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The elastic strain energy of the series of orthorhombic I bronzes which occur in the !&t-W-O system 
has been calculated using the Fourier transform method. The results of these calculations are 
compared with microstructures and phase analysis carried out by transmission electron microscopy. 
The two are in good agreement, suggesting that elastic strain energy is important in materials 
containing planar faults other than crystallographic shear phases. 

Introduction 

When W03 is reacted with small amounts 
of metals or metal oxides the change in 
stoichiometry is sometimes accommodated 
by the formation of planar defects in the 
WO, structure. Thus when WO, reacts 
with Nb,O, or Ta,O,, crystallographic 
shear (CS) planes are formed, which, when 
ordered, result in homologous series of CS 
phases (1). Anderson suggested that elastic 
strain energy could well play a significant 
role in controlling the microstructures of 
these CS phases (2) as the CS planes them- 
selves could be regarded as defects within 
an otherwise ordered crystal. Following 
this suggestion Iguchi and Tilley calculated 
the strain energy due to CS planes in WO, 
and quantitatively explained the micro- 
structures observed in nonstoichiometric 
WO, rather well by considering that they 
were produced as a result of attempts to 

minimize the elastic strain energy (3-6). 
Similarly Shimizu and Iguchi succeeded in 
analysing CS plane behavior in rutile (TiO,) 
again by using strain energy calculations 
(7). 

Because of this success it seemed natural 
to attempt the same sort of calculation for 
at least one type of material which is not a 
CS phase. A suitable series of structures 
are to be found in the Sn,WO, system. At 
low tin concentrations a series of or- 
thorhombic bronze phases form, which 
have structures which may be likened to 
WO, containing planar faults (8). Although 
the structures are not known in detail, they 
are sufficiently resolved for our purposes 
and recent careful phase analysis studies on 
these materials (9) has given us sufficient 
data to compare with elastic strain energy 
calculations. 

In this report we present the results of 
these elastic strain energy calculations and 
compare them to new and existing data. 
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Sample Preparation and Characterization 

Samples with an overall composition be- 
tween Sn,,,WO, and Sn,,,,WO, were pre- 
pared by heating tungsten trioxide with tin 
metal in evacuated silica ampoules. The 
tungsten trioxide was in the form of a fine 
powder and the tin in the form of turnings 
from a metal rod. All chemicals were of 
Specpure grade and supplied by Johnson 
Matthey Ltd. A heating time of 20 days at 
900°C was employed, after which the am- 
poules were quenched into water. 

After reaction the materials present in 
the tubes were examined in a JEM 1OOB 
electron microscope fitted with a goniome- 
ter stage, as described previously (9). The 
crystal types were analyzed by consider- 
ation of their microstructures as revealed in 
electron micrographs and their diffraction 
patterns. Typical examples are illustrated 
in Fig. 1, and fuller details will be found 
elsewhere (9). The number of crystal frag- 
ments examined for each sample prepared 
was more than 20, and the results of this 
examination for compositions falling within 
the phase range of interest are listed in 

FIG. 1. An electron micrograph of a typical Sn,WO, 
orthorhombic I bronze crystal showing slabs of WO,- 
like structure united along planes in which the exact 
structure is unclear. The diffraction pattern of the 
phase is inset and shows an intense spot approxi- 
mately every 9 subcell reflections, revealing that the 
crystal is a “9-type” bronze fragment. 

Table I. In this report we will consider only 
those phases which fall into the group 
which we have designated as orthorhombic 
I bronzes. In Table I this corresponds to 
those crystals in which n varies from 7 to 14 
inclusive, as the bronzes with II = 5 or 6 
can also have somewhat different struc- 
tures (8, 9). 

