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The irreducible tensor method for a chain of finite subgroups of the three-dimensional full rotation group 0, 
is briefly described in connection with crystalline-field effects in solids. Emphasis is put on crystal-field 
parameters adapted to a chain of groups starting from 0,. The material is applied to the interpretation of 
emission and excitation spectra of EU 3+ in KLu,F,, recently investigated by Valon, Gacon, Vedrine, and 
Boulon (J. Solid Stare Chem. 21, 357 (1977)). Crystal-field parameters for KLu,F,,:Eul+ are obtained 
with and without J-mixing within the ground term ‘F of Eu 3t. The results are paralleled with the corres- 
ponding ones for KY,F,,:Eu3+ previously determined by Percher and Caro (J. Chem. P&m. 65, 89 
(1976)). 

1. Introduction 

Rare-earth-doped compounds have re- 
ceived considerable attention (spectroscopic, 
magnetic, and thermal studies), both from an 
experimental and theoretical point of view, 
during the last 15 years. The Eu3+-doped com- 
pounds turn out to be of particular impor- 
tance in solid-state chemistry and solid-state 
physics due to their interesting luminescent 
and magnetic properties and their interest as 
laser materials. Emission and excitation 
spectra of Eu3+ in KLu,F,, have been recently 
measured at 4.4, 77, and 295°K by Valon et 
al. (I). The obtained spectra present numerous 
similarities with the fluorescence spectrum for 
Eu3+ in KYjFlo investigated by Percher and 
Car0 (2). 

It is one goal of this paper to determine 
crystal-field parameters for KLu,F ,O : Eu3+ 
and to compare them to the parameters de- 
rived in (2) for KY3F,, : Eu3+. 

In recent years there has been an increasing 
*Author to whom correspondence concerning this 

article should be addressed. 

interest in irreducible tensor methods and 
chains of groups around ligand field theory 
and related phenomena. [For a review, see 
(3).l In Section 2 we present, in the language 
of Wigner-Racah algebra for a chain of 
groups, some of the basic elements useful for a 
theoretical approach to energy level splittings 
of ions in solids. These basic elements are 
applied in Section 3 to the determination of 
crystal-field parameters for Eu3+ in KLu,F,, 
and KY 3F i,,. 

2. Theory 

Let us begin with some general con- 
siderations concerning the theoretical 
derivation of the electronic levels of an nZN ion 
embedded in a molecular, crystalline, or 
biological matrix. In the case where the ion 
remains a sufficiently localized system when 
introduced in the matrix, we may describe the 
ion and its surroundings by the Hamiltonian 
Ha + Hi,, where H, is the Hamiltonian of the 
corresponding free ion and Hi, the crystal- 
field Hamiltonian describing the (static) in- 
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2 GRENET AND KIBLER 

teraction between the ion and the matrix. To 
obtain the first-order energy levels arising from 
the configuration nlN (single-configuration 
approximation), it is necessary to set up the 
matrix of general element 

where InPp) stands for a state vector of the 
configuration nlN, Xr, is the part of Ha that 
does not contain the (restricted) Hartree-Fock 
contribution, and Pi,,, the part of H,, corres- 
ponding to the interaction between the N elec- 
trons and the matrix under consideration. The 
most important contributions to 2s are the 
electrostatical repulsion Hamiltonian .re be- 
tween the N electrons and the spin-orbit 
Hamiltonian Ps, for the N electrons. The 
dimension of the Zfl + &,, matrix is clearly 

= (41+ 2)!/N!(41+ 2 - N)!, 

which is the dimension of the space a(nlN) 

spanned by the state vectors I nPp) 

of the configuration nlN. Different bases 

I nlNp ) : p ranging on (“i2 ) labels } 

of ~(0) may be used to build the <;2”, + Z’r,,, 
matrix. Each basis directly depends on the 
coupling scheme chosen for the state vectors 
I nlNp). There are thus (at least) 3! = 6 dif- 
ferent bases corresponding to the 3! coupling 
schemes we can form with Fe, L Ys,,, and, iv:,,,,. 
The different bases are, of course (formally), 
connected through a unitary matrix (which is 
in general not easily obtainable), so that the 
spectrum of the operator Pfi + ,F,,,, within 
c(nP) does not depend on the basis chosen. 
Different bases generally present different 
physical and/or mathematical advantages. 
Among the principal bases, we have: (i) the 
strong-field basis’ corresponding to the coupl- 
ing scheme [[I~i,l@F’el@F’s,l, physically 

