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The elastic strain energy in a structure of the Re03 type containing ordered arrays of {OOl} CS planes has 
been calculated. The values obtained are for the elastic strain energy of the matrix between CS planes and 
also the relaxation energy of the ions in the CS planes themselves. Interactions from all the CS planes in 
the crystal are summed and not just those from nearest neighbors. The extent to which the CS planes can 
be considered to transmit the forces which strain the crystal is considered by including a variable 
parameter, (I, in the calculations, which is related to the type of chemical bonding present in the CS planes. 
The results are compared with experimental observations in the WOs-Nb205 and NbOzF systems. It is 
concluded that the value of a is high for WO, doped with NbzOS and low for Nb02F in accord with the 
expectations of chemical bonding. The results also support the view that elastic strain energy is important 
in influencing the microstructures observed in crystals containing CS planes. 

Introduction 

In recent years a substantial amount of 
experimental evidence has been presented 
concerning the crystal chemistry of the crys- 
tallographic shear (CS) structures which are 
formed when WOs crystals are reduced or 
doped with certain other metals (see, for 
example, the review articles by Anderson 
(I); Tilley (2,3); Anderson and Tilley (4); 
and Iguchi and Tilley (5)). It is only recently, 
however, that these experimental results 
have been examined more quantitatively 
from the point of view of theoretical solid 
state chemistry and physics. 

In such an analysis, there are a number of 
factors to consider. As CS planes are exten- 
ded lattice defects it is likely that elastic 
strain energy is important, and indeed, such a 
suggestion was made some time ago by 

Anderson (6). In addition to this factor we 
must also consider the real valence states of 
the ions within the CS planes. If the CS 
planes are not electrically neutral overall, a 
repulsive Coulomb energy will exist between 
CS planes while even if they are neutral there 
will still be an electrostatic interaction 
between the ions in the CS plane and those in 
the surrounding matrix (7). In addition, the 
observed fact that CS planes seem only to 
form in oxides which have high dielectric 
constants makes it possible that polarization 
effects play an important role as well (8). 

Theoretical attempts to treat electronic 
interactions and polarization effects are at 
present underway, but are hampered in part 
by lack of precise experimental data 
concerning the valence states of ions in 
crystals containing CS planes. Thus the 
quantitative analysis of the behavior of CS 
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structures has been dominated by attempts 
to calculate elastic strain energy terms. 
Fortunately these have been shown to pre- 
dict microstructures in fairly good agreement 
with experimental results (see, e.g., (5)) and 
indicate that Anderson’s original suggestion 
to this effect was reasonable. 

There are, at present, two approaches to 
the calculation of elastic strain in the lit- 
erature. The first is that used by Stoneham 
and Durham (9), who evaluated the relax- 
ation energy of ions in (001) CS planes 
formed in an ReOa type of crystal structure. 
In this model, forces were postulated to 
occur within each CS plane and the inter- 
action between these forces lead to the 
relaxation. According to this model the crys- 
tal matrix between CS planes only trans- 
mitted these forces and at no time was it 
considered to undergo elastic strain. In the 
second approach, that of Iguchi and Tilley 
(5), forces were also assumed to occur within 
the CS planes- principally as a result of 
cation-cation interactions. These forces 
were considered to strain the crystal matrix 
surrounding the CS planes, which was 
considered to be an isotropic continuum. 
When treating arrays of CS planes, only the 
elastic strain in the matrix between two CS 
planes was considered and cumulative effects 
due to other CS planes was totally neglected. 
They did not calculate the relaxation energy 
of the ions within the CS planes due to the 
forces postulated to occur in the neighboring 
CS planes. 

These two approaches are to a large extent 
complementary. The first point which is 
apparent is that the true elastic strain energy 
of a crystal containing CS planes should be a 
summation of both the relaxation energy of 
ions within the CS planes and the elastic 
strain energy of the crystal matrix lying 
between the CS planes, and therefore we 
should evaluate both terms. Second, Stone- 
ham and Durham treated the region within 
the CS plane as a continuous medium, as well 
as the matrix between CS planes and, there- 

fore, they assumed that the CS plane could 
transmit forces perfectly without any 
damping. If we define (Y as the permeability 
of the forces in one CS plane, in their model 
(Y = 1. On the other hand, Iguchi and Tilley 
assumed that (Y = 0, as their model for a CS 
plane involves discrete ions. It is certainly 
possible that cy lies between these values, and 
it may therefore be possible to obtain 
information on the nature of CS planes by 
treating (Y as a parameter in the theoretical 
calculations and comparing the results with 
experimental data. 

The present paper describes the results of 
such calculations. In order to present the 
findings concisely we have chosen in this 
instance to consider only the simplest 
geometrical situation, that is, the case of 
(001) CS planes in an Re03 (DOQ) type of 
crystal structure. Energy terms due to a pair 
of 1001) CS planes and an infinite array of 
(001) CS planes have been evaluated. These 
values are presented here and discussed in 
the light of the available experimental data. 
A following communication will use the 
results given here in evaluating the elastic 
strain energy and relaxation energy for other 
CS plane geometries in reduced WOs. 

