Structure cristalline du monophosphate $AgHg_2PO_4$. Données cristallographiques sur $AgHg_2AsO_4$

RENÉ MASSE, JEAN-CLAUDE GUITEL ET ANDRÉ DURIF

Laboratoire de Cristallographie, C.N.R.S., 166 X, 38042 Grenoble Cedex, France

Received June 10, 1977; in final form August 22, 1977

Crystal structure of $AgHg_2PO_4$ has been determined by single crystal X-ray diffraction methods. The unit cell is orthorombic with a = 9.256(2), b = 8.614(2), c = 6.152(2) Å, Z = 4. The space group is *Pbam*. The structure is built of individual tetraedra PO₄ bridged with a pair of atoms Hg-Hg and Ag-Ag. AgHg_2AsO₄ is isostructural with AgHg_2PO₄. Crystal data are given for this last salt.

Introduction

Le phosphate et l'arséniate dimercuroargentique ont été identifiés en 1909 par Jacobsen (1) qui en donne une méthode détaillée de préparation. Cette dernière quelques précautions demande pour l'obtention de monocristaux. AgNO₃ et HgNO₃, H₂O sont dissous en proportions stoechiométriques dans 150 cm³ d'eau et 10 cm³ de HNO₃. Une autre solution contenant Na_2HPO_4 ou Na_3PO_4 , $12H_2O$, 10 cm³ de HNO, et 100 cm³ d'eau est préparée. Les deux solutions sont mélangées à froid afin d'éviter la précipitation instantanée de AgHg, PO₄. Après réchauffement il apparait des cristaux maclés de AgHg₂PO₄. Il s'agit d'une macle par accollement.

$$2HgNO_3 + AgNO_3 + Na_2HPO_4$$

$$\rightarrow AgHg_2PO_4 + HNO_3 + 2NaNO_3.$$

De la même manière, on peut préparer des monocristaux de $AgHg_2AsO_4$:

$$2HgNO_3 + AgNO_3 + Na_2HAsO_4$$

$$\rightarrow AgHg_2AsO_4 + HNO_3 + 2NaNO_3.$$

Données radiocristallographiques

Les mailles cristallines de AgHg₂PO₄ et de

AgHg₂AsO₄ ont été déterminées par la méthode de Weissenberg et affinées à partir de données enregistrées au diffractomètre de poudre à la radiation $\lambda_{K\bar{\alpha}Cu} = 1,5418$ Å. Les Tableaux I, II, et III résument les résultats obtenus.

Technique expérimentale

Les intensités diffractées d'un cristal de $AgHg_2PO_4$ ont été mesurées à l'aide d'un diffractomètre automatique Philips, à la longueur d'onde de l'argent ($\lambda = 0,5608$ Å) avec monochromateur. Les dimensions du cristal sont: $0,04 \times 0,04 \times 0,04$ mm³. La valeur du coefficient linéaire d'absorption de la substance est $\mu(K\bar{a}Ag) = 372$ cm⁻¹.

Domaine de mesure: $2-26^{\circ}(\theta)$. Mode de mesure: balayage ω ; largeur de balayage 1,6°; vitesse de balayage 0,02° sec⁻¹. Nombre de réflexions mesurées: 532. Nombre de réflexions utilisées pour l'affinement: 480 (Fo > 10). Il n'a pas été effectué de correction d'absorption. La valeur des paramètres de maille mesurés au diffractomètre automatique est:

$$a = 9,270, \quad b = 8,615, \quad c = 6,157$$
 Å.

0022-4596/78/2334-0369\$02.00 Copyright © 1978 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain

TABLEAU I

D	ONNÉES	Cristallographio	UES
~	01111220	ond on the booth in the	~~~

Symétrie: o Groupe spa Paramètres	rthorhombique tial: <i>Pbam</i> :		
AgHg₂PO₄	$\begin{cases} a = 9,256(2) \text{ Å} \\ b = 8,614(2) \\ c = 6,152(2) \end{cases}$	AgHg₂AsO₄ ≺	$\begin{cases} a = 9,598(3) \text{ Å} \\ b = 8,709(3) \\ c = 6,260(3) \end{cases}$

Détermination et affinement de la structure

Une sommation de Patterson tridimensionnelle a permis de localiser les atomes de mercure en position 8(i) du groupe spatial *Pbam.* A partir de cette position une série de Fourier-différences révèle les positions des atomes d'argent, de phosphore et d'oxygène. Un affinement du modèle obtenu dans le groupe spatial *Pbam*, par une méthode de moindres carrés, effectué au moyen du programme SFLS-5 de Prewitt (2) sur 480 réflexions, conduit à une valeur de R = 4,6%. Les Tableaux IV et V donnent les coordonnées cristallographiques et les facteurs thermiques. Nous n'avons pas affiné les facteurs thermiques anisotropes des sites d'oxygène, à cause de leur contribution réduite au facteur de