adapted to the strong-field case Z,,,, > Re > 
‘TS, ; (ii) the medium-field basis corres- 
ponding to the coupling scheme [[[Z’J@,x;,] 
0 ~;F”,,l, physically adapted to the medium- 
field case Xc > Z,,,, > Zs,; and (iii) the 
weak-field basis’ corresponding to the coupl- 
ing scheme ~H~J @ Rs,l @ #,,I, physi- 
cally adapted to the weak-field case $Ye > Zs,, 
> Z,,. Insofar as we do not want to truncate 
the space s(nZN), the most interesting basis 
from a mathematical point of view is a weak- 
field basis adapted to the point symmetry 
group G of ?‘,, or its double group G* 
according to whether N is even or odd. In 
addition, in the case where S, L, and J retain 
their significance to a reasonable extent (as is 
the case for the lanthanides), a symmetry- 
adapted weak-field basis may be physically 
suitable when the space s(nP) is restricted to a 
direct sum of subspaces associated with some 
of the lowest terms of the configuration nlN. 
For these last two reasons and in view of 
application to the Eu3+-doped fluorides we 
deal with in this work, we now concentrate on 
weak-field bases adapted to a subgroup G (G*) 
of the single (double) three-dimensional full 
rotation group 0, (O,*).* 

A typical state vector belonging to a 
symmetry-adapted weak-field basis is I nlN 
aSLJaI’y). We adopt the notations, cf. (3-7), 
developed in the irreducible tensor theory for a 
chain 03* 3 G*. The symbol rstands3 for an 
irreducible representations class (IRC) of G*; 
we shall use T(G*) in place of 9 where 
necessary. Further, when necessary, y is a 
row-column label for the irreducible represen- 
tation matrix Dr associated to the IRC r and 
spanned by the set 

{I nZNaSLJuTy) :yranging/. 

2 If G only contains proper rotations, 0, may be 
replaced by the three-dimensional proper rotation group 
SO,. In that case, the double (or spinor) group SO,* of 
SO, is isomorphic with SU,, the so-called two- 
dimensional special unitary group. 

s Indeed, r stands for an IRC of G or G* depending 
upon the parity of N. However, it is sufficient to deal ’ The strong- (weak-) field basis proved to be very 

useful for the ions of the iron (rare-earth) group. with G* only since G* covers G. 
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Finally, when necessary, a is an external or 
branching multiplicity label to classify the 
various subspaces spanning the cc, identical 
representations Dr of G* contained in the 
irreducible representation matrix of O,* span- 
ned by the set 

{Inl”aSLJM):M=-J(l)JJ. 

For classification or descending symmetry 
purposes, it is interesting to characterize, at 
least partially, the label a by an IRC T(G,*) of 
a subgroup G,* of O,* that contains G* (5). Iq 
similar fashion, it is interesting to characterize, 
at least partially, the label y by an IRC T(G,*) 
of a subgroup G,* of G* (5). This yields chains 
of groups of type O,* 13 G,* 1 G* 2 G,*. For 
the purposes of describing descent in sym- 
metry and establishing selection rules, it may 
be worth introducing T(G,*) and/or T(G,*) 
even in the cases where the a and/or y labels 
are not indispensable. The 03* 2 G* sym- 
metry-adapted state vector I nZN crSLJaTy) is 
connected to the I nlNaSLJM)‘s (which are 
03* 1 O,* symmetry-adapted state vectors) 
via 

I nlN aSLJaTy) = 

c I nlN ctSLJM) (JM I Jury), 
M = -.i( I )J 

where (JM I Jdy) is the M - ary element of 
the unitary matrix which decomposes the 
irreducible representation matrix of O,* 
spanned by the set. 

