were those for Ti,0; (22). The program
minimized > w(F, — F,)* using the scattering
factors for Ti3*, V3*, and 0° (31) corrected for
real and imaginary anomalous dispersion
(32), weights based on average standard
deviations (w = 1/6%(F) = 4Fy?/c*(F?)), and

0.10

0.07

TABLE 11
INTERATOMIC DISTANCES (A) AND BOND ANGLES (DEGREES) FOR (Ti;_;V:),03 WITH STANDARD DEVIATIONS IN PARENTHESES

an extinction correction of the form F_,, = 3
F (1 +51,). No reflections were rejected from °
the refinements. Final R values varied from

0.024t0 0.032. Values of the standard deviation “
of an observation of unit weight are listed in b

Table I as S. The final atom parameters listed
in these tables werc used with the variance-
covariance matrices to calculate the inter-
atomic distances and bond angles and their
ESDs listed in Table II. Distances and angles
for (Tig oVy.1),05 were calculated from the
cell parameters of this work and the atom
parameters of Ref. (25). Structure factor
amplitudes are reported in Table II.

Results

All of the Ti,05,-V,0; alloys studied were
found to be isomorphous with o-AlLO;.
The structures consist of an approximate
hexagonally closest packed array of oxide
jons with metal ions occupying two-thirds
of the octahedral interstices (Fig. 1). A given
metal ion, M (1), has four near-metal neigh-

x==02

0.30

Distances
Angles

0.01

0.005

M(1)-M(2)

M()-M(3)
M(1)-0(5)
O(-0(2)
O(1-0(4)
o(1)-0(5)
O@4)-0(5)

M(1)-O(1)

81.45(7)
88.46(2)
91.90(5)
168.62(8)
97.17(3)
82.23(9)
91,54(3)
133.21(5)

81.32(6)
88.10(2)
91.75(4)
168.10(7)
97.71(3)
82.41(7)
133.14(4)

91.89(2)

81.55(5)
88.02(2)
91.60(4)
168.24(6)
97.74(2)
82.10(6)
91.98(2)
133.06(4)

81.72(5)
87.84(2)
91.49(5)
168.20(4)
97.87(Q2)
81.88(7)
92.16(3)
133.04(4)

82.16(5)
87.45(2)
91.14(4)
168.30(5)
98.16(2)
81.29(6)
92.55(2)
132.92(3)

83.24(4)
86.80(5)
90.47(5)
168.78(10)
98.48(5)
79.84(1)
93.20(4)
132.69(8)

83.48(5)
86.74(1)
90.32(4)
168.95(6)
98.48(3)
79.52(7)
93.26(2)
132.61(4)

84.05(4)
86.44(1)
90.01(3)
169.26(5)
98.57(2)
78.75(6)
93.56(1)
132.52(3)

84.57(5)
86.24(1)
89.76(4)
169.61(6)
98.56(2)
78.05(6)
93.76(1)
132.44(3)

84.84(5)
86.13(2)
169.78(7)
98.59(3)
77.67(7)
93.87(2)
132,37(4)

89.59(3)

85.05(5)
86.02(2)
89.50(4)
169.90(6)
98.61(3)
77.40(7)
93.98(2)
132.35(4)

85.20(7)
85.96(2)
89.42(5)
170.01(8)
98.60(3)
77.18(9)
94.04(2)
132.33(5)

Oo(H-M(D-0(2)
O()-M(D-0(4)
O()-M(1)-0(5)
O(1)-M(1)-0(6)
M(D-O(1)-M(2)
M(1)-0(2)-M(3)
M(2)-0(2)-M(3)

O(4)-M(1)-0(5)

a Ref. (23).
b Ref. (26).
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F1G. 1. A projection of the corundum structure
on a plane perpendicular to the [110] axis.

bors; one sharing a triangular face of the
coordination octahedron [M(2) in Fig. 1]
and three sharing edges of the octahedron
{M(3)in Fig. 1].

The values of the unit cell parameters in
the Ti,0;~V,0; system at various composi-
tions are shown in Table I and in Fig. 2. The

cell volume

3041

206}

~.
~

0 20 a6 80 80 10
X
FiG. 2. Variation of unit cell parameters and cell
volume in (Ti;_V,);0;.
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data shown for Ti,O; and V,0; have been
taken from Refs. (23, 26), respectively.
Many unit cell determinations (33) and several
refined crystal structures of Ti,O, and V,0,
from single crystal data (22-27) are available.
With the exception of the V,0, parameters,
all parameters reported were determined on
the same instrument under the same conditions
and thus comparisons of small changes should
not be affected by possible systematic errors
between equipment or by differences in con-
ditions. The V,0; distances and angles of
Refs. (26, 27) are identical within 2 ESDs.

