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Structural Changes Resulting from Doping Ti,0, with Sc,0; or AL,O,
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The crystal structures of (Ti;-.Sc, )20, x = 0.0038,0.0109, and 0.0413, and of (Ti5.99Al5.01)203, have
been determined from X-ray diffraction data collected from single crystals using an automated
diffractometer, and have been refined to weighted residuals of 0.025-0.034. Cell constants have also
been determined for x = 0.0005, 0.0019, and 0.0232, The compounds are rhombohedral, space
group R3c, and are isomorphous with «-Al,0;. The hexagonal cell dimensions range from a =
5.1573(2) A, ¢=13.613(1) A for (Tio.00055C0.0005)203 to a=5.1659(4) A, c¢=13.644(1) A for
(Tio.05875C0.0413)203, and a = 5.1526(2) A, ¢=13.609(1) A for (Tig.90Alp.01)203. Sc and Al substi-
tution cause similar increases in the short near-neighbor metal-metal distance across the shared
octahedral face; for Sc doping the increase is from 2.578(1) A in pure Ti,O; to 2.597(1) A in
(Tig.05875C0.0412)203. By contrast, changes in the metal-metal distance across the shared octahedral
edge appear to be governed by ionic size effects. The distance increases from 2.994(1) A in Ti,O,

t0 3.000(1) A in (Tio.05875Co.0413)205 and decreases to 2.991(1) Ain (Tip.99Alp.01)20s5.

Ti, 0, undergoes a gradual semiconductor—
metal transition with a concomitant dis-
tension of the crystal lattice when it is heated
through the 150-350°C temperature region
(1-5). Doping Ti,0, with V,0; also induces
a transition to metallic behavior which is
electrically (6, 7) and crystallographically
(6, 8, 9) similar to the transition caused by
heating the pure material. In both cases the
structural and electrical changes can be ex-
plained in terms of changes in metal-metal
bond order which accompany the closing of a
small gap between filled and empty d bands
in the band structure of the semiconducting
phase (7, 10).

The properties of Ti,O; doped with Sc,0,
are less well understood. Resistivity measure-
ments indicate that the band gap first de-
creases, then increases with increasing scan-
dium substitution (/7). The dependence of the
lattice parameters on scandium concentra-
tion appeared (/7) to be exactly opposite to
that found with vanadium doping. In order
to investigate the causes for this unusual
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behavior, we have determined the crystal
structures of (Ti;_,Sc,),0; for x=0.0038,
0.0109, and 0.0413, and have redetermined
the lattice parameters for three other scandium
concentrations. The crystal structure of
(Tig.90Alg.01),05 was also determined. Sc3*
and AI** both lack d electrons and so should
play similar electronic roles in the Ti,0,
lattice, though their ionic radii differ. Thus a
comparison of the structural effects of scan-
dium and aluminum doping should help
clarify whether changes in interatomic dis-
tances are due to changes in bond order or to
ionic size effects.

Experimental

Samples of (Ti;_,Sc,),0; (x=0.0005,
0.0019, 0.0038, 0.0109, 0.0232, and 0.0413)
from single crystal boules were provided by
Professor Honig of this department. These
were the same crystals on which resistivity
and lattice parameter measurements had
previously been carried out (/7). A boule
of (Tig.90Alg.01)203 was grown by the Purdue
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Crystal Growth Facility by the same methods
used for the Sc-doped samples. Spheres with
radii ranging from 0.0160 to 0.0198 cm were
ground from fragments of the boules. Film
and diffractometer measurements for the
crystals showed single-phase behavior and
were compatible with the known space
group R3¢ (No. 167). No significant violations
of the space-group extinctions were observed.
Unit cell parameters and intensities were
measured using an Enraf-Nonius CAD-4
automated diffractometer with graphite mono-
chromated MoKa radiation. The method of
data collection has been described previously
(9). Hexagonal cell parameters and their
ESDs, shown in Table I, were calculated by
least-squares refinement of the observed 20
values for 50 to 60 reflections per crystal,
80° < 20 < 100°, using the program LCR-2
(12) with A(MoKua,)=0.70926 A. The in-
tensities of all reflections in a hemisphere
of reciprocal space with 6° < 20 < 66° were
collected for all samples whose structures were
determined. After applying Lorentz polariz-
ation and spherical absorption corrections
(uR ranged from 0.61 to 0.75), equivalent
reflections were averaged to give 126 inde-
pendent reflections for each intensity data set.
Reflections with 7 < o(I) were set equal to
30(I) and included in the refinement.
Least-squares refinements using both iso-
tropic and anisotropic temperature factors
were carried out for each set of intensity data