(I nlN aSLJM) : M = -J( l)J} 

into the direct sum @ a, Dr. 
r 

The matrix of X, in an O,* 2 G* sym- 
metry-adapted weak-field basis readily follows 
from the corresponding matrix for the free ion. 
As an illustration, by retaining only the 
contribution X, + X,, in Kli, we have 

(nlNdS’L’J’a’Py’I iY,InlN aSLJaTy) 
= cVS’S)6(L’L)&J’J)6(a’a)6(~‘Z”)6(y’y) 

(nINdSLI &lnnlNaSL) 
+d(J’J)&a’a)&I-‘I’)d(y’y) 
(nP d S’ L’JI X,, I nlN aSLJ). (1) 

To easily evaluate the matrix of Xi, in an 
O,* 2 G* symmetry-adapted weak-field basis, 
it is convenient to adapt Vi,,, to the chain O,* 
1 G*. This is achieved by developing li, in 
terms of irreducible tensor operators adapted 
to the chain 0, 1 G. Following (4-6), we 
have: 

k=2(2)2/ 

as far as matrix i;ements of Vi,,, within c(nP) 
are concerned. In this effective Hamiltonian, 
the Dlka,T,,l’s are 0,~ G symmetry-adapted 
crystal-field parameters (4-6).4 Further, 
Uk aur,v, is a Racah unit tensor 
transforming as the identity IRC 
other words5: 

component 
r, of G; in 

Uk a,,r,,b= 1 ~pw,r,y,). 
q=-k(l)k 

where Vi is the qth 0,~ 0, symmetry- 
adapted component of the Racah unit tensor 
Uk (4-6). The parameter D[ka,T,1, or Dlka,l 
for short, is proportional to the parameter 
A ka$, of (5): 

D[ka,l = 

(-1)‘(21+ l)(~)“‘(;;(o)Ako,,. 

The 0, 2 G symmetry-adapted parameters 
Dlka,l may be expanded in terms of 0,~ 0, 
symmetry-adapted parameters A;(rk) (20) 

4 The parameters DL@,r,,l parallel, to some exent, the 
popular parameters Dq, Ds, and Dt (8, 9). The cubical 
parameter Dq writes Dq = (l/6 (30)1’2) Dl4A,l in 
function of the parameter D[W&O)l = Dl4A ,1 adapted 
to the chain SO, 2 0. The tetragonal parameters Ds, Dq, 
and Df are connected to some specific parameters 
DlkflO) r,(D,)l adapted to the chain SO, 3 0 3 D, 
More precisely: Dl2EA,l = (7O)“2 Ds, D[4A, A,1 = 6 
(3O)“‘Dq - 7(15/2)“* Dt, and D[4EA,l = 5(21/2)1’2 Df. 

‘The tensor L$ ,,,.,,,.,, is related, on e(n/‘), to the 
z 

G harmonics?v~ ,,,.” ~,, (oi, (DJ by r I’~ i”, 0,,,‘“1-(, C4.9i) = 

(-1)‘(2/ + 1) ((2k + 1)/4n)“Z 
( 1 

i k ’ Y!,,,;,,.,, 000 
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or Bt (I I, 12). To be specific, we have 

D[ka,l = (-1)‘(21+ 1) 

c B,kWqb&+,)*. (2) 
q=-k(l)k 

The interest in the D[ka,l parametrization is 
fourfold: (i) the matrix elements of the 0,~ G 
symmetry-adapted tensors lJ&rw0 in any 
O,* 3 G* symmetry-adapted basis are readily 
obtainable (3-7), (ii) in particular, the reduced 
matrix elements (nZNdS’L’J’ II UkllnZN&XJ), 
cf. Eq. (3) below, easily follow from Racah’s 
work (13), (iii) the Uk a,lr,lv,:s are unit tensors so 
that the Dlku,l’s give a true measure of the 
relative importance of each U&rwO, and (iv) 
the D[ka,l parametrization is particularly 
appropriate for decomposing Xi,,, as 

Xi, = iY;,(G,) + ,xt,(G), 

where Xi,(G,) is invariant under a 
supergroup G, of G (G, 3 G) and .X,,(G) is 
G-invariant without being G,-invariant. Such a 
decomposition may be very useful in pertur- 
bation theory. In addition, G, may play the 
role of a group of type G,. It is easily seen (5) 
that the center-of-gravity rule applies to the 
entire spectrum of ,AV,,,,(GJ + ,X,,(G) as well 
as to each Pi,(G,)-level perturbed by any 
component of ,;T,,,(G). It should be remem- 
bered that this rule does not hold for the 
cubical levels perturbed by a tetragonal dis- 
tortion expressed in the Ds-Dt para- 
metrization (9). 