Adding V,0; to Ti,0, causes rapid changes
in both axes in the low-vanadium region,
with less pronounced changes at higher con-
centrations. Over half of the change in the ¢
axis occurs between 0 and 7 at. % of V.
Additionally, a plot of ¢ axis length vs vana-
dium concentration is approximately linear
from 0-2 and from 2-7% V, with a slight
change in slope between these regions. There
is a quite noticeable break in slope in the
vicinity of 7%, V. The ¢ axis then increases
more slowly, finally leveling off in the 50-
1009 V region. The a axis decreases abruptly
between 0 and 79 V. Like the ¢ axis, a varies
linearly with composition from 0-2 and 2-7%,
V. A similar break in the slope of the a vs %V
plot is seen around 7% V. Unlike ¢, the a
axis does not level off but rather decreases
throughout the entire composition range. A
positive deviation from Vegard’s law is
observed for the a axis in the vicinity of 909
V. The behavior for x = 0.9 is consistent with
that observed for 0.92 < x < 1.0 (34).

As well as can be seen (only figures are
presented), our cell constant data agree with
the results of Kawabuko, Yanagi, and Nomura
(21) and Loehman, Rao, and Honig (9).
However, these earlier studies were carried
out with rather limited data sets and so are not
as precise and do not show as much detail
as the present work. For example, our plot
of cell volume vs concentration (Fig. 2) shows
an unusual S-shaped wiggle between 0 and
10 at. % of V, a fcature which had not been
noticed before.

The c¢/a ratios of both Ti,O, and V,0; are
unusual when compared to those of most
corundum-like oxides (35). While «-Al,Qj,



STRUCTURAL CHANGES IN (Ti;_,V,),0;

a-Fe,0;, a-Cr,0;, Rh,0;, and Ga,0, all
have c/a ratios falling in the range 2.70-2.74,
the Ti,O; c/a ratio is abnormally small at
2.64; V,0; shows the anomalously large
value of 2.83. Rapid approaches toward
more “normal” values of the c/a ratio are seen
at both extreme ends of the composition scale
(Table I).

The major change in the atomic coordinates
of the (Ti,_,V,),0; system occurs in the metal
z parameter. The z parameter for the metal
atom at (0,0, z) increases by some 57 ESDs
(Table I). As with the ¢ axis, over half of this
change occurs in the 0-7 at. 9/ of V region.
z also shows linear increases from 0-2 and
2-7% V, followed by less rapid changes at
higher vanadium concentrations. Unlike the
¢ axis, which remains constant from 50 to
1009, V, z decreases from (Tiy ,1Vg.9),03 to
pure V,0;.

The oxygen x parameter changes no more
than 5 to 7 ESDs throughout the entire
composition range. Having virtually the same
value in Ti,O, and V,0; x drops slightly in
the alloys.

The thermal parameters are well behaved
and have reasonable values for systems of this
sort; however, they do not vary with compo-
sition in any coherent way. It should be
mentioned that these crystals exhibit rather
strong extinction, which has substantial effects
on the temperature factor refinement (23).
Extinction effects depend to some degree on
crystal size. Thus, the use of crystals of dif-
ferent sizes causes enough scatter in the f;;’s
to obscure evidence of any subtle trends.

The changesin metal-metal distances caused
by the changes in cell parameters and frac-
tional atomic coordinates are shown in Table
IT and Fig. 3. The distance between metal ions
sharing an octahedral face of their coordina-
tion polyhedra, M (1)-M (2), increases sharply
from 2.578(1) A in Ti,0; to 2.652(1) A in
(Tig.03V0.07),0;, then more slowly to a
maximum of 2.713(1) A in (Tiy Vo.0),0:, 2
total increase of 5.4 9 (the ¢ axis increases by
2.99% over the same concentration range).
The M(1)-M{(2) distance then decreases to
2.697(1) A in V,0,. The distance between
edge-sharing metal neighbors, M(1)-M (3),
decreases continuously from 2.994(1) A
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in Ti, 05 to 2.880(1) A in V,04, 2 3.8 % change,
while a decreases by 4.0%. Both the M(1)-
M(2) and M(1)-M(3) distances depend
linearly on composition from 0-2 and 2-79,
V; plots of both distances vs. 9, V show distinct
breaks in slope in the vicinity of 7 at %
V.