Theory 

The ReOs structure consists of an infinite 
array of corner-sharing metal-oxygen octa- 
hedra as shown in Fig. la. It is cubic, with a 
lattice parameter, a, equal to an octahedron 
diagonal. Although Re03 has not been 
observed to support reduction by way of CS, 
the isostructural NbOzF does, and reduction 
of this compound leads to CS plane forma- 
tion on (001) (10). The idealized structure of 
an (001) CS plane is shown in Fig. lb. In 
Nb02F, these CS planes are usually present 
in fairly low densities, but phases 
geometrically derived from Nb02F by 
ordered CS, such as Nb207F, are also known 
and it is possible that under carefully 
controlled experimental conditions a wide 
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FIG. 1. Idealized representations of: (a) the cubic ReOs structure type; and (b) an (001) CS plane in a 
matrix of the ReOs type. The shaded squares represent metal-anion octahedra which are joined by corner 
sharing to form a three-dimensional array. The axes marked are those of the cubic unit cell of ReOs. 

range of (001) CS phases might form in the 
Nb-O-F ternary system although previous 
experiments to this end have proved unsuc- 
cessful (II). 

Also related to the Re03 structure is W03. 
In this material the cations are off -centre and 
the structure somewhat distorted so as to 
reduce the symmetry to monoclinic, but 
topologically it remains identical to Re03. 
Reduction of WOs leads to an extensive 
series of CS phases (see, eg., (I -4)) but in 
this case the CS planes usually lie on { 102) or 
(103) planes, referred to the idealized cubic 
unit cell. In the Nb-W-O and Ti-W-O 
ternary systems, however, ordered arrays of 
(001) CS planes are observed (12,ZO). 

A crystal containing an ordered array of 
(001) CS planes is a member of a homolo- 
gous series of oxides of formula M,03n-1. 
The value of n in this formula is simply the 
number of metal-oxygen octahedra separat- 
ing each CS plane. In the absence of any 
distortion of the crystal, the spacing of the CS 
planes d,, is therefore related to n by the 
equation 

d, = (n --$a, (1) 

where a is the length of the octahedron 
diagonal. 

Figure lb shows that within (001) CS 
planes the cations and also the anions above 
and below them are much closer together 
than they normally are in the matrix. We 
assume that this close approach gives rise to 
repulsive forces, of which those between the 
cations are expected to be strongest. These 
forces, f, shown in Fig. 2, are the ones we 
assume to be responsible for the strain 
described in the Introduction. The first of 
these is due to the interaction of the forces in 
one CS plane with the forces in all the other 
CS planes. This effect is a work term 

IOOll cs plane 

a 

FIG. 2. Schematic representation of the forces in an 
{OOl} CS plane which are supposed to give rise to elastic 
strain in the crystal. 
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expressed as the scalar product of the force 
acting on a cation in a CS plane with the 
displacement of this ion due to all other 
forces. If the cation displaces along the 
direction of the defect force acting on it, as 
would be expected, this will tend to coun- 
teract the increase in the elastic strain 
energy. For this reason we term this inter- 
action a relaxation energy, Vu. The second 
energy term is simply the elastic strain in the 
matrix surrounding a C’S plane due to the 
forces within the CS plane. This term we 
express as Us. The total interaction energy, 
U, is therefore-given by 

lJ=u,-u,. (2) 

To calculate these terms we take an ideal- 
ized array of (001) CS planes as depicted in 
Fig. 3. The relaxation energy UR of the 
forces in a unit area of CS plane 1 with all of 
the forces in all of the other CS planes is 
evaluated and then the strain energy, Us, in 
the matrix between CS planes 1 and I ’ due 
to all the forces in the array is evaluated. 
These two terms are summed and then 
reduced to a value per unit volume of crystal. 

In calculating these terms we have employed 
a permeability factor, (Y, as described above, 
to characterize the CS planes’ ability to 
transmit the forces. 

The energy, UR, per unit area of the CS 
planes can be obtained as follows: 

where (fi)i represents the ith force in a unit 
area of CS plane 1 and Ui is the displacement 
of the ion on which cfi)i does work due to all 
the forces in all the CS planes except CS 
plane 1. The notation xi indicates the sum- 
mation of the interaction energy of all ions in 
a unit area of CS plane 1. The jth forces in the 
nth CS plane or in the n’th CS plane are 
represented by (fn)j or (f,,,)i, where n 
indicates the CS plane to the right of CS 
plane 1 and n’ the one to the left, as shown in 
Fig. 3, and xi indicates the summation of 

cs3 

cs2 

FIG. 3. An array of {OOl} CS planes in an ReOg type of crystal, showing the labeling of CS planes used 
in the text. 
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each component of the displacement of the the integration of the work that the stress 
ith ion in CS plane 1 due to the forces in the does on the element and, for a cubic crystal, 
nth or n’th CS plane. In addition, I,+ the strain energy density is given as follows 
means the summation of the displacement of (14): 
the ith ion caused by all the CS planes to the 
right of CS plane 1 and c,P=1 a similar 

w= 
I 

Uij deij 

summation due to all the CS planes to the 2 

left. In Eq. (3), G is the elastic Green’s =$(h+2p) 
function and its ijth component has the form ( I 

5 eij 
i=l 

(13) 