We are now in a position to set up the 
matrix of Xi, in an I nlNctSLJaTy) basis. The 
Wigner-Eckart theorem for the chain O,* 3 
G* (4) leads to 

(nlNdS’L’J’a’T’y’I &,lnlNaSLJaTy) 
= 6(s’s)6(r’~16(y’y)(-1)s+L+J’ 

. ((2~’ + 1) (2J + l))“* c 
k=2(2)21 

au 

(INdSL’IIUklllN aSL) 

D[ka,l, (3) 

where 14 is a 6-j symbol for the group SU, 
(13~I$, (II II) a reduced matrix element for 
the Racah unit tensor vk (13, IS, Z6), andf( ) 
a coupling coefficient for the chain 0,~ G (4, 
5). Therefore, the matrix of z,,,, in an InP’ 
CcSLJary) basis can be constructed once we 
have tables and/or programs of 6-j symbols, 
reduced matrix elements, and f coefficients at 
our disposal. Extensive tables of 6-j symbols . . . 
515253 

l 1 
. . . were 

J4J& 
published by Rotenberg et 

al. (14). Further, the reduced matrix elements 
(IN d SL’ II UkllT aSL) were tabulated by Niel- 
son and Koster for 1 =p, d, andf(Z6). Finally, 
f coefficients for various chains of groups of 
interest in ligand field theory are now available 
(4-7). In particular, analytical formulas for 
thef coefficients relative to the chain SU,* 3 
D,* 2 D,* r> D2* have been derived (7); by 
using elementary group-theoretical argu- 
ments, these formulas may be transcribed to 
the chains 03+ 2 Dooh* 3 D,,,” I> D2,,*, O,* I 
C coV* 1 C,,* XI C,,*, and O,* 3 Dooh* 3 D2d* 
3 D,*. Since the matrix of AYi,,, on s(nZ”) has 
been obtained, we may check it owing to the 
sum rule6 

trrcnlN, <v”,‘fr yt u&,-,3 = WWO,‘~,) 0 00 
1 .- 

c 
2k + l a’nSL’L 

. (2s + l)l(INdSL’IIUkIIZNaSL)l*, 

where trr(,,, ,,) means trace operation on 
e(nP). 

The matrix of AVa + ‘Pi,,, in an O,* 2 G* 
symmetry-adapted weak-field basis exhibits a 
bloc form, each bloc being associated to an 
IRC of G*. Each bloc depends on various 
independent parameters, namely, (i) for Xa: 
the interelectron repulsion parameters flk’ of 
Slater, Condon, and Shortley, the spin-orbit 
coupling parameter C,, the interconfiguration 

6 This sum rule follows from the orthogonality relation 
(4) tr,,,j, (T$,,.,.,t T$J = 6(k’k) 6@‘a) &r’n Q’ Y) 
I (ij11P11ij)l~/(2k + l), where e(ij) is the space spanned 
by the set ( lz@ry): aryranging over (2j + 1) labels 1. The 
preceding equation expresses the fact that c:r,,, and 
qrv are mutually orthogonal on a(d). 
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parameters of Trees, the three-particles para- 
meters of Judd, etc.; and (ii) for yim: the 
crystal-field parameters D[ka,l. It is well 
known that ab initio calculation of these para- 
meters leads generally to levels in very poor 
agreement with the experimental ones. In fact, 
these parameters have to be considered as 
phenomenological parameters to be deter- 
mined by an iterative fitting procedure (least- 
square-fitting procedure, for example) from the 
experimental levels. Such an approach ac- 
counts for various effects in a collective 
manner. In particular, the fact of considering 
the D[ka,l's as adjustable parameters globally 
takes into account: electrostatic contributions, 
(anti)shielding effects, configuration interac- 
tion (12), covalency and overlap effects, etc. 
The whole matrix is diagonalized several times 
by iteratively varying the empirical parameters 
to minimize a deviation between computed and 
experimental levels. One generally chooses to 
minimize the quadratic mean deviation (or 
root-mean-square deviation) 