TABLE 1

UniT CeLL PARAMETERS FOR (Ti;_,Sc,),0;3 AND
(Tig.99Al0.01)203 WITH STANDARD DEVIATIONS 1IN

PARENTHESES

Dopant concentration anex (R) Coex (R)
Pure Ti,0,° 5.1580(4) 13.611(1)
0.05 at %, of Sc 5.1573(2) 13.613(1)
0.19 at9% of Sc 5.1586(3) 13.611(1)
0.38 at % of Sc 5.1589(2) 13.616(1)
1.09 at % of Sc 5.1598(1) 13.625(1)
2.32 at% of Sc 5.1618(2) 13.632(2)
4.13 at% of Sc¢ 5.1659(4) 13.644(1)
1 at% of Al 5.1526(2) 13.609(1)

2 Ref. (5).
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using the RFINE2 program of Finger (/3).
The initial atomic parameters in the space
group R3c were those of Robinson (4)
for Ti,0,, transformed from rhombohedral
to hexagonal coordinates. The program
minimized > w(F, — F,.)* using the scattering
factors for Ti3*, Sc3*, AI¥*, and 0° (/5)
corrected for real and imaginary anomalous
dispersion (/6), weights based on average
standard deviations determined from counting
statistics (w = 1/6%(F) = 4F,?/6*(F,?)), and an
extinction correction of the form FZ,, =
Fo2(1 + s1y%). No reflections were rejected
from the refinements. Final weighted R values
varied from 0.025 to 0.034. Values of the
standard deviation of an observation of unit
weight are listed in Table II as S. The final
atom parameters in Table I were used with
the variance—covariance matrices to calculate
the interatomic distances and angles and their
ESDs listed in Table III. Structure factor
amplitudes are reported in Table 1V.

Results and Discussion

All crystals studied were found to be
isomorphous with «-Al,O;. The structures
consist of approximate hexagonally closest-
packed oxide layers with metal ions occupy-
ing two-thirds of the octahedral interstices
(Fig. 1). A given metalion, M (1), has one near
metal neighbor along the ¢ axis with which it
shares a triangular face of its coordination
octahedron (M (2) in Fig. 1), and three near
metal neighbors in the a—b plane which share
edges of the octahedron (M (3) in Fig. 1).

The effects of scandium and aluminum
doping on the Ti,0, lattice parameters are
shown in Table 1. Cell constants for Ti,O,
(5) are also included for comparison. Many
unit cell determinations (/7) and three
refined crystal structures from single crystal
data (5, /4, 18) are available for Ti,O,.
This set was chosen since it was determined on
the same instrument under the same conditions
as the other data reported and thus compari-
sons of the small changes observed should not
be effected by possible systematic errors
between equipment or by differences in con-
ditions.

Doping with Sc>* or APP* causes only
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TABLE 11

CRYSTALLOGRAPHIC DATA FOR (Ti;_,S¢,),03 AND (Tip 00Alg.01)203 WITH STANDARD DEVIATIONS
IN PARENTHESES

Parameter 0.38 at % of Sc 1.09 at%; of Sc 4.13 at%; of Sc 1 at9 of Al
Mz 0.34470(5) 0.34486(5) 0.34517(4) 0.34487(4)
B 30(4) 28(4) 34(3) 32(4)
Bas* 3.6(6) 1.7(6) 5.5(4) 4.2(4)
Ox x 0.3130(4) 0.3130(4) 0.3123(3) 0.3130(3)
Bif 33(8) 28(7) 35(6) 36(6)
i 44(11) 36(10) 52(8) 41(8)
Bas” 3.3(12) 1.5(10) 5.3(8) 3.1(8)
Bis” 0.8(12) 1.0(11) 1.7(10) 2.2(10)
R 0.024 0.026 0.018 0.019
Rt 0.034 0.032 0.025 0.026
sb 5.2(5) 6.0(5) 3.7(3) 3.9(3)
By 0.25(3) 0.19(3) 0.32(2) 0.29(2)
Box 0.28(4) 0.20(4) 0.35(3) 0.34(3)
S 1.00 1.00 1.00 1.07

 Times 10*. For M, fi( = a2, f12 = 311, and fa3 = 13 = 0. For Ox, f12 = 4f:; and S5 = 2f5.