Gij = (1/8~~) 
+/A i: (f?fj-eiiejj), (i Zj). (7) 

i.j=l 

Therefore, the strain energy in the matrix per 
unit area of the CS plane, Us, is given by 

(4) 

where r is the vector from the ion on which 
us = ; ~W3Wh (8) 

cfi)i acts to the position of cfn)j or cfn~)~ and A 
and p represent the Lame constant and the 

where w1 is the strain energy density of the 

shear modulus, respectively. 
Ith ion in the matrix and rI is its ionic radius 

The strain energy, Us, in the matrix 
and C1 indicates the summation of the strain 

between CS planes 1 and 1’ can be obtained 
energy of all the ions in the matrix between 

as follows. The displacement of an ion in the 
CS planes 1 and 1’. 

matrix is evaluated by 
A crystal which has an infinite ordered 

array of (001) CS planes has an energy per 
unit volume due to the forces in the CS 

* = c an-1 
[ ;G(f,)i] planes, Uv, given by 

n=l 

+“;,, an’-‘{ $ Wdi), 

b= (us- urd/dn 
(5) 

= ; $(rI)‘Wl -C cfi)jUi 
I I I/ 

(n -$)a. 

where every notation has a similar meaning 
to Eq. (4) except CnX1 which indicates the 

(9) 

summation of the displacement of an ion due 
to all the CS planes on the right-hand side of Calculations and Results 

CS plane 1 which is included in this sum- In order t0 eVahate us and & we Will use 
mation. We then have obtained each the elastic Green’s function as shown in Eq. 
component of the strain of the ion in the (4), which indicates that the calculation will 
matrix from the relation be performed in real space rather than 

ehk =;(z+$), 
Fourier space. This method has been adopt- 

(6) ed for the following reason. As described in 
the preceding section, the relaxation energy 

where ehk is the hkth component of the strain term due to the interaction of forces in any 
e and uh is the hth component of the dis- CS plane with themselves (i.e., the forces in 
placement u. CS plane 1 in Fig. 3) and the elastic strain 

When a unit-volume element deforms energy caused by the forces acting on ions 
reversibly by the strain increment &ii, the within the CS planes themselves (the U,, 
strain energy density function is obtained by term in (5)) will not be included in the initial 
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calculations. The reason for this is that it is 
important to reveal the extent to which we 
can treat the CS plane itself as a continuous 
medium in the same way as we hav. treated 
the matrix between CS planes. If the CS 
plane can be treated as a continuous 
medium, then the permeability of the forces 
within one CS plane will have a value of the 
permeability coefficient (Y equal to 1.0. In 
such a case the Fourier transform method 
used by Stoneham and Durham (9) and 
Shimizu and Iguchi (15) can be applied. 
However, this is by no means certain, and if 
we need to change the value of (Y from 1.0 it 
becomes difficult to apply Fourier transform 
methods. 

In calculating Eqs. (3) and (8) or Eq. (9), 
we have employed the same values for the 
relevant physical constants as in previous 
reports (5,9); viz., 

r. (the ionic radius of 0 ions) = 0.140 nm, 
rw (the ionic radius of W ions) = 0.060 nm. 

Calculation of UR 

Initially consider a pair of parallel (001) 
CS planes 1 and 2. The interaction energy 
(U& of the forces in a unit area of CS plane 
I with all the forces in CS plane 2 is given by 

(UR)Z=C cfi)i( C Gcfr)ij, (10) I i 

where CiG(f2)j indicates the summation of 
the displacement of the ith ion on which the 
force vj)i does work due to all the forces in 
CS plane 2 and xi has the same meaning as in 
Eq. (3). We need to obtain the relation 
between (U& and the spacing of the CS 
plane pair. In Eq. (lo), we should sum the 
displacement of the ith ion caused by all the 
forces in CS plane 2 theoretically, but this is 
clearly impractical. Thus we have summed 
the displacement of the ith ion caused by the 
forces in a block which has a length of 301 a 
in the [OOl] direction and a height of 201 a in 
the [loo] direction. In order to investigate 

how appropriate this block size is we cal- 
culated the absolute values of the interaction 
energy, Cicf~)iGcf~)i, between the forces in a 
unit area of CS plane I and the jth force on a 
line in the [OOl] and [loo] directions which 
pass through the center of the block when the 
spacing between the pair is 3.5 a. These 
results showed clearly that the absolute value 
of the ratio of the interaction energy due to a 
force in the boundary of the block to the 
maximum interaction energy on these lines is 
less than 1 x 10m4, which indicates the 
approximation employed in the calculations 
to be reasonable. 