TABLE I 
ELECTRON MICROSCOPE ANALYSIS OF CRYSTAL FRAGMENTS FROM Sn,WO, PREPARATIONS SPANNING THE 

COMPOSITION RANGE FROM Sn,,,WO, TO SnO,,,,WOsu 

Total Orthorhombic I Bronzes, n value 
number of 

x in Sn,WO, fragments Disordered 14 13 12 11 10 9 8 7 6 5 

0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
Total 

23 
29b 
23 
24 
24 
22 
22 
23 

4 1 6 5 1 1 4 1 
5 1 1 4 1 1 8 7 
5 3 183 3 

16 8 
4 19 1 
6 14 2 
2 20 
1 20 2 

14 1 2 13 6 10 5 15 37 

a The fragments corresponding to n = 6 and 5 can exist in a different structure to the phases considered here 
and do not figure directly in the analysis. 

b One fragment contained { 102) CS planes only. 
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The crystal structures of these materials 
are not known with certainty. The micro- 
graph shown in Fig. 1 reveals that the 
structures are composed of WO,-like slabs 
of material separated by ill-defined planar 
boundaries. The structural work which has 
been done (8) suggests the model shown in 
Fig. 2 for these faults. The defects consist 
of planes of tin ions and as can be seen in 
Fig. 2, each planar defect in an n-type 
structure is bridged to neighboring faults on 
either side with arrays of (n - 1) W06 
octahedra. The spacing between the near- 
est neighboring oxygen ions in the fault 
plane reduces to approximately (4/5) of the 
spacing of oxygen ions in the idealized WO, 
octahedra for the 7- and S-type structures 
so far investigated. In the matrix between 
the two fault planes, the tungsten ions 
deviate a little above or below the mirror 
plane alternately as shown in Fig. 2. 

Strain Energy due to Planar Defects 

In order to discuss the experimental re- 
sults quantitatively in terms of the strain en- 
ergy, the forces acting in the defect planes 
must be estimated. As the orthorhombic-I 
tin-tungsten bronzes possess planar de- 
fects similar to CS planes, we can suppose 
that the defect forces in these planar de- 
fects are similar to those originating in CS 
planes in WO, (3-6) and in TiO, (7). In this 
report, therefore, we have calculated the 
strain energy due to an infinite ordered 
array of n-type planar defects (n = 5- 15) in 

a tin-tungsten bronze crystal in a similar 
way to the calculations made for CS planes 
in rutile (7), and WO, (5, 6) using the so- 
called Fourier transform method, the de- 
tails of which are set out in the Appendix. 

In order to simplify the calculation as 
much as possible, we have employed the 
idealized structures shown in Fig. 3 in 
which every tungsten ion is in the mirror 
plane instead displaced as in the real struc- 
tures shown in Fig. 2 and we have also 
assumed that the crystal structure of the 
WO,-like part of the structure is of the 
idealized cubic ReO, (DO,) type as in our 
previous papers (3-6). According to the 
data given above (a), the spacing between 
the nearest neighboring oxygen ions in the 
defect planes is assessed to be approxi- 
mately 4(2)1’2u / 10 which is about 4/5 of the 
spacing between oxygen ions in the ideal- 
ized WO, octahedron. We have assumed 
that this will be so for all members of the 
bronze series and so have taken the spac- 
ing between oxygen ions in the planar de- 
fects concerned in this paper to be 

I 

a 

b 0 0 

9 
c c 4 

FIG. 2. Projection of the proposed structure of an 
n = 7 bronze along [OlO]. The small filled circles are 
octahedrally coordinated tungstens which are a frac- 
tion (X = 0.07) above the mirror plane. The small 
circles containing a cross are tungstens at the same 
distance below the mirror plane. The half-filled circles 
represent tin atoms. 

FIG. 3. (a) The idealized structure of the n = 7 
bronze. The broken line represents the periodic unit 
cell. The vectors A, L, are in {OlO} and B is normal to 
{ 010). The coordinate axes are also shown and u is the 
octahedron edge. (b) The idealized structure in an 
ordered crystal (n + I), (n - 1) in which n = 8. The 
origin of the coordinates in the “two phase mixture” is 
taken to be midway along the vector D from the origin 
in the unit of the 7-type to that of the 9-type. 
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4(2)1%z/10 regardless of the n value of the 
bronze concerned. 

The periodic unit cell for an infinite or- 
dered array of planar defects can be con- 
structed with the vectors, A, B, and L,; the 
projection of the unit cell in the { 10 I} plane 
being outlined by the broken line in Fig. 3. 
We have arbitrarily chosen the origin of the 
coordinates to be between tin ions in a tin- 
plane, and taken the X, y, and z axes to be 
parallel to the unit cell edges, as indicated 
in Fig. 3. The vectors, A, B and L,, are 
expressed in terms of the primitive transla- 
tion vectors of the WO, lattice, a, b, and c 
as follows: 

A=2a 

B = 2b 

L, = 2(5n - 1)c 

a = (a/2)i 

b = (a/2)j 

c = (a/lO)k (1) 

where the vectors, i, j, and k, indicate the 
unit vectors along the X, y, and z axis, 
respectively, and a is the length of an 
octahedron edge. The structure of an 
infinite ordered array of planar defects can 
then be constructed by the formal geomet- 
rical translation vector T which can be 
expressed by linear combinations of A, B, 
and L, thus, 

T = n,A + n,B + n3Ln 

where n,, n2, and n3 are integers. 