U= ( : wi A;/(E - P) ) “’ 
i=l 

or the linear mean deviation 

f = ; w,lA,l/E. 
i=l 

In the latter two relations wi is an assigned 
weight associated to the ith level, Ai the 
difference between the observed and com- 
puted values for the ith level, E the number of 
equations, and P the number of parameters 
varied. Clearly, u and f are two acceptable 
(while inequivalent) measures of the dis- 
crepancy between theory and experiment. 
Which function f or o is taken to be mini- 
mized is often a matter of rapid convergence. 
In this respect, it is more advantageous to use 
u thanj 

3. Results 

We return now to Eu3+ in KLu,F,~ and 
KY,F,,. In that case, nlN = 4f 6. Furthermore, 
the site symmetry of Eu3+ in both KLu,F,, 
and KY3F,, is C,, so that G = C,,. The 
branching multiplicity problem between 0, 

and C,, is readily overcome by introducing G, 
E c 03V For classification purposes, it will 
prove useful to take GU = C,,. We are thus led 
to the chain 0,3 C,, 2 C,, 2 C,,,. We shall 
use r(n) to denote an IRC of C,,,, with 
n = GO, 4, or 2. The various IRC’s of C,,,, 
c C2” 4v7 are, respectively, in Mulliken’s 
nomenclature: 

r(a) = A ,, A,, E,, E,, E,, . . .> 
r(4) = A 1, A,, B,, B,, E, 
r(2) = A 1, A,, B,, B,. 

It is an experimental fact that for both 
KLu,F,, :Eu3+ (I) and KY3F,,:Eu3+ (2) the 
Stark levels arising from the ground term ‘F of 
Eu3+ are well separated from the Stark levels 
arising from the excited terms 5D, 5L, 5G, . . . of 
Eu3+. As a consequence, it is a reasonable 
approximation to restrict W, + Wi, to, r’,, + 
Kim and to introduce X,, + Xi, onto the 
manifold E(‘F) generated by the 49 state vec- 
tors of the septuplet ‘F. This will allow the 
mixture through ,rjTi,,, of state vectors of 
unequal J issued from ‘F to be determined. 

The matrix of Ps, + ,ri,,, in an 0,~ C,, 3 
C,, 3 C,, symmetry-adapted weak-field basis 
is easily obtained by specializing Eqs. (1) and 
(3) to the case under consideration. We thus 
iset 
(4f6 ‘FJ’T(co)‘~(4)‘Z-(2)‘l iv,,1 

4 f 6 ‘FJT(co)~(4)I-(2)) 

= S(J’JVV(d, T(a)) &WY, r(4)) W(2)‘, 
.r(2))(-lY2(21)“2 

(f”7FllV”llf67F)~4f, (1’) 

where V’ is a double Racah unit tensor (13, 
1.5,16), and 

(4f6 ‘FYI-(co)‘Z-(4)‘T(2)‘1 TimI 
4 f 6 ‘FJZ-(co)Z-(4)T(2)) 

= m(4)‘, r(4))w(2)‘, r(2)) 
* (-1)5’((2J’ + 1) (2J + 1)y2 

. ,z6 (;:;,) (f” ‘FllUkllf6 ‘F) 

ll,=A,i-, 

J k 
*f ( &;k(4) r(oo)Z-(4) a,,A, 

D[ka,l, 
(3’) 
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where the crystal-field parameters D[ka,l, with 
a, = T(co), are adapted to the chain O,I C,, 
I> C,,, 2 C,,. It can be seen from Eq. (2) that 
these parameters are related to the BFs of (II, 
12) via 

l/2 

B& 

Dl4E,l = 2 ; 
( 1 

l/2 

B:Q 

l/2 

B;d. (2’) 