The effects of changing composition on the
metal-oxygen and oxygen-oxygen distances
are also shown in Table 1I and in Fig. 3. The
0-79% V concentration range will be discussed
first. In these alloys, the distance from M(1)
to an oxygen in the shared octahedral face,
M(1)-0(1), indreases from 2.062(1) A in
Ti, 05 to 2.074(1) A in (Tig.93Vo.07)20;. At the
same time, the distance between oxygens in
this shared face, O(1)-0O(2), decreases from
2.791(1) t0 2.761(3) A. Thus as M (1) and M (2)
move apart, their shared oxygens move closer
together. The distance from M(l) to an
oxygen in the opposite octahedral face,
M(1)-0O(5), decreases from 2.028(1) A in
Ti,O5 to 2.012(1) A in (Tig.03V.07):05 as
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M(1) approaches this face. The distance
between oxygens in this unshared octahedral
face, O(4)-O(5), also decreases with in-
creasing vanadium content. Distances between
oxygens in different closest packed layers,
such as O(1)-0(4) and O(1)-O(5), show sig-
nificant increases, as expected from the sub-
stantial increase in the ¢ axis observed for this
concentration range.

In the composition range from 7 to 909
vanadium, the M (1)-M(3) distance continues
to decrease and M(1)-M(2) to increase,
although in a more gradual manner than at
lower vanadium concentrations. The metal-
oxygen bonded distances decrease, reflecting
the diminishing average size of the metal ion
(36). Distances between oxygens in the same
closest-packed layer, O(1)-O(2) and O(4)-
O(5), continue to decrease, paralleling the a
axis behavior. The interlayer oxygen—oxygen
distances change little in this range.

Although no data other than cell dimensions
(34) is yet available for samples in the con-
centration range 90-1009%, V,0;, plainly
there are structural changes here which are
not continuations of the middle concentration
range behavior, After essentially leveling off
in the 50-90% V range, both M(1)-M(2)
and M(1)-M(3) drop significantly from 90-
1009, V. The metal-oxygen distances de-
crease more steeply in this range than at lower
vanadium concentrations. Among the oxygen—
oxygen distances, O(1)-O(5) and O(4)-O(5)
decrease rapidly between 90 and 1009, V,
but no unusual changes are seen in O(1)-0(4)
or O(1)-0(2).

Discussion

The structural behavior observed in the
Ti,05-V,0; system as the composition
changes cannot be explained by Vegard’s
law. The deviations rrom this law are especi-
ally striking in the low-vanadium alloys.
In this composition range the interatomic
distance changes are too great to be due to
changes in ionic size; in fact, many of these
distances change in the opposite direction
to that expected from size considerations. Thus
the structural changes caused by adding small
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amounts of V,0; to Ti,O; must be due in
large part to electronic effects related to the
semiconductor-metal transition which occurs
in lightly vanadium-doped Ti,O; with in-
creasing dopant concentration.

Ti, 0, is a semiconductor at room temper-
ature, although a transition to metallic
behavior occurs in the 150-350°C tempera-
ture range (2, 3). Adding increasing amounts
of V,0; to Ti,0; successively lowers the room
temperature resistivity of the alloy and de-
creases the magnitude of the resistivity drop
across the semiconductor-metal transition
without changing the transition temperature
range (/). With the vanadium content some-
what greater than 2 at9%, the alloy becomes
metallic at all temperatures, though a small
resistivity drop is still seen in the 150-350°C
range. At about 7%, V, this high-temperature
transition disappears, and the room tempera-
ture resistivity becomes insensitive to vana-
dium content.

The greatest changes in all structural
parameters in (Ti;_,V,),0; occur as x varies
from 0 to 0.07. This is the composition range
where electrical measurements show a de-
crease in resistivity and disappearance of
the high-temperature resistivity anomaly.
Several interatomic distances in these low-
vanadium alloys change significantly with
doping. However, as with the structural
changes observed in Ti,O; upon heating
(22, 23), these structural changes can be
described satisfactorily as the result of an
increase in the M(1)-M(2) distance coupled
with reorganization of the structure in order
to minimize changes in metal-oxygen dis-
tances. As M(1) and M (2) move apart, their
shared oxygens move together to counteract
the lengthening of the M (1)-O(1) distance,
and the oxide layers move apart so that M (1)~
O(5) remains reasonably constant. Thus the
lengthening of the ¢ axis with increasing
vanadium content is caused by the increase in
the M (1)-M (2) distance, while the contraction
of the a axis reflects the inward motion of
O(1), O(2), and O(3) as they follow the metal
motion. The decrease in the M(1)-M(3)
distance is small, and can be ascribed to the
movement of the shared oxygen toward
M(1), pulling M(3) along with it. Thus we
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see that large changes in the M(1)-M(2)
distance at room temperature accompany the
diminution and disappearance of the resistiv-
ity drop which occurs between 150 and 350°C
in lightly vanadium-doped Ti,O;. Interest-
ingly, the plots of many structural parameters
vs % V also show a slight change in slope
around 2 at %, V, the composition correspond-
ing to the onset of metallic behavior in the
alloys.