Using these approximations we have cal- 
culated (U& for a range of values from 
n = 4 to n = 110 and plotted the result in Fig. 
4. In this figure IZ is the value of n in M,03n-1 
and given in Eq. (1) which would apply if an 

0.004 

0003 

0.002 

0.001 

0 . 
50 100 n 

FIG. 4. The relationship between the relaxation 
energy of ions in a pair of CS planes, (U&, and the 
spacing between the CS planes, n. 
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infinite array of Cs planes were formed 
with the same spacing as the original pair. 
From the calculations it was found the 
(U& (1 lO)/( U& (4) is less than 0.1, where 
(U& (N) indicates the interaction energy 
when the n value is N. In order to calculate 
tYR for an array of CS planes it is necessary to 
calculate (U& for the geometrical situation 
which represents the out of phase arrange- 
ment of CS plane 1 with respect to CS plane 
3 (see Fig. 3). We will term this pair of CS 
planes incoherent, and we denote this energy 
term as (V&. The variation of (&)I with n 
closely parallels that of (U& shown in Fig. 4. 
The relaxation energy per unit area per 
plane, Un, for an infinite ordered array of 
(001) CS planes in a crystal whose composi- 
tion is M, 03”-i can then be represented by a 
summation of (U& and ( VR); terms, that is, 

UR = 2 1 ~2’i-“(U,),(/,) i i=l 

+i;I a2’-‘(~R);(r,)], (11) 

where 
11 =n+(2n-l)(i-l), 

12 = (2n - 1)i. 

As shown in Fig. 4, (&& (N) or (U&(N) 
when N > 110 is negligibly small in com- 
parison with ( uR)2 (4) or (&)I. (4) and we 
have neglected the contribution of (&)2 (N) 
or (UR); (N) to UR when N > 110. Thus we 
have considered the summation, xi, for i 
lying in the range i = 1 to the maximum 
integer which satisfies Ni < 110. Under these 
conditions, we obtain the result shown in Fig. 
5. 

Calculation of Us 

The method of calculating Us has been 
described in detail in a previous paper (5). In 
this report, however, we have changed the 
method of calculation slightly, as follows. 
Here we have replaced the infinite chain of 
edge-shared pairs of MO6 octahedra which 
make up the (001) CS plane by a CS plane 

which effectively has indexes {lOm}, where 
m = 85 and is made up of blocks of edge- 
shared octahedra 85 pairs long. Each one of 
these blocks is treated as one unit and we 
have summed the displacement of an ion in 
the matrix caused by all the units in an area of 
CS plane containing 41 X 1 units. In order to 
check whether this approximation is 
reasonable we have also performed some 
calculations using a CS plane in which m = 
87 and an area containing 43 X 1 units in 
which each unit consists of 87 pairs of edge- 
sharing octahedra. Good agreement was 
found between the two resulting values, and 
the absolute value of the ratio of the 
difference between the strain of the metal 
ions which are nearest to the centre of these 
latter blocks to the strain of the metal ions 
which are nearest to the centers of the blocks 
containing 41 pairs of edge-shared octahedra 
is less than 1 x 10e3. 

In our earlier paper on this topic (5) we 
assumed that the strain energy of the matrix 
lying between a pair of CS planes, ( Us)2, was 
not influenced by other CS planes in the 
crystal. The total elastic strain energy of the 
matrix of a crystal containing an array of CS 
planes was then simply approximated to the 
sum of all the individual ( Us)2 values. In this 
paper we assume, as for UR, that all the CS 
planes in the crystal influence the strain 
energy between any particular pair of CS 
planes. This means that the method of 
assessing the strain energy between a pair of 
CS planes must be somewhat different than 
previously. Again we make use of the 
“incoherent” CS plane geometry, as earlier. 

Thus, to calculate the strain energy in the 
matrix per unit area of CS plane between the 
CS planes 1 and 1’ shown in Fig. 3 due to all 
the CS planes in the crystal we need to 
evaluate first the strain of the Ith ion in the 
array of octahedra which extends to infinity 
from the center of each unit of 41 edge- 
shared pairs of octahedra. The hkth 
component of this strain is denoted as &,k. It 
is then necessary to evaluate a similar term, 
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-0 10 20 30 n 

FIG. 5. The relationship between the relaxation energy of ions in a CS plane in an array of CS planes. 
U,, as a function of the spacing between the CS planes, n, and the parameter a. 

denoted eik, for the equivalent incoherent 
array. We can now add these terms so as to 
reproduce the strain energy of the Ith ion in 
the matrix between CS planes I and 1’ due 
to interactions from all CS planes in the 
crystal [eJ. The form this takes is given by 

khk I= 2 {(a *“-“[ehk(J*j-1)l) 

i (a*i-l 
[e Irk Vzi>l) 

+ ((U*(j-l)[ehk(J’*j-l)]) 

+ (a *j-l[ejlk (Jbj )I>). (12) 

where ehk (h-1) indicates the hkth 
component of the strain of the Ith ion caused 
by the (2j - 1)th CS plane in Fig. 3 and &i-i 
indicates the site number of the Ith ion which 
is counted from the (2j - 1)th CS plane. In 
addition [ehk(JZjel)] refers to the contribu- 
tion from the coherent array of octahedra 
and [eik(J2j)] to the incoherent array to the 
right of CS plane 1, and [ehk(Jaj-l>] and 
[ehk(Jlj)] refer to the contribution from the 
coherent and incoherent array to the left of 
CS plane 1’. The other notations in Eq. (12) 
have similar meanings. 
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Ideally we should calculate the strains in those CS planes in a region (2j - 1) running 
eh& and ej,k from the site nearest the CS from 1 to 75. The value of j which satisfies 
plane unit to infinity. As this is impractical we the relation (2j - 1) = 75 will, of course, vary 
have calculated the strains of the ions in sites as the n value describing the separation of 
from nearest the units out to a distance of the C’S planes I and 1’ varies. 
75a from the unit. The results of these The final value of Us as a function of n is 
calculations show that the ratio then obtained by substituting Eq. (12) into 
eik(75a)/ekk(la) or ehk(75a)/ehk(la) is less Eqs. (7) and (8). The results are shown in Fig. 
than 0.03, where ehk(Na) indicates the h&h 6. 
component of the strain of the Ith ion which It is also of interest to compare the varia- 
is located at a distance of Na from the unit. tion of the elastic strain energy between a 