(2) 

If we assume an ionic structure for the 
planar defects, the major forces will be 
ones of repulsion between the nearest 
neighboring oxygen ions. On the other 
hand, the interactions between tin ions and 
oxygen ions in the plane are expected to be 
ones of attraction. Therefore, we have sug- 
gested the defect forces as shown in Fig. 4 
to be those of importance and consider 
them to be composed of the summation of 
the repulsive forces between oxygen ions 

FIG. 4. The defect forces suggested for a 7-type 
orthorhombic bronze. 

and the attractive forces between tin ions 
and oxygen ions. These forces, which are 
essentially due to chemical bonding, can be 
taken as short-range interactions. 

For completeness we should also con- 
sider possible long-range interactions. 
However, we should note that long-range 
forces can be screened fairly readily and 
are not easy to treat theoretically. For 
example, both point defects or altered 
charge states of ions can screen electro- 
static and other long-range electronic inter- 
actions. The addition of altervalent ions as 
impurities can also have significant effects 
here. Ions with considerably different sizes 
to tin or tungsten will substantially 
influence elastic strain fields and other re- 
lated long-range forces. Thus, to estimate 
these long-range interactions in any detail 
the physical properties of WO, must be 
known. Unfortunately those of relevance 
have not yet been reported, but taking into 
account the crystallographic symmetry of 
the planar defects the forces due to the 
long-range interactions may be reasonably 
supposed to act normal to the planar fault. 
We therefore assume that the defect force F 
shown in Fig. 4 may be taken to represent 
the summation of the forces due to the 
short-range and the long-range interactions. 

At present, we have no information as to 
whether F is positive or negative, but this 
does not matter at all because the strain 
energy equations contain only F2 terms. 
Also we cannot assess the value of the 
defect forces, but we can calculate the 
relative values of the strain energy due to 
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each orthorhombic bronze in this report, if 
we assume that the value of the forces does 
not depend on the width of the WO,-like 
slabs separating the tin planes. 

Indeed, we can take this argument a little 
further. It is clear from the electron micro- 
graph shown in Fig. 1 that the faults lie 
along (001) planes referred to an idealized 
WO,-like matrix, and it seems consistent to 
assume that the net defect force, F, will be 
normal to this fault plane regardless of the 
precise structure of the fault plane itself. 
For example, we have made a number of 
possible models for these and similar fault 
planes in Pb,WO, (11) as well as Sn,WO, 
(9). If one suggests ionic interactions of the 
sort described above for any of these alter- 
native structures the most likely net force is 
normal to the fault plane. Despite some 
uncertainties in the initial structures cho- 
sen, we are therefore confident that the 
results of the calculations will be valid for 
these structures even if changes in the fault 
plane structure are envisaged. 

The compactness of the Fourier trans- 
form method of calculation also allows us 
to treat other geometries besides the or- 
dered array of evenly spaced fault planes, 
separated by n WO,-like octahedra, just 
described. One of the simplest is to con- 
sider the geometry nl, n2, n,, n2 and we 
have also calculated the elastic strain en- 
ergy for two of the most relevant of these 
situations. The first arrangement we have 
considered is represented in Fig. 3b where 
we show the couple n, = n - 1 and 
n 2 = n + 1. The theoretical treatment is 
the same as for an infinite ordered array 
except for the following points. As shown 
in Fig. 3b, we have chosen the origin of the 
coordinates in the “two phase” mixture to 
be midway along the vector D, from the 
origin of the unit cell of the (n-type) 
region to that of (n + 1) region. Then, the 
vector D is written as 

D = 2(5n - 6)~. (3) 

The Fourier-transformed force of the “two 
phase” mixture, fimix (q) can be obtained in 
a similar way to the calculation for a pair of 
CS planes by Stoneham ef al. (15), i.e., the 
v&tor L, in Eq. (2) is, then, replaced by the 
vector L,, shown as follows 