The form of the anisotropic temperature factor Tis T=exp(—>; > ; h:h; Bi)).
® Times 10°.

TABLE IiI

INTERATOMIC DISTANCES (A) AND BOND ANGLES (DEGREES) FOR (Ti;_;S¢,);035 AND (Tig.00Aly.01)203, WITH
STANDARD DEVIATIONS IN PARENTHESES
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Pure Ti,0;° 0.38at% of Sc¢  1.09at% of Sc  4.13 at%; of Sc 1 at?; of Al
Distances
M1)-M(2) 2.578(2) 2.579(1) 2.585(1) 2.597(1) 2.582(1)
M(1)-M(3) 2.994(1) 2.995(1) 2.996(1) 3.000(1) 2.991(1)
M(1)-0(1) 2.066(2) 2.066(2) 2.068(2) 2.071(1) 2.066(1)
M(1)-0(5) 2.027(1) 2.027(1) 2.026(1) 2.029(1) 2.024(1)
0(1)-0(2) 2.796(4) 2.797(4) 2.797(3) 2.794(3) 2.789(1)
o(1)-04) 2.791(1) 2.791(1) 2.792(1) 2.794(1) 2.793(2)
O(1)-0(5) 2.880(1) 2.881(1) 2.882(1) 2.887(1) 2.878(1)
0(4#)-0(5) 3.073(2) 3.074(2) 3.0742) 3.081(2) 3.070(1)
Angles

O(1)-M(1)-0(2) 85.20(7) 85.17(6) 85.09(6) 84.85(4) 85.07(4)
O()-M1)04%) 85.96(2) 85.97(2) 85.98(2) 85.94(1) 85.99(1)
O(1)-M(1)-0(5) 89.42(5) 89.45(5) 89.46(4) 89.53(4) 89.47(3)
O(1)-M(1)-0(6) 170.01(8) 169.99(7) 169.90(7) 169.60(5) 169.88(5)
0(4)-M(1)-0(5) 98.60(3) 98.60(3) 98.65(3) 98.81(2) 98.65(2)
MO)-0(1)-M(2) 77.18(9) 77.23(8) 77.34(7) 77.66(6) 71.3%5)
M(D)-0Q2)-M(3) 94.04(2) 94.03(2) 94.02(2) 94.06(1) 94.01(1)
M(2)-0(2)-0(3) 132.33(5) 132.34(4) 132.33(4) 132.37(3) 132.34(3)

4 Ref. (5).
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VALUES OF 10 Fyps AND 10 Fipyc.
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FIG. 1. A projection of the corundum structure on a
plane perpendicular to the [110] axis.

small changes in the ¢ axis of Ti,0,, with
scandium showing the greatest effect: ¢
increases slightly upon addition of scandium
and may decrease upon addition of aluminum.
The radii of the ions vary in the order Sc3*
(0.730 A) > Ti** (0.67 A)>» AIP* (0.530 A)
(19). If the structural changes were governed
solely by ionic size effects, one would expect
a greater decrease in the ¢ axis with Al doping
and an increase with Sc doping which is
smaller than that observed. On the other hand,
the changes in the ¢ axis with doping are more
in keeping with ionic size changes. Adding
scandium causes a to increase, while added Al
causes a to decrease.

The cell constants we have measured for
scandium-doped Ti,O; are quite different
from those reported by Chandrashekhar ef al.
(11) using the same samples. These authors
reported a decrease in the ¢ axis and almost no
change in the g axis with increasing Sc content.
We believe that the discrepancies between the
two sets of data arise from the use by the
previous authors of limited data sets (about
six reflections with 20° < 20 < 70°) and re-
finement procedures which included no cor-
rections for absorption, sample eccentricity,
or calibration error (20).