In a similar way, we should make the pair of CS planes, (U& with spacing. (U& 
summation in Eq. (12) run from 1 to infinity. can be calculated in the following way. The 
In this case we have summed the strain due to displacement, U, of an ion in the matrix can 

00 

oa 

. 
10 20 30 n 

FIG. 6. The relationship between the elastic strain energy in the matrix between CS planes in an array 
as a function of the spacing between the CS planes, n, and the parameter a. 
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be represented by 

* = fI 7 G(fi)j, 

the infinite ordered array. The results are 
shown in Fig. 8. 

(13) 
Total Energy of an Ordered Array, lJv 

where cfi)j denotes the jth force in the ith CS The energy per unit volume element due 
plane, Cj indicates the summation of the to an infinite ordered array of (001) CS 
displacement of the ion caused by all the 
forces in the ith CS plane, and Cf= 1 indicates 

planes, Uv, is given by Eq. (9). This has been 
plotted as a function of IZ in Fig. 7. In order to 

that we must sum the displacements due to assess the real total strain energy we also 
both the first and second CS planes. We can need to include the strain energy within the 
obtain the strain energy by substituting Eq. CS planes themselves, termed Uself pre- 
(13) into Eqs. (6) and (9) and (U& by using viously (5). This term is expected to be a 
Eq. (10). In making the calculations we have constant which depends only upon the 
employed the same conditions as those for parameter (Y. At present it is possible to 

0 

-0001 

Qcux 

OQOZ 

eoo4 

a=0 
!=0.2 

=0.4 

t=o-a 

(I -1al w 
10 20 30 n 

FIG. 7. The relationship between the total strain energy per unit volume, Uv, of an array of CS planes 
as a function of the spacing, n, between the CS planes and the parameter Q. 
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evaluate Uself only for the case of a = 1.00. 
This procedure is outlined later. 

Total Energy of a Pair of CS Planes, UZ 

In our first report (5) we represented the 
increase in internal energy due to elastic 
strain arising from a pair of CS planes in a 
crystal as 

u2 = 2(melf +2(W1+ (Us)2 (14) 

where (Us)r represented the elastic strain 
energy in the matrix around an isolated CS 
plane, (Us)2 the elastic strain energy in the 
matrix between the pair of CS planes, and 
(U&if was the internal strain energy of the 
CS planes themselves. 

We are now in a position to expand this 
equation somewhat, as Eq. (14) ignores the 
relaxation interaction (IQ2 between a pair 
of CS planes. Thus we can write 

u2=2(Us)sea+(US)2+2(US)1-2(UR)2. 

(1% 

We have already calculated (UR)2 and 
( Us)2 earlier. We therefore need to estimate 
(Us)i. (U&f will be discussed later in this 
paper. 

(U& can be obtained by using Eq. (16), 
which is analogous to eq. (13) above. 

u=c G(fdi+~Gfdi, (16) 
i i 

where the notation is the same as that used 
above. Substituting Eq. (16) into eqs. (6), (7), 
and (8) allows us to derive the strain energy 
in the matrix outside CS plane 1, which is 
(Us),. The strain energy in the matrix outside 
of CS plane 2 will be identical and also equal 
to (U&. In making the calculations we have 
only included the strain terms for the ions 
which are separated from the CS plane by a 
distance of not more than 76a, as the strain 
energy of an ion located a distance of 75~ 
from the CS plane is less than 2 x 10e3 of the 
strain energy of an ion nearest to the CS 
plane. 

Thus we can evaluate most of the terms in 
Eq. (15). These are plotted in Fig. 8, which 
show ( LQ2, (U&, and ( &,)I, which have all 
been reduced to a value per unit area of CS 
plane, as a function of n. As the only term 
which contains (Y is (U&, Fig. 8 shows how 
(U& varies with (Y. The total value of U2 per 
unit area per plane excluding the Uself terms 
is shown in Fig. 9. Here the U2 curve in the 
case of (Y = 1.00 increases smoothly as n 
decreases below n = 26 and this curve has no 
maximum as the (Y = 0.80 or 0.60 curves do. 
As described before, we should consider 
Uwlf in addition to U2, but the shape of each 
curve in Fig. 9 would not change even if Uself 
were taken into account because Uself is a 
constant term which depends upon only the 
parameter (Y. 

Discussion 

The Relative Magnitude of UR and Us 

In our previous communications concern- 
ing Re03-like lattices we have considered 
only the strain energy in the matrix between 
two CS planes. When arrays were consi- 
dered, the total strain energy was simply 
assumed to be the sum of the strain energy 
between pairs of CS planes, with no consi- 
deration of interactions with CS planes other 
than these nearest neighbors. It is therefore 
of some interest to compare the present 
results with those given previously. In addi- 
tion we have neglected the relaxation energy 
term in the past, and it is also useful to 
compare this energy term with the strain 
energy in the matrix to see whether one or 
other of these values dominates the energy 
totals. 