The connection between our D[kT(oo)l’s and 
the more common Bj = Ai (rk) parameters 
(10) is obtainable by combining Eq. (2’) with 
the formulas’ 

B; = 2B’$ B; = 8B$ B; = 16B$ 

K4 = 4(2/35)“2~:, E4 = (8/3) (2/7)“*B$ 

The 49 x 49 matrix of X,, + li, in an 0, 
= cm, 2 C,, ZI C,, symmetry-adapted weak- 
field basis may be arranged into the direct sum 
of six submatrices, each submatrix being asso- 
ciated to an IRC of C,,. In the detail, we have 
six submatrices of dimensions: 7 x 7 (A,), 6 x 

6 64 2), 6 x 6 (B,), 6 x 6 @,I, 12 x 12 6% 
and 12 x 12 (E). By using the abbreviation 
IJZ(co)r(4)r(2)) for 14f 6 ‘F JT(o3)r(4)r(2) ), 
the state vectors for each of the six matrices 

’ Formulas connecting Bt and A; (r’) parameters 
appear in (12). The reader using Table 6-l of (12) is re- 
minded that B: = (8(70)“‘/55) A: (r4) and II:= 
((14)“2/21)A: (r”) should read Bj = 4(2/35)“*A: (r4) 
and Bi = (8/3) (2/7)l’* At (r6), respectively. 

turn out to be 

7x 7(A,)matrix : IOA,A,A,), Q.4,A,A,), 
I4A,A,A,), I4E,A,A,), ISE,A,A,>, 
I6A,A,A,), I6E,A,A,>, 

6 x 6 (A,) matrix : I lA,A,A,), I 3A2A2A2), 
14E,A,A,), 15A,A,A,), 15E,&fJ, 
I6E,A ,A 2>, 
6 x 6 (B,) matrix : I2E,B,A,), I3E,B,A,), 
14E,B,A ,), 1 SE,B,A ,>, 1 =,B,A, >, 
If%B,A ,>, 
6 x 6 (BJ matrix : I ZE,B,A,), I3E,B,A,), 
14E,B,A,), I5E,B,A,), I6E,B,A,), 
1 f&&4 *>7 
12 x 12 (E) matrix : I lE,EB,), I2E,EB,), 
I3E,EB,), 13E3EBl), I4E,EB,), 
I4E,EB,), ISE,EB,), 15E3EBI), 
ISE,EB,), I6E,EB,), 16E3EBl), 
I6E;EB; j, 

12 x 12 (E 3 
I=,EB,), 
14E,EB,), 
15E,EB,), 
I6E,EB,). 

The two 12 

matrix : I lE,EB,), IZE,EB,), 
3E,EB,), I4E,EB,), 
5E,EBz), I5E,EB,), 
6E,EBz), I6E,EB,), 

x 12 (E) matrices are responsible 
for the doublet levels of symmetry E; it is 
therefore possible to choose the basis of a(‘F) 
in such a way that the two 12 x 12 (E) 
matrices be identical. 

A general program has been realized in 
Fortran IV to obtain crystal-field and spin- 
orbit parameters for reproducing the Stark 
components of (4f6) ‘F in tetragonal sym- 
metry (17). The program computes the geo- 
metrical part of Eqs. (1’) and (3’) once for all: 
The reduced matrix elements are offered to the 
machine as input data whereas the 6-j sym- 
bols and f coefficients are computed by means 
of subroutines. The above-mentioned sub- 
matrices may then be coded and diagonalized 
(by use of a subroutine based on the Jacobi 
rotations method) for various trial values of 
the DUm,l and cd, parameters. These para- 
meters are optimized from the experimental ‘F 
levels by minimizing a given function of the 
Azs. The various minimizations are achieved 
by use of a subroutine based on the Simplex 
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method. By conveniently modifying the coded meters D[kT(m)l and c4, for KLu,F,,: Eu3+ 
submatrices, the program also allows the from the E = 16 experimental ‘F levels of (1). 
D[ku,l and &, parameters to be determined The parameters obtained with and without J- 
without mixing the J’s issued from ‘F. mixing from & and $minimization are repor- 