TABLEAU II	
------------	--

				-			
h k l	d _{obs}	d _{caic}	I _{obs}	h k l	d_{obs}	d _{calc}	I _{obs}
110	6,29	6,31	7,5	321	_	2,323	
001	6,14	6,15	19	400	2,314	2,314	3
200	4,62	4,63	36,5	231	2,267	2,268	3,5
111	4,40	4,40	14,5	410	2,235	2,234	7,5
020	4,30	4,31	36,5	222	2,201	2,202	34
210	4,07	4,08	13	401		2,166	
120		3,906		040	2,152	2,154	18
201	3,694	3,698	5,5	312		2,112	
021		3,529		330		2,102	
211		3,398		411		2,100	
121	3,291	3,297	7,5	140		2,098	
220	3,150	3,153	100	003		2,050	
002	3,076	3,076	10	132		2,047	
310	2,906	2,905	2	420	2,040	2,038	12
221	2,805	2,806	6,5	041	2,033	2,033	11
112	2,763	2,765	3,5	331		1,989	
130		2,743		141	1,987	1,986	3,5
311	2,626	2,627	7,5	240	1,952	1,953	12
202	2,562	2,562	38	113		1,950	
320		2,508		322		1,944	
131		2,505		421	1,934	1,935	4,5
022	2,503	2,503	62	232		1,912	
212	2,455	2,455	12	203	1,875	1,875)	10
230	2,438	2,440	9	241		1,861)	10
122		2,417		023	1,852	1,852	20

D	,		
DISTANCES	RETICULATES	DE DE	AgHg_P().
		_	

TABLEAU III

				-			
h k l	d _{obs}	d _{calc}	I _{obs}	hki	d _{obs}	d _{calc}	$I_{\rm obs}$
110	6,47	6,45	5	202	2,622	2,622	12,5
001	6,28	6,26	2	320		2,578	
200	4,80	4,80	22	022		2,541	
111	4,49	4,49	5	131	2,539	2,539	24
020	4,36	4,35	15	212	2,510	2,510	4
210	4,21	4,20	5,5	230	2,485	2,484	4
120		3,965		122		2,457	
201	3,816	3,808	5	400	2,398	2,399	4
021	3,578	3,574	1	321		2,384	
211		3,489		410	2,312	2,313	4,5
121	3,351	3,349	3	231		2,309	
220	3,229	3,224	100	222	2,245	2,246	9
002	3,130	3,130	2	401		2,240	
310		3,003		040	2,176	2,177	15,5
221	2,868	2,867	1	411		2,169	
112		2,816		312		2,167	
130		2,778		330		2,150	
311	2,708	2,708	8	140		2,123	
				420	2,101	2,101	6,5
					,		

DISTANCES RÉTICULAIRES DE AgHg₂AsO₄

TABLEAU IV

PARAMÈTRES ATOMIQUES

Atome	Position	x/a	y/b	z/c	$B(\dot{A}^2)$
Hg	8(<i>i</i>)	0,03050(8)	0,25148(15)	0.21180(11)	1,13(08)
Ag	4(g)	0,3501(3)	0,0292(3)	0,0	1,51(10)
P	4(h)	0,2857(9)	0,4556(8)	0.5	0.62(15)
01	8(1)	0,194(1)	0.050(1)	0,286(2)	0.88(19)
02	4(h)	0,132(2)	0,384(2)	0.5	0.58(27)
03	4(h)	0,405(2)	0,326(2)	0,5	0,74(28)

TABLEAU V

C	OEFFICIENTS	THERMIQUES	ANISOTROPES
---	--------------------	------------	-------------

Atome	β_{11}	β_{22}	β ₃₃	β_{12}	β ₁₃	β ₂₃
Hg	0,00439(7)	0,00425(7)	0,00398(12)	0,00078(13)	0.00012(11)	0.00120(21)
Ag	0,0032(2)	0,0076(3)	0,0076(5)	0,0000(3)	0	0
Р	0,0022(6)	0,0013(6)	0,0047(14)	-0,0002(7)	0	0

structure et du nombre limité de réflexions.

Les tables des facteurs de structure observés et calculés sont disponibles auprès de ASSIS/NAPS c/o Microfiche Publications (1).