Lmix = L,-1 + L,+, = 2Ln. (4) 

The second geometry considered is rep- 
resented by the couple n, = n, n2 = n + 1. 
In this case, the theoretical treatment is the 
same as that in the case of the couple 
n1 = n - 1 and n2 = n + 1 except for the 
following points, 

D = 2(5n - 1)c 

Lmix = Ln + Ln+l- (5) 

Results and Discussion 

Using the relations described above and 
in the Appendix we have calculated the 
strain energy due to an infinite ordered 
array of planar defects for a number of 
interplanar spacings. The strain energy per 
unit volume of these crystals as a function 
of the n-value is shown in Fig. 5. In this 
figure the vertical axis is in units of 
KF/~)zIGJ[L13~ so that the strain energy 
per unit volume can be obtained by dividing 

FIG. 5. The strain energy per unit volume plotted as 
a function of n. The strain energy is represented in 
units of [(F/#/C,J/[L]S. The strain energy is the 
summation relaxation energy, -&, and the strain 
energy of ions, Es. which are also indicated. 
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[(F/,rr)2/CM]/[L]3 by the lattice constant a, 
where IL. 1 possesses the dimension of 
length. If CM, F, and a are represented in 
units of J nm-5, J nm-3, and nm, respec- 
tively, IL I3 will be nm3. The strain energy is 
the summation of the relaxation energy 
(-ER) and the strain energy of ions (Es), 
which are also indicated in Fig. 5. The 
relaxation energy is always negative, which 
coincides with the results for CS planes in 
rutile (7) and WO, (5, 6). 

This result shows that the strain energy 
increases smoothly as we decrease the n- 
value of the phases. This is quite reason- 
able because as the n-value decreases, the 
density of the planar defects increases and 
the strain energy per unit volume increases. 
This is in agreement with the results found 
for rutile or WO, which have ordered arrays 
of CS planes. One of the more interesting 
features of these calculations is the magni- 
tude of the relaxation energy. Figure 5 
shows that the relaxation energy plays a 
major role in the overall strain energy and 
because it is negative in sign it is also seen 
that it is important in stabilizing the planar 
faults. We will return to this aspect later in 
this section. 

Previous calculations for CS phases (.?- 
6) suggest that the elastic strain energy of 
each member of the series may contribute 
significantly to its stability and hence to the 
probability of preparing the phase experi- 
mentally. It is reasonable to assume for 
example, that if a homolog n decomposes 
into its neighbors, homologs it + 1 and 
IZ - 1, and the total elastic strain energy of 
the system falls, such a decomposition will 
take place in practice. Hence the n - 1 and 
n + 1 phases will accumulate in prepara- 
tions at the expense of the IZ homolog, 
which may not, in fact, actually form. 

We can estimate the stability of each of 
the compounds considered, relative to a 
disproportionation of the sort described in 
the following way. The energy per unit 
volume of the “two phase” mixture of 

(n + l), (n - 1) faults is denoted as Emix. 
The difference in energy per unit volume, 
AE = E, - Emix, is shown in Fig. 6 as a 
function of n. The ordered it array will be 
stable if AE is negative, while if AE, is 
positive, it will be less stable than the 
(n + 1) and (n - 1) neighbors on either 
side of it and so, if possible, will dispro- 
portionate to these phases. The result in 
Fig. 6 shows that ordered arrays with 
values of n less than 10 and also n = 12 are 
stable while the phases with II = 11 and 13, 
15 are unstable. 

It is of some interest to compare this 
result with the experimental findings. It is 
clear from Fig. 6 that once we progress 
beyond n values of about 13 the phases are 
unstable with respect to disproportion- 
ation. This will lead to a phase separation 
into n = 12 and, because of continued dis- 
proportionation, some very much higher 
stable homolog, or else WO,. Indeed as no 
appreciably higher n values than 12 have 
been found abundantly, it would seem 
likely that n = 12 is the highest of the stable 
phases from a point of view of elastic strain 
energy. At lower degrees of reduction we 
find that all phases are stable, with respect 
to this disproportionation, in good accord 
with the experimental results. 