At this point it should be noted that our ap- ted in Table I.8 (For the sake of comparison, 
proach for determining the crystal-field and the crystal-field parameters are listed in the B”, 
spin-orbit parameters differs from the one notation.) The corresponding values for 
developed by various authors (18) and em- 
ployed by Percher and Caro (2) in the KY 3F,,: 
Eu3+ case. As a matter of fact, it is well known 

o=( +E )“, 

that a minimization of the quadratic (or linear) and 
mean deviation by freely varying both the E 
crystal-field and spin-orbit parameters does f = c Idil/E 

not correctly reproduce the centers of gravity i= I 

of the Stark levels arising from the ‘F, are included in Table I too. We have reported 
multiplets. This difficulty is generally over- in Table II, in the cases where J-mixing is 
come by adjusting the observed and calculated taken into account, the calculated (from & and 
centers of gravity (18), a procedure which $ minimization) and observed Stark levels ex- 
amounts, in a last analysis, to associate a pressed with respect to the centers of gravity 
(fictitious) spin-orbit parameter to each ‘Fr In of the ‘F, multiplets. 
our approach we retain only one (freely The results of Tables I and II for 
varying) spin-orbit parameter and proceed as KLu,F,, :Eu3+ compare with the corres- 
follows. The Stark levels are computed for a ponding ones for KY,F,,: Eu3+ (2).9 For the 
given set of D[ka,l and tl4f parameters. We purpose of comparison, we have redeter- 
then compare the observed and calculated mined, in the same vein as the one followed for 
distances between Stark levels issued from 
each of the ‘F, multiplets. The optimization of TABLE 1 

the parameters is performed by minimizing CRYSTAL-FIELD AND SPIN-ORBIT PARAMETERS FOR 
either the quadratic mean deviation KLu F .Eu”+ 3 10’ 

a = 1 ? d,(J)Z/E, From From 
o-minimization 

J i=l 
Fminimization 

~___--~ 

or the linear mean deviation Without With Without With 
J-mixing J-mixing J-mixing J-mixing 

