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Two-dimensional defects in homogeneous materials are the subjects of many investigations. Many 
properties are related to the nature of the surface, to the grain (or domain, or variant)structure, and to the 
presence of stacking faults, shear planes etc. Some remarks on the nature of interfaces from a geometric 
and eventually chemical point of view are reported. 

I. Interface Characterization 

In this paper I do not consider the shape 
and position of the interface itself but only 
emphasize the geometrical relation between 
crystals separated by an interface, which is 
one important characteristic of the interface. 

1.1. The Interface Relation 

Two equivalent points rl and r2 in two 
crystals I and II separated by an interface are 
related by (Seitz notation) 

(R[r)rr = r2 = Rrr + 7, 

where R is the point operation leaving the 
chosen origin unchanged and r1 and r2 are the 
coordinates in each crystal of points where 
the potential energy, the electron density, 
and any other scalar quantities are the same. 

Vdrd = Vdr2). 

1.2. Coset of the Interface 

Let us call (hilti) a symmetry operation of 
crystal I (including translations (EIT,), 
where E is the identity and T, is a primitive 
translation). (hilti) is defined in the same way 
as (RI7). The interface operation (R)T) is 

strictly equivalent to any other operation of 
the coset 

(R IT)(hIfi) = {(R IT)). 

1.3. What to Call an Interface 

The name of an interface must be chosen 
arbitrarily. If there is a (nonprimitive) trans- 
lation (E(Q) in the coset {(R IT)} the interface 
is generally called a stacking fault, an 
antiphase boundary or a shear plane. 

For describing grain boundaries, it is 
common to choose rotations around crystal- 
lographic directions. Even in this case an 
arbitrary choice is needed. For example, a 
rotation of 12” around a fourfold axis is the 
same as a rotation of 90+ 12 = 102” around 
the same fourfold axis. 

Some grain boundaries cannot be 
described by rotations, and one needs a mir- 
ror or a center, as in inversion boundaries of 
lithium ferrospinel, LiFesOB. 

1.4. Location of the Boundary Operation and 
Reducibility of the Associated Translation 

If the operation (R17) is referred to an 
origin 0’ other than the previous origin, 
(ROT) is changed into (Rl7-t ROO’ - 00’). 
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The point operation is then moved to an- The model of the twin is a plane interface 
other origin 0’, and the translation is parallel to the mirror, and if one chooses to 
increased by ROO’- 00’. A judicious locate the operation on the plane interface the 
choice of the origin may lead to a pure point mirror is a glide mirror, but, of course, the 
operation if twin crystals are related only by a pure 

mirror. 
(R-E)OO’+T=o. 

IS. Determination of the Nature of the Inter- 
It is easily seen that this is always impossi- face 

ble for translations because (R -E)OO’ = 0. 
On the contrary the inversion is essentially a 

It is possible to find extinction conditions 

pure operation always reducible. 
of the interface in TEM. They have been 

In the case of rotations reducibility is 
given elsewhere and are valid in 

possible if 7 is perpendicular to the rotation 
multidiffraction conditions (zero layer 

axis (and for mirrors if the translation is 
approximation). The set of g vectors of the 

perpendicular to the mirror). Actually a 
diffracted pattern must follow the relations 

more careful inspection of the problem Rhig = g 

shows that the origin 0; giving pure opera- and 
tions is given by the equation g(Rtj + T) = n. 

(R-E)OO'+T+RT,=O An example of a twin of Yb20s is given 

or the equivalent equation 
here, and the location of the mirror is such 
that the Yb ions are at the nodes of an 

(R-EOO'-R-l~+Tn=O. invariant sublattice of the twin and oxygen- 
12 and are also invariant. High-resolution 

There are solutions if the component of images also lead to the determination of the 
the translation RT,, of the second lattice interface operation, but the boundary 
along the rotation axis is the same as the conditions may give an “artefact” in the 
component of 7 along the same axis. image, and we have suggested for the loca- 

A similar approach is used for mirrors. It is 
thus possible to study such equations for 

tion of the surface boundary by such images 

every operation of the coset {@IT)} and 
the use of a set of g beams satisfying the 
previous extinction conditions-at least the 

eventually to find a complicated set of such first one, Rhi g =g. 
points. 

We have followed the same reasoning, but 
in a more general way, as that followed by 

II. Twins 

Bollman when he defined his O-lattice. Following an earlier idea of Georges 
Some misunderstanding may arise from Friedel, we call twins interfaces conserving 

the confusion between the plane of the one or several sublattices. Let us call R the 
boundary and the operation of the boundary. invariant sublattice, whose space group is 
Donnay et al. (1) in an excellent paper on Gn, with Go the group of the structure. The 
the twin boundary in pyrite, state that “on intersection of GR and Go is a group G, = 
atomic scale the twin operation is a glide GRn Go whose elements leave both R and 
reflexion with glide component equal to the structure invariant. 
(al-I-a2)/2 in a (110) plane passing through 
point 0, $,.O.” This is possibly true, but, if so, II. 1. Numbering of Interfaces 

the operation is a pure mirror passing The symmetry operations leaving R 
through the origin. invariant, but not the structure, are the twin 
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operations (leaving R invariant) we attempt 
to number. That number is the index p of G1 
in Ga. 