FIG. 6. AE, the difference between E, and E,i, as a 
function of n. The units on the vertical axis are the 
same as in Fig. 5. 
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In previous phase analyses in this system 
(9) we have occasionally observed crystals 
which are composed of ordered arrays n, 
IZ + 1 rather than just II. It is also worth 
while, therefore, to compare the elastic 
strain energy of these two situations. The 
elastic strain energy of the n, n + 1 array is 
shown in Fig. 7a. If the values are com- 
pared with those in Fig. 5 it is seen that they 
are very similar indeed. This indicates that 
there is little difference in elastic strain 
energy between an II or IZ + 1 array and an 
ordered IZ, n + 1 array. 

In order to take this further we need to 
compare the values in Fig. 5 with those in 
Fig. 7a more closely. It is impossible, in the 
strict sense, to compare the stability of an 
ordered n, n + 1 series and an ordered n 
array because 

L max = L, + L,, # 2L,. 

However, if we imagine an ideal crystal 
which consists of two regions, one contain- 
ing an ordered )2 array, the other an ordered 
12 + 1 array and the interaction between 
these regions is assumed to be the same as 
that between planar defects in the ordered II 
or n + 1 array, the strain energy in such a 
crystal can be expressed as (E, + E,+3/2 
where E, represents the strain energy per 
unit volume of the crystal containing the 
ordered n array. Then we might compare 
the strain energy of the n, n + 1 ordered 
array per unit volume, En,n+l, with 
(E, + E,+,)/2. This result is shown in Fig. 
7b where the vertical axis represents 
(E, + En+,)/2 - E,,,tn+lj and the horizontal 
axis represents the couple IZ, n + 1 or 
[n + (n + 1)]/2. It is apparent that the or- 
dered n, it + 1 array has a slightly higher 
elastic strain energy than the equivalent 
ordered it arrays. Thus if the assumptions 
described above are appropriate, the or- 
dered II, n + 1 array would always appear 
to be unstable in comparison with the or- 
dered n arrays. 

This result is in good agreement with the 

En, “II i. [iW~/C..]/[L]’ 

1 

I\“---_ 

FIG. 7. (a) The strain energy per unit volume of an n, 
n + I mixed array as a function of n, n + 1. (b) The 
difference between HE. + E.+J and &,.+I as a 
function of 12, n + I or [n + (n + I)]/2 

fact that ordered IZ, it + 1 arrays are rarely 
found, compared with ordered n arrays. 
However the elastic strain energy differ- 
ence is so small that should an II, IZ + 1 
array form it would seem unlikely that 
elastic strain energy would provide 
sufficient driving force to unmix the array 
into two separate regions. A mechanism for 
the formation of these phases in a mechani- 
cal fashion has been put forward earlier 
(11) and the present results tend to support 
such a mechanical model for the formation 
of these arrays, and that, once formed, 
there is little to be gained energetically from 
unmixing into separate phases. 

We finally return to the question of relax- 
ation energy. It has already been pointed 
out that the relaxation energy in these 
phases is high, and we can note that a high 
relaxation energy would seem to be impor- 
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tant in the balance of factors which decide 
whether a nonstoichiometric system will 
adopt point defects or planar faults to ac- 
commodate changes in anion to cation ratio. 
The first indirect suggestion to this effect 
was when it was appreciated that planar 
faults seem to be preferred in materials 
which showed a high static dielectric con- 
stant (16, 27). It is well known that high 
degrees of ionic or atomic relaxation will 
indeed result in a high macroscopic dielec- 
tric constant. 

This was taken further by Catlow and 
James (18, 19) who have calculated the 
formation energy of CS planes in Ti,Og 
and find that the considerable degree of 
relaxation of the ions within the CS plane 
appears to be the factor which determines 
that planar faults are to be preferred to 
point defects in this system. It is clear, 
therefore, that the relaxation of the tin 
atoms in the planar faults contributes 
substantially to the stability of the planar 
fault geometry found here. In this context 
it is easy to appreciate that the relaxation 
of tin atoms in a planar fault could be 
significantly greater than in the octahedral 
environment that would hold if tin substi- 
tuted for tungsten in WOs , as SnOz itself, 
in which tin is octahedrally coordinated, 
has a low dielectric constant. It is, 
though, difficult to understand why the 
planar fault geometry would give a 
greater degree of relaxation than, for ex- 
ample, tin interpolated into the cages in 
the WO, structure to form a perovskite 
related bronze structure with a formula 
Sn,W03. Further experiments are under- 
way to try to clarify some of this obscu- 
rity, both in the Sn-W-O system and in 
other related ternary tungsten oxides. 