f= 1 3 lt$(J)I/E,, 
~~~~__~ ..-~- --~~~__~~~~ ~. 

B: -409 -541 -433 -551 
J i=l % -1551 -1323 -1504 -1326 

where diG) is the difference between the ith % 280 512 305 508 

B: 404 351 422 356 
observed and calculated distance between two 

B4" -100 -45 -32 -39 
Stark levels arising from ‘I;; and EJ the C, 1474 1551 1619 1497 

number of experimental Stark levels arising 
I;- 

16.13 2.44 16.63 2.46 

from ‘FJ 11.88 1.68 11.73 1.45 

The program ran on the CDC 6600 system 
of the IN,P, for Eu3+ in phosphates, vanad- s All quantities in this paper have units of cm I. 

ates, and arsenates with tetragonal zircon 9 Note that, in (2) Bi = 243 should read Bi = -243 

(D,& structure (19) and for Eu3+ in various (20). Additionally, Percher and Caro have recently 

fluorides with tetragonal (C,$ structure. In 
obtained (20) a best-fit parameters set for KY,F,,:Eu”. 

particular, 
viz.. Bi = -528, Bi = -1356, Bi = 479, Bj = 367, and 

we have determined the para- B; = -41. 
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TABLE I1 

OBSERVED AND CALCULATED STARK SPLITTINGS (FROM THE CENTER OF GRAVITY) 
OF ‘F, MULTIPLETS FOR KLu,F,,:E@ 

Labeling 
of the levels 

‘F,A* 
E 

'FJ, 
B, 
B2 
E 

Observed splittings 

-86.67 
43.33 

107.00 
-8.00 
119.00 

-109.00 

Calculated splittings Calculated splittings 
with J-mixing with J-mixing 

(b-minimization) @minimization) 
.~-- 

-86.07 -86.67 
43.03 43.33 

105.96 107.00 
-7.04 -8.00 
118.76 119.00 

-108.84 -109.00 

‘F,A, 
B, 
4 
E 
E 

‘Fd A, 
A, 
A2 
B, 
4 
E 
E 

-63.7 I 
89.29 
75.29 

-33.71 
-16.71 

-108.57 
-121.57 

140.43 

-54.57 
102.43 

-69.86 -71.43 
88.14 90.57 
17.14 78.57 

-30.86 -32.43 
-16.86 -16.43 

-157.43 -158.14 
-108.43 -108.14 
-123.43 -125.14 

143.57 141.86 
61.57 60.86 

-58.43 -58.14 
102.57 103.86 

KLu,F,, : Eu3+, the crystal-field and spin-orbit decrease when J-mixing is taken into account. 
parameters for KY,F,,:Eu3+ from the E = 17 This clearly shows the importance of J-mixing 
experimental ‘1: levels of (2). The results for the fluorides under consideration [see also 
appear in Tables III and IV. m. 

A few remarks about the results of Tables I 
to IV are in order. 

Our crystal-field parameters for 
KY,F,,:Eu3+, cf. Table III, agree for the most 
part with the corresponding ones of Percher 
and Caro (2). i” 

The values for & obtained in the J-mixing 
case both for KLu,F,, : Eu3+ and 

TABLE III 

Both for KY3Flo :Eu3+ and KLu,F,, : Eu3+, 
the crystal-field parameters determined with- 
out J-mixing change more than admissible 
when going from o- to$minimization. On the 
contrary, there is consistency between crystal- 
field parameters obtained from & and $ 
minimization in the J-mixing case. In that case, 
it is only the distribution of the deviation 
between observed and calculated levels that 
changes when going from a- to$minimization. 

CRYSTAL-FIELD AND SPIN-ORBIT PARAMETERS FOR 
KY,F,,:Eu3+ 

From From 
&minimization jlminimization 

Without With Without With 
J-mixing J-mixing J-mixing J-mixing 

The quadratic (0) and linear (f> mean 
deviations, cf. Tables I and III, significantly 

I0 See Footnote 9. 

-413 -552 -443 -552 
-1552 -1332 -1501 -1334 

250 512 238 502 
414 366 407 368 

-102 -41 -78 -41 
1432 1574 1503 1636 

15.56 2.47 16.18 2.47 
11.72 2.06 10.91 2.03 
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TABLE IV 

OBSERVED AND CALCULATED STARK SPLITTINGS (FROM THE CENTER OF GRAVITY) 
OF ‘F, MULTIPLETS FOR KY,F,0:Eu3+ 

Labeling 
oft he levels 
.-- 
‘F,Az 

E 

‘FzA, 
B, 
4 
E 

‘F,A, 
B, 
4 
E 
E 

‘F,A, 
A, 
A2 
B, 
4 
E 
E 

Calculated splittings Calculated splittings 
with J-mixing with J-mixing 

Observed splittings (&minimization) @minimization) 

-88.67 -87.87 -88.67 
44.33 43.93 44.33 

107.40 106.08 105.08 
-10.60 -7.92 -7.12 
118.40 121.28 121.88 

-107.60 -109.72 -109.92 
-66.00 -70.14 -67.71 

88.00 88.86 87.29 
78.00 77.86 77.29 

-29.00 -31.14 -30.7 1 
-21.00 -17.14 -16.71 

-139.00 -139.88 -139.38 
-87.00 -87.88 -88.38 

-109.00 -104.88 -104.38 
165.00 164.13 163.63 

81.13 79.63 
-42.00 -38.88 -39.38 
127.00 123.13 123.63 

KY,F,, :Eu3+ are higher than the generally 
accepted value Is4f w 1300 (21). The reason for 
this apparent discrepancy is clear: The interac- 
tion via Zs, of the ground term ‘F with the 
excited terms 5D and 5G has been neglec- 
ted. This is an evidence of the necessity of 
enlarging the e(‘F) subspace for producing 
more realistic spin-orbit parameters (21). 
However, such an enlargement would not lead 
to crystal-field parameters which would 
substantially differ from the ones reported in 
this work [see also (2)l. 
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