A comparison of Figs. 5 and 6 is able to 
answer this latter point. It is seen that for 
higher n values the elastic strain in the 
matrix, Us, is larger than the relaxation 
energy, UR. At lower n values UR is more 
dominant than Us and there is a crossover 
somewhere between n = 20 and n = 26, the 
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FIG. 8. The components of the elastic strain energy of a pair of CS planes as a function of the spacing 
between the CS planes, n, and the parameter a. See text for details. 

precise point being dependent upon the 
value of the parameter a. This implies that 
both the elastic strain energy term and the 
relaxation term will have significance in 
controlling the microstructures of CS planes. 
A detailed consideration of this aspect of the 
energetics of CS plane formation for the 
important (102) and (103) derived series of 
CS phases found in the tungsten oxides is at 
present in progress. 

In the case of a = 0.0, the value of Us is 
exactly the same as we obtained in the earlier 
calculations (16, 17). In the previous papers, 

however, the term Us was expressed in units 
of C/a 

C/a’= [(A +21L)(f/8.rrCL)2(4~~~/3)]/a2 

which can be translated into the units of 
(2”2f2(C11a7r)/a2 employed in this report in 
the following way. As the unit of the length in 
the calculations of the strain energy, we have 
employed a/21’2, namely, the length of the 
edge of a MO6 octahedron. In order to 
change the unit of the length from a/2l’* to 

we have to change C/a2 
;?;(a21’2]/a2. Taking into account that A:” 
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FIG. 9. The relationship between the strain energy of a pair of CS planes, U,, and the spacing between 
them, n, as a function of the parameter (Y. 

2cL = Cll, EL = Cd4 = (5C11/16), and r. = from the nearest CS planes, that is, the pair 
0.14 nm, the following relation is obtained: that bound the particular region, and that 

CC/(a/2”2)4]/a2 
other CS planes further away have a rather 
small contribution to make. The values 

= [(A +~/.M/~‘RcL)*(~?T/~) reported previously can then be taken as very 

X (2”2r0/a)3]/(a/2”2)/a2 
satisfactory approximations to those 
obtained by any more lengthy calculations of 

= 0.030174(21’2f2/C11~~)/~2, the type reported here. 

where we have taken that a = 0.38 nm. The 
unit (21’2f2/CIIa7r)/a2 represents the 

The Value of a: Pairs of CS Planes 

energy per unit area. This shows that the The results of the calculations for the 
principal strain energy in the matrix comes interaction energy between a pair of CS 
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planes are shown in Figs. 8 and 9. The shape 
of the curves shown is markedly dependent 
upon the value of the parameter chosen and 
this in turn implies that a marked difference 
in microstructures will be found between 
materials in which a low value of (Y is applic- 
able contrasted with those in which a high 
value pertains. Considering Fig. 9, one can 
see that, if a! is small, namely, from CY = 0.00 
to 0.40, the interaction energy between a 
pair of CS planes increases as the spacing 
between the CS planes increases. This is 
equivalent to the existence of an attractive 
force between the CS planes and suggests 
that any pair of CS planes would gain energy 
by approaching one another. On the other 
hand, for high values of the parameter cr, the 
curves of interaction energy vs n are more 
complex. In the cases of (Y = 0.60 and 0.80, 
each curve exhibits a peak and a valley. The 
curve for (Y = 1.00 has a valley. This valley 
situated at approximately n = 20 in the case 
of a = 0.60, n = 24 for (Y = 0.8, and n = 26 
for (Y = 1.0 will represent a metastable 
separation of the CS planes. Ultimate stabil- 
ity in all of these cases, though, will tend to be 
at lowest CS plane separations. 

Figures 8 and 9 only show the interaction 
between a pair of CS planes separated by up 
to 30~. At greater separations we would 
expect that the interaction energy for all 
values of (Y would increase. This is because 
the decrease in (V& becomes very small at 
such larger separations but -2(U& 
continues to increase substantially, as shown 
in Fig. 5. In addition (U& will tend to cause 
the total interaction energy to increase. 
We have calculated (Us)2 in the range n = 3 
to 75 and found that the curve of (us), 
vs n has a plateau in the range n = 19 to 
28, increases smoothly from n = 29 to 
63, and then decreases smoothly (16). 
Thus, at larger separations we expect 
an overall attractive interaction between 
CS planes. 

From an experimental point of view, these 
results are significant when considering the 

growth of a second CS plane near to one 
isolated initial CS plane, and to a first 
approximation the nucleation of a new CS 
plane on the edge of an existing group of CS 
planes. The most favorable nucleation site in 
terms of elastic strain will be that which 
results in the minimum interaction energy. 
This is reflected in the value of (Y. If (Y is near 
to 1 .O pairs of CS planes should not form, but 
instead rather isolated CS planes. At the 
other extreme, if cy is less than about 0.50, a 
second CS plane should nucleate as near to 
the initial CS plane as possible. The actual 
distance involved will depend upon other 
factors such as electrostatic interactions. For 
high values of (Y the preferential nucleation 
site will correspond to the minimum in Fig. 9. 
The n values of the minimum fall in the 
approximate range 20 to 26 for our data. 
This corresponds to a CS plane spacing of 
about 7.4 to 9.7 nm. Thus we can say that if 
pairs or groups of CS planes with CS plane 
spacings of less than about 10 nm occur 
frequently, the material behaves as if (Y were 
less than 1.0, and the closer the CS planes lie 
to each other, the smaller is the effective 
value of (Y. 