There are equivalent twins leaving the k 
sublattices equivalent to R invariant. This 
number k is the index of GI into Go. Thus the 
number of twins leaving an R sublattice 
invariant or their equivalent is 

n s k(p - l), 

where n is equal to k(p- 1) if each twin 
leaves only one R lattice unchanged. (A 
more detailed study shall be published.) This 
is the number of twins adjacent to a given 
variant. The number of variants in the 
material is not infinite if there is a common 
supergroup G of Go and GR. This is always 
the case for R sublattices whose nodes are 
occupied by the entire Wyckoff family of the 
structure. 

11.2. Twin Interface Operations and 
Mechanism of Twinning 

If for simplicity one examines a {ioi2] 
twin in hexagonal metals in a case with a c/a 
ratio equal to 31’2, it is possible to find 
an atomic model describing the move- 
ment of atoms without shear. The relative 
movement of atoms consists in a permu- 
tation of the distances from an atom of a 
pair of nearest and next-nearest 
neighbors. 

It is possible to choose two types of coin- 
cidence lattice sites: occupied sites or octa- 
hedral interstices. The movements of atoms 
are slightly different in the two hypotheses. 
[A detailed description of these and other 
twins will soon be published by Le Lann and 
Dubertret (8).] 

It is interesting to note that in the first case, 
the mirrors’ planes are not equivalent: If 
(1OiZ) is a pure mirror (lOi2) is a glide 
mirror. In the second case, however, the 
lOi and lOi? planes can be pure mirrors 
simultaneously. These situations may be dis- 
tinguished experimentally. 

III. Ordering Materials 

If the space group H of the ordered phase 
is a subgroup of the disordered group Go it is 
possible to classify and to number the inter- 
faces and the variants. 

One decomposes group Go into cosets of 
group H referred to the first chosen variant. 

G,,=H+glH+gzHz. - .+g,-1H, 

where gl is one operation (R/T) and H is the 
group of operators (hilti) modulo the unit 
cell. The index n of H in Go is the number of 
variants. In some cases the numbering is easy 
(4 variants in AuCu3; 8 in LiFeSO& whereas 
in other cases it is more difficult (64 variants 
in V&T; 84 variants in Au=,Mn2. 

III. 1. Equivalent Boundaries 

Two variants V2 and V, deduced from 
each other by a symmetry operation (hilti) of 
a variant V1 are separated from this variant 
by equivalent interfaces. It is mathematically 
easy to see that in this case the cosets of the 
boundaries V,/ V2 and V1/ V3, say g2H and 
g3H, are conjugated by an operation (hiIti)of 
Vl. 

Generally it is easy to classify the boun- 
daries: In LiFesO* there are two families, 12 
antiphase boundaries, and 16 inversion 
boundaries. Sometimes one must classify the 
antiphase boundaries whose vectors are not 
equivalent. In vanadium carbide there are 
vectors which, like the antiphase vectors 
$(llO) of ordered ~512 structures (AuCu3 Nig 
Fe), are not related by the rotations of the 
cube. 

A complete analysis of the boundaries 
requires a number of diffraction experi- 
ments, which can be carried out by group 
theory considerations. If k is the number of 
variants whose space groups are deduced 
from each other by identity, translation, or 
inversion, n is the total number of variants 
(n =pk). The number N of distinguishable 
extinction conditions (in a zero layer 
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approximation) is given by 

N=p(n-l)-;(p-1)N. 

If all variants are inversion or translation 
related (p - 1) as in the case of AuCu3 or 
LiFesO*, there are II - 1 extinction condi- 
tions. 

111.3. Coarsening of Domains and Non- 
stoichiometry 

It is commonly thought. that domain 
coarsening follows quite well the law D* = 
0; + kt of the evolution of mean thickness D 
of domains as a function of time t. In permal- 
loy systems, NiaFe, the results of Smallman 
confirm this law, as did those of Calvayrac 
previously. But this result is due only to the 
way in which these authors measured the 
sizes of the domains. Carefully studying the 
profile of the superstructure X-ray 
diffraction line 100, Bley et al. (9, 10) found 
that the law was 

D” =A+kt. 

The exponent n varies with temperature. 
This equation shows that the phenomenon 

of domain coarsening is not a simple ther- 
mally activated phenomenon. As in grain 

coarsening the variation of the composition 
near the boundary and the dragging of these 
“impurities” are surely responsible for this 
deviation from the law in D*. 

In small-domain materials one has to take 
into account the effect of boundaries on 
stoichiometry, “equilibrium” properties, 
and thermodynamic quantities. 
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