The temperature-induced semiconductor-
metal transition in pure Ti,O; has been ex-
plained (/3, 14, 37) in terms of a band-crossing
mcdel. In the proposed Ti,0; band structure
the valence band, a band of a, symmetry, is
formed by the bonding interaction between
d,» orbitals of ¢ axis neighbor metal ions,
M(1) and M(2). This band is completely
filled at 0°K. At low temperatures, the valence
band is separated by a small gap from the
conduction band, of ¢ symmetry, which is
formed by overlapping d orbitals of edge-
sharing metal neighbors in the basal plane,
M(1) and M (3). As Ti,0; is heated, electrons
are thermally promoted across the gap from
the a; to the ¢ band. The resulting loss of
electron density from the a4, band causes a
weakening and lengthening of the M(1)
M(2) bond. As this distance increases, the
a, band is destabilized and so rises in energy
until it crosses the e band, at which point
Ti,0; becomes metallic.

In vanadium-doped Ti,0;, vanadium is
known to act as an acceptor or p-type dopant
(7). This behavior would also remove eclec-
trons from the valence band. Thus the same
band shifts and atomic movements expected
for pure Ti1,05 when it is heated should also
occur with vanadium doping.

The increase observed in the M(1)-M(2)
distance in (Ti,_,V,),0; as x increases from
0 to 0.07 is in agreement with structural
predictions based on the band-crossing model.
The changes in structural behavior which
occur for 0 < x < 0.02 can be understood if it
is assumed that acceptor impurity levels
introduced by V,0; lie in the a;—¢ band gap
of Ti,0;. Thus as increasing vanadium con-
tent weakens the M (1)-M (2) bond and causes
the @, band to rise in energy, the a, band
crosses these impurity levels, resulting in
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metallic behavior for (Tig 93V ¢2)20;. The
existence of a narrow level within the a, band
has been postulated by Van Zandt (20) to
account for the anomalous low-temperature
specific heat observed for vanadium concen-
trations of 2 at% V and greater. As the
vanadium concentration increases to about
7%, the a; and e bands cross, and the high-
temperature resistivity drop disappears. Thus
the electrical transition observed at about 7%/
vanadium is analogous to the temperature-
induced semiconductor-metal transition in
pure Ti,O;. Accordingly, the interatomic
distances in (Tig 93V 07),0; are almost identi-
cal to those in Ti,05 at 350°C (22, 23), when
allowance is made for the effects of ionic
size and thermal expansion.

As the vanadium content in Ti,0,-V,0,
alloys increases from 7 at 9, V, the M (1)-M (2)
distance and the ¢ axis increase more gradually
than at lower concentrations, then level off at
approximately 50% V. This behavior is
consistent with a band model for V,0; in
which the e band is proposed to lie below the
ay band in energy (38); this order is the reverse
of that in Ti,O,. Thus the 4, band in Ti,0,
alloys is gradually destabilized with respect to
the e band as the vanadium content increases,
resulting in the observed increase in the
M(1)-M(2) distance. The leveling off of
M(1)-M(2) at 50% V could result if the a,
band in this alloy has risen in energy enough
to be essentially unpopulated, so that further
energy shifts cause negligible changes in
bond order.

Apart from the ¢ axis and M(1)-M(2)
distance behavior, the structural changes in
(Ti;_,V,)0;5, 0.07<x<0.90, can be
explained rather well by the effects of changing
effective ionic size. However, our limited data
suggest that sime unusual structural behavior
occurs in the 90-100% V range. It has been
observed that adding small amounts of Ti,0,
to V,0; has drastic effects on the insulator—
metal transition which occurs in pure V,0,
at 150°K (39). Though the effect of Ti doping
on the room temperature resistivity of these
alloys is rather minor, evidently some struc-
tural changes do result. Interpretation of these
changes awaits more detailed structural
study of this composition region (40).
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