Experimental evidence to test this is 
limited as the only material to support low 
concentrations of (001) CS planes is NbO*F. 
There are three sets of observations which 
are relevant here. First it is known that if 
NbOzF is heated in sealed tubes together 
with Nb307F, no reaction appears to take 
place (11). That is, the stable phase assembly 
for substoichiometric NbO*F is NbO*F+ 
Nb30,F. Nb307F is the member of the 
homologous series with n = 3, and contains 
an ordered array of (001) CS planes with a 
separation of about 0.95 nm. This suggests 
that under these conditions (Y is low. 
However, this evidence is not conclusive as 
the starting products were NbOzF and 
Nb307F, and the equilibrium products 
expected are best discussed in terms of the 
energy of an array of CS planes. This is taken 
up later. 
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A second set of experiments are those in 
which NbOzF is reduced gradually, as such a 
procedure is more likely to reveal the inter- 
actions between relatively isolated CS 
planes. The earliest structural observations 
of this phenomenon were by Bursill and 
Hyde (IO), who studied the decomposition 
of NbOzF crystals under the influence of the 
electron beam of an electron microscope. We 
have repeated these observations and found 
that the crystals decomposed exactly as these 
latter authors reported. On heating in the 
electron beam CS planes grow into the crys- 
tal. They lie upon all (001) planes. Figure 10 
shows a typical example. As far as can be 
judged, the CS planes form at random, and 
closely spaced pairs of CS planes occur fairly 
frequently, as illustrated in Fig. 10. This 
again suggests that (Y has rather a low value in 
this material. 

The interpretation of these results in this 
way is open to some criticism. The beam 
heating process is fast and the reduction 

takes place in less than 2 or 3 set, and often in 
fractions of a second. In addition, when the 
intensity of the electron beam is reduced the 
reaction stops abruptly. The growth condi- 
tions are therefore far from equilibrium and 
unlikely to mirror the energy values cal- 
culated here, which pertain to equilibrium 
situations. Thus the nucleation of a pair or 
group of CS planes may be more indicative 
of a preferential nucleation site rather than 
an interaction such as we have postulated. 
Nevertheless there is no positive evidence for 
a high value of (Y in NbOzF and the supposi- 
tion that (Y is low seems reasonable. 

The value of cx Ordered Arrays of CS Planes 

Two systems support arrays of (001) CS 
planes, the Nb205-W03 system, which also 
makes use of other CS plane types, and the 
niobium oxyfluorides related to NbO*F. 
These latter contain only (001) CS planes. 
Let us consider first these niobium 
oxyfluorides. In equilibrium conditions, 

FIG. 10. Electron micrograph of a fragment of an Nb02F nystal. The prominent dark straight lines are 
CS planes which have grown into the crystal due to the influence of the electron beam. Two pairs of CS 
planes are seen with spacings equivalent to n = 3 (marked A) And n = 11 (marked B). 
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reduction of NbOzF leads directly to the 
formation of Nb307F, the n = 3 homolog of 
the M”Xsn-i series based upon ordered 
(001) CS arrays. Attempts to prepare other n 
value homologs by heating mixtures of 
Nb02F and Nb307F in sealed platinum 
capsules, where equilibrium would be likely, 
resulted in no reaction (II). This shows that 
the lowest free energy in the system cor- 
responds to the situation in which NbOzF 
coexists with the n = 3 member of the 
homologous series. A consideration of Fig. 9 
suggests that such a result could hold for any 
value of (Y, except LY = 1.0, for if we take the 
curves in Fig. 9 to represent the net energy 
change in disproportionation of a hypo- 
thetical homolog Nb,(O, F)3,-i into NbOzF 
and NbxO,F, we can see that the low energy 
of the n = 3 phase will dominate the reaction. 
This energy difference becomes more 
pronounced for increasing values of (Y, but 
the peak in the high (Y curves suggest that 
other homologs should form at least in a 
metastable form if (Y was high. The results 
are therefore somewhat biased toward a low 
value for (Y in NbO;?F. 