The effects of Sc and Al doping on the
Ti,O, structure are apparent mainly in the
metal-metal distances, whose behavior is
shown in Table III and Fig. 2. The data for
V-doped Ti,0, (9) are included in the figure for
comparison. The distance between metal ions
sharing a face of their coordination poly-
hedra, M(1)-M(2), increases from 2.578(2) A
in Ti, 04 to 2.597(1) Ain (Tio.05875¢€0.0413)203,
and to 2.582(1) A in (Tig.g0Alg.0,);0;3. The
increase in the M (1)-M (2) distance caused by
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19, of Al substitution is almost identical to the
change produced by 19, of Sc. The increase
in both cases is about half that caused by the
same concentration of vanadium. The metal-
metal distance across the shared edge, M(1)-
M(3), increases from 2.994(1) A in Ti,O, to
3.000(1) A in (Tig.9s578¢Co 0a13)205 while it
decreases to 2.991(1) A in (Tiy.00Alg01)20:e
The changes in the M(1)-M(3) distance with
Al and Sc doping are close to those expected
due to changes in effective ionic radius, though
the changes caused by V-doping are greater
than one would predict on this basis alone.

Changes in metal-oxygen and oxygen-
oxygen distances with Sc or Al doping are
small, with a maximum change of 0.005 A
in the metal-oxygen distances. The entire
structural change in both cases can be ex-
plained satisfactorily as the result of changes
in the metal-metal distances coupled with
reorganization of the structure in order to
maintain approximately constant metal-
oxygen distances.
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The effects of doping Ti,O; with Sc or Al
can be understood in terms of the band-
crossing scheme proposed (10) to account for
the electrical behavior of pure Ti,O;. In this
model the valence band, a band of g, sym-
metry, is formed by the bonding interaction
between d,: orbitals of ¢ axis neighbor metal
ions, M (1) and M (2). This band is completely
filled at 0°K. At low temperatures, the valence
band is separated by a small gap from the
conduction band, of e symmetry, which is
formed by overlap of d orbitals of near-metal
neighbors in the a-b plane (M(1) and M(3)).
The semiconductor-metal transitions caused
in Ti,O, by heating or by doping with vanad-
ium involve removal of electrons from the g,
band with a decrease in the M(1)-M(2)
bond order and a concomitant increase in the
M(1)-M(2) distance. This increase of the
M(1)-M(2) distance destabilizes the @, band
sothatitrisesin energy and eventually overlaps
the e band, resulting in metallic behavior.
Single-crystal X-ray studies have confirmed
that substantial increases in the M (1)-M(2)
distance accompany the electrical transitions
in both pure and V-doped Ti,O; (4, 5, 9).
The detailed mechanisms for these transitions
using this model have been discussed elsewhere
(2,7, 10).

Since neither Sc3* nor APt possesses d
electrons, these ions are not likely to partici-
pate in metal-metal bonding in the Ti,0,
host lattice. Thus the addition of each Sc**
or AI** ion should disrupt one M(1)-M(2)
bond, increasing the average M(1)-M(2)
distance and generally dilating the structure
in the ¢ direction. As the M (1)-M(2) distance
increases, the a¢; band should then rise in
energy and cause the band gap to decrease
(10, 21, 22). This would explain why the acti-
vation energy for conduction, &, initially
decreases as Scis added to Ti, Q5. The eventual
increase in g, with greater Sc substitution
can be related to the increase in the M(1)-
M (3) distance, which increases more slowly
with increasing dopant concentration than
does the M (1)-M(2) distance. The ¢ band in
Ti,0, formed by overlap between orbitals of
M(1) and M (3) has been shown to be narrow
(21, 22), probably because the M (1)-M(3)
distance is already rather long for effective
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metal-metal overlap. The increase in this
distance caused by the greater size of the Sc3*
ion and the presence of the dopant ion should
narrow the e band even more. This, though the
M(1)-M(2) increase should cause the a,
and e band centers to move together, band
narrowing may widen the band gap when the
dopant concentration is sufficiently large.

The structural effects of Sc substitution
in Ti,0; are thus compatible with the Ti,0,
band structure and with the observed non-
monotonic dependence of & on dopant
concentration (/7). The structure of (Tig.qq
Alg 01),0; tends to confirm our interpretation.
Since Sc and Al substitution have similar
effects on the M (1)-M (2) distance, this change
must be due to a change in bond order. The
changes in the M(1)-M(3) distance with
doping, however, are apparently related to
ionic size effects. Resistivity measurements
on a series of aluminum doped Ti,0; samples
are in progress to check the variation of ¢,
with the M (1)-M (3) distance.
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