We can finally note that very closely 
related structures to those illustrated here 
for these tin tungsten oxides occur in a 
number of perovskite related oxides, nota- 
bly of titanium and niobium. (see 20,22 and 
the references therein.) It is possible that 

the stabilities of these phases may depend 
critically upon elastic strain energy, and the 
extent of the composition ranges over 
which ordered phases extend may be 
influenced by whether disproportionation 
to neighboring structures increases or de- 
creases the elastic strain energy of the 
system as a whole. Elastic strain energy 
calculations to test this hypothesis would 
be of some interest. 

Appendix 

Using the defect forces defined in Fig. 4 
of this paper, the strain energy E can be 
obtained as follows: 

E = Es - E, 

where we denote the strain energy of ions 
and the relaxation energy due to the inter- 
action between forces as Es and ER respec- 
tively (5-7). In calculating Es and ER, we 
have applied linear elasticity theory to an 
isotropic continuum as in our previous re- 
ports (3-7). 

In an infinite ordered array, the forces in 
Fig. 4 repeat periodically, so we can calcu- 
late Es and ER using the Fourier trans- 
formed force E(q) and elastic Green’s func- 
tion e(q). The relaxation energy is, then, 
written as follows (5): 

2 c eq;iGdq)~dq) (AlI 9 4 
where N is the number of the unit cells, 
F,(r) represents the ath component of the 
defect force at r, F’,(q) is the /3th component 
of the Fourier transformed force, Gap(q) 
denotes the crpth component of the Fourier 
transformed Green’s function, c indicates 

the summation of every compoient of the 
defect force at r and 2 means the summa- 
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tion of the relaxation energies of all ions in The defect forces repeat under the transla- 
the cell. tion T and all transforms E(q) vanish unless 

On the other hand, the strain energy of q reflect this transformation. Then each 
ions in the cell is assumed to be expressed component of wave vector q can be written 
by (3-7): as 

642) 

where 2 indicates a similar meaning to that 
r 

in Eq. (Al), w(r) represents the strain en- 
ergy density at r and Y, means the ionic 
radius of an ion at r. The strain energy 
density for a cubic elastic continuum has 
the form (l-1), 

w = *Cl1 2 ed + Cl2 i eiiejj 
i=l iJ=l 

+ 2C,, 5 et l+jl (A31 
iJ=l 

where the klth component of the strain at r, 
e,&) is given as the following (7): 

+ ~d%Aq)l b(q) (A41 

where every notation in Eq. (A4) has the 
same meaning as in Eq. (A 1). 

The Fourier transformed Green’s func- 
tion is given in Ref. (13) for a cubic elastic 
continuum as: 

Y&K, 
1 + Y x AT,2 > WI 

1=13 

where the K i are the direction cosines (q Jq) 
of q and 

A,(q) = (1 + Xf)-1. 649 
The dimensionless factors depend only 

on the elastic constants, C, 

Y = (Cl2 + C4J/C*4 

Y = (Cl1 - Cl, - 2CdlC,,. 647) 

qz = [107r/u(5n - l)]L w9 

where M, P, and L are integers. 
The strain energy of ions and the relaxa- 

tion energy can be obtained as a sum over 
discrete values of q in the first Brilloin Zone 
of the lattice, i.e., -m/a) < 4x, 
qa, 5 (7/a) and -(lOr/a) < qr 5 (107r/a). 

The defect forces and sites at which they 
operate are 

site r Force F(r) 
(0, 0, 2/a (0, 0, F) 

(0, 0, -z/5) (0, 0, -F) 

Then each component of the Fourier trans- 
formed force F(q) is written as: 

F,(q) = E,(g> = 0 

E,(~L, = ~FF(Oe6, 

where x t indicates the summation over 

sites described above. 
In calculating the strain energy and the 

relaxation energy, we have employed the 
same ratio of the elastic constants as in 
previous papers (3-6) and the following 
ionic radii for 02-, W4+, and Sn2+ ions 
(14): 

Cll:Clz:C4, = 16:7:5 

r. = 0.140 nm 

rw = 0.060 nm 

rSn = 0.122 nm. 
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