Further information on arrays of (001) CS 
planes is available if the Nb20S-W03 system 
is considered. Allpress (12) examined 
samples which had been heated for up to 
70 hr at temperatures between 1552 and 
1628°K and found n values of 14,15, and 16 
but nothing lower. We have also examined 
Nbz05-W03 samples which have been 
heated for up to 20 days at 1623 or 1600°K 
(18). A large number of fragments have been 
examined, and the only IZ values found were 
10, 11,12, and 13 except for one fragment in 
which II was equal to 8. In a number of these 
samples, the (001) CS phases coexisted with 
tetragonal tungsten bronze structure phases 
which form at overall compositions below 
about 0.25 NbzOs: 0.75 W03. These results 
suggest that the energy of the CS systems 
increases appreciably as n falls and that for n 
values below about 10 rearrangement to the 
tetragonal tungsten bronze type is ener- 

getically favorable. While a large number of 
factors will be involved in the relative free 
energies of these phases, our previous 
considerations suggest that elastic strain 
energy is significant. In this case, the results 
in the Nb203-W03 system are more 
in accord with a value of (Y close to 1.0, 
for here the rising curve shown in Fig. 9 
implies a sharp rise in elastic strain energy 
as IZ fails which is not found in the curves 
with lower values of CL Our results there- 
fore suggest that the value of (Y appro- 
priate to WOs doped with Nbz05 is close to 
1.0. 

The Value of a: Chemical Relevance 

The experimental data presented suggest 
that the value of (Y is likely to vary consider- 
ably from one material to another. In the 
present case (Y for NbOzF would seem to be 
rather low, while for WOs doped with a few 
mole% Nbz05 it would appear to be much 
nearer to 1.0. 

Physically, the value of (Y is related to the 
distance that the forces within a CS plane can 
be transmitted through the crystal both 
within the CS plane and within the sur- 
rounding matrix. If the crystal is considered 
to be a continuous elastic medium then it is 
generally assumed that the forces can be 
transmitted perfectly. That is, the forces 
originating in any CS plane are 
effectively influencing the whole of the 
crystal and there is no decay or damping 
of the forces at all. In this case the 
value of the parameter LY is taken 
as 1.0. At the other extreme, we can 
assume that the forces do not persist at long 
ranges in the crystal and that their effect is 
felt only upon nearest neighbors. In such a 
case each CS plane is only influencing the 
local microstructure of the crystal in the 
immedicate vicinity of the CS plane and 
long-range forces do not occur. In this case 
the permeability of the forces in the structure 
is low, and in the limit is zero. This cor- 
responds to (Y = 0 in our calculations. 
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Chemically these concepts can be approx- 
imated to the degree of ionicity of the struc- 
ture and especially the ionicity of the CS 
planes. On the one hand, an elastic 
continuum implies a structure in which 
covalent or metallic bonding occurs and the 
effect of localized atoms or ions is hardly felt. 
This corresponds to (Y = 1.0. If (Y is low we 
are dealing with a situation in which we have 
discrete atoms or ions and the crystal 
possesses only little resemblance to a 
continuous medium. The results we have 
obtained for (Y are in good accord with this 
simple viewpoint. The fluorides are generally 
regarded as being more ionic than the oxides, 
and one would expect Nb02F to be more 
ionic than W03. One would thus expect (Y for 
NbOzF to be lower than for WOs or the WOs 
matrix doped with NbzOs. Furthermore, 
experimental evidence concerning the bond 
structure of W03 (19) suggests that an ionic 
model for this material involving W6+ ions is 
far from the truth and that a covalent model 
is likely to be a more reasonable description 
of bonding in W03. This agrees well with the 
high value of (Y estimated for the Nbz05- 
WOs CS phases. 

The Value of a: The Case if a = 1.0 

The results above suggest that in some 
materials, including W03, the approxima- 
tion that (Y = 1.0 can be quite reasonable. If 
we take (Y = 1.0, we can treat the CS plane 
itself as a continuous medium, as well as the 
matrix between the CS planes. This allows us 
to treat the forces within the CS planes, and 
their interactions with each other within the 
CS planes, by means of classical elasticity 
theory using the compact and elegant 
Fourier transform technique employed by 
Stoneham and Durham (9) and Shimizu and 
Iguchi (15). This allows us not only to evalu- 
ate the Us and UR terms given here but also 
the U,rf term of Iguchi and Tilley (5) which 
represents the internal energy of the CS 
planes rather than their interaction energies. 
We have made these calculations for a 

number of (10~~) CS planes in an 
idealized W03 type of structure. The 
results will be presented in a further 
communication. 

The Microstructures of {OOl} CS Phases 

In previous reports (5,17) we have used 
the elastic strain energy calculations to 
explain a number of features of the micro- 
structures of especially reduced tungsten 
trioxide. Three situations have been dis- 
cussed; the nucleation of a new CS plane 
near to another CS plane, the nucleation of a 
new CS plane in an array of CS planes, and 
the relative stabilities of various members of 
homologous series of oxides. In each case it 
was assumed that the desirable microstruc- 
ture corresponded to the lowest elastic strain 
energy, and where several possible micro- 
structures were conceivable the one which 
was found in practice was that which cor- 
responded to the lowest overall elastic strain 
energy. Good agreement was found between 
experimental results and the theoretical 
predictions. 

In the present paper we have already dis- 
cussed the nucleation of CS plane pairs 
earlier and used this to estimate a value of the 
parameter (Y for Nb02F. We could readily 
use the data presented here to assess the 
effect of elastic strain on the other aspects of 
the microstructures of crystals, namely, the 
nucleation of new CS planes within existing 
CS plane arrays or the stability of homologs 
in the series MnX3n-l. However, despite a 
variety of experimental attempts, no 
experimental results could be gathered on 
either of these points. At this stage therefore 
it seemed fruitless to pursue the theoretical 
calculations in greater detail. 
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