Description de la structure

La charpente de ce monophosphate est constituée de tétraèdres PO₄ reliés entre eux

FIG. 1. Configuration des paires Ag-Ag et Hg-Hg.

atome d'oxygène voisin du mercure: -O-Hg-Hg-O-. Dans AgHg₂PO₄ nous en avons trois:

Les paires Ag-Ag sont situées dans le plan (a, b) de la maille. Chaque atome d'argent a deux voisins oxygène 01 appartenant à deux tétraèdres distincts. Ils forment la configuration suivante:

La distance Ag-Ag est 2,824(4) Å.

Le Tableau VI donne les distances interatomiques et les angles des liaisons qui permettent de reconstituer les configurations PO₄, O3-Hg-Hg-O3 et O2-Ag-Ag-O2, en tenant compte des éléments de symétrie locaux de ces configurations, centre de symétrie ou

DISTANCES INTERATOMIQUES ET ANGLES DES LIAISONS

Tétraèc	ire PO ₄
P-01 = 1,56(1) Å	01-01 = 2,63(3) Å
P-02 = 1,54(2)	01-02 = 2,52(2)
P-03 = 1,57(2)	01-03 = 2,51(2)
	02–03 = 2,57(3)
01– P –01 =	= 115,3(7)°
01 - P - 02 =	= 108,7(7)°
01 - P - 03 =	= 106,5(7)°
02–P–03 =	= 111,1(7)
Voisinage de la	a paire Hg–Hg
Hg-Hg - 2 608(2) Å	Hg_Hg_01 - 101 2(3)9
$H_{g}=11g = 2,000(2) \text{ A}$ $H_{g}=01 = 2,348(12)$	Hg = Hg = 02 = 101, 2(3) Hg = Hg = 02 = 140, 1(3)
$H_{g} = 0.02 = 2.313(11)$	$H_{g}H_{g}02 = 140,1(3)$ $H_{g}H_{g}03 = 142,0(3)$
$H_{g}=02 = 2,313(11)$ $H_{g}=03 = 2,224(11)$	ng - ng - 03 = 142,3(3) n1 - Hg - 02 = 87.2(4)
11g-05 = 2,224(11)	01 - Hg = 02 = 07,2(4) 02 - Hg = 03 = 75,5(4)
	03-Hg-01 = 87,7(5)
Voisinage de la	a paire Ag-Ag
$Ag - Ag = 2.824(4) \dot{A}$	$Ag - Ag - 01 = 129.6(3)^{\circ}$
Ag-01 = 2,289(13)	$01 - Ag - 01 = 100,6(4)^{\circ}$
Distances n	nétal-métal
Hg - Ag =	2.840(3) Å
Hg - Ag =	2.941(3)

par des paires Hg-Hg et Ag-Ag. Le tétraèdre PO_4 admet un miroir en z = 0.5. Les paires Hg-Hg sont parallèles à l'axe c de la maille. Chaque atome de mercure a trois voisins oxygène: 01, 02, 03, appartenant à trois tétraèdres distincts. La distance Hg-Hg est 2,608(2) Å. Elle est plus grande que toutes les distances Hg-Hg décrites dans les nombreux sels de mercure monovalent de structure connue. Kamenar et Kaitner (3) trouvent dans $(Hg_2)_3(AsO_4)_2$, Hg-Hg = 2,535(4) Å. Nilsson (4) dans $Hg_2(H_2PO_4)_2$ a montré que Hg-Hg =2,499(1) Å. Ces auteurs donnent les références complètes sur d'autres sels de mercure monovalent dont les structures sont établies. En moyenne, la distance Hg-Hg est de 2,53 Å. Dans tous ces sels nous avons toujours un seul

FIG. 2. Projection (a, b) de la structure AgHg₂PO₄.

miroir. La Fig. 1 représente de façon détaillée les configurations autour du mercure et de l'argent. La Fig. 2 représente une projection (a, b) de la structure de $AgHg_2PO_4$. Les distances Hg-Ag sont: 2,840(3) et 2,941(3) Å.

Du point de vue du caractère de la liaison chimique, une étude détaillée serait intéressante à entreprendre sur ce composé. A notre connaissance, c'est la première fois que l'on met en évidence une liaison: Ag-Ag dans un composé contenant de l'argent.

References

- 1. J. JACOBSEN, Bull. Soc. Chim. Fr. 4, 947 (1909).
- C. T. PREWITT, SFLS-5, Oak Ridge National Laboratory Report, ORNL-TM-305 (1966).
- 3. B. KAMENAR AND B. KAITNER, Acta Crystallogr. B 29, 1666, (1973).
- 4. A. NILSSON, Z. Kristallogr. 141, 321 (1975).