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Consideration of the properties of reduced tungsten trioxide suggest that the mobile charge carriers are 
polarons. As it is uncertain how the presence of polarons will influence the microstructures of the 
crystallographic shear (CS) planes present in reduced tungsten trioxide we have calculated both the 
polaron-CS plane and polaron-polaron interaction energy for a variety of circumstances. Three CS 
plane geometries were considered, {102}, { 103}, and {OOl} CS plane arrays, and the nominal 
compositions of the crystals ranged from WOz.70 to WOz.O. The polarons were assumed to have radii 
from 0.6 to 1.0 nm and the polaron4.S plane electrostatic interaction was assumed to be screened. The 
results suggest that for the most part the total interaction energy is small and is unlikely to be of major 
importance in controlling the microstructures found in CS planes. However, at very high polaron 
densities the interaction energy could be appreciable and may have some influence on the existence 
range of CS phases. 

Introduction between the closely spaced atoms within 
the CS planes make up the largest part of 

Since the discovery that the reduction of the formation energy of these defects, the 
W03 resulted in the formation of crystallo- orientation that they take up seems largely 
graphic shear (CS) planes there have been a to be influenced by the elastic strain field in 
number of investigations aimed at under- the matrix surrounding the CS planes and 
standing this behavior. As part of this, the relaxation of the atoms in the CS planes 
some effort has been put into trying to due to this elastic strain field. 
determine CS formation energy and to In addition to these chemical and me- 
quantify the interactions between CS chanical terms, electronic interactions are 
planes in WO,-like structures (I-5). These also likely to be of importance in these 
calculations have shown that while removal systems. In view of this, the electrostatic 
of oxygen from the crystal and interactions interaction between CS planes was also 
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calculated (6). In this study, the CS phases 
were considered to be ionic, and the charge 
imbalance created in the WO, structure 
upon reduction was assumed to be taken up 
by the creation of W5+ or W4+ ions which 
were taken as localized in the C’S planes 
themselves. The matrix between the CS 
planes then contained only octahedmlly 
coordinated W6+ ions. In terms of this 
model the electrostatic interactions were 
found to be small, and of much less impor- 
tance than the elastic strain energies previ- 
ously calculated. 

Although this simple electrostatic model 
is useful for describing some features of the 
CS formation, it is at variance with some of 
the more recently reported properties of the 
reduced crystals. For example, they pos- 
sess rather high electrical conductivity and 
effective dielectric constants at room tem- 
perature, show considerable charge carrier 
concentrations in Hall experiments, and 
strong quasi-free-carrier absorption in the 
near-infrared region. These results indicate 
that mobile charge carriers exist in the 
reduced phases and have been interpreted 
in terms of polarons rather than free elec- 
trons (7-12). It can be anticipated that the 
presence of an appreciable polaron density 
may well act so as to shield the CS planes 
from each other, thus reducing electrostatic 
interactions, while the polarons may well 
interact with CS planes themselves. It is 
not apparent in an a priori fashion how 
these interactions will influence CS plane 
microstructures, particularly vis a vis elas- 
tic strain energy, and so we have made 
quantitative estimates of the appropriate 
interaction energies. We present the results 
of these calculations in this paper. 

Theoretical Considerations 

1. The Nature of the Charge Carriers in 
WQ-3 

Although the crystallographic changes 

which take place when WO, is slightly 
reduced are fairly well known (1, 2) the 
electronic nature of these reduced oxides is 
less easy to define. Recent studies have 
suggested, though, that in the CS phases 
with overall compositions down to about 
WOZ.so only W6+ and W5+ states are present 
(13). The results of optical and electrical 
experiments show that in slightly reduced 
tungsten oxides the charge carrier concen- 
tration is identical to the oxygen deficit with 
two elementary charges present per missing 
oxygen atom (I#), and that the charge 
carriers are highly mobile (7). This indi- 
cates that they move predominantly in the 
WO,-like regions between CS planes, for if 
they were restricted to the CS planes we 
would expect carrier localization and low 
electronic conductivity. In particular, an 
ionic model in which the W5+ cations are 
completely immobilized in the CS planes is 
unrealistic and does not accord with the 
experimental observations. 

Having established the presence of 
highly mobile charge carriers in the tung- 
sten oxide CS phases, it is necessary to 
determine whether the material behaves as 
a metal, with the carrier wave function fully 
extended throughout the WO,-like matrix 
or whether the carriers are localized as in 
hopping materials. From ESCA experi- 
ments (15) it is known that as long as the 
crystallinity of the matrix is not drastically 
destroyed, only Ws+ states appear, but no 
plasmons occur as are found in the metallic 
tungsten bronzes. Furthermore, optical ex- 
periments show a characteristic absorption 
near 0.82 eV, similar to the polaronic ab- 
sorption in W03 ( I I). These results, taken 
together, suggest that the carrier is self- 
trapped at a tungsten position as a polaron 
of small or intermediate size. 

In the sense of this paper, each of these 
polarons can be envisaged as an electron 
surrounded by a locally deformed lattice, 
which tends to move with the carrier. If the 
interaction is strong so that local deforma- 
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tions are large, the resultant charge carrier 
plus deformation is termed a small polaron, 
while if the electronic movement is only 
slightly impeded due to relatively weak 
interactions with the lattice, it is termed a 
large polaron. In reduced WO, there is 
some evidence to suggest that at higher 
temperatures we have large polaron behav- 
ior, while at lower temperatures this may 
change to small polaron behavior. 

The deformed region around the polaron 
also leads us to a concept of a polaron 
radius associated with these mobile charge 
carriers. This notion is important, as it 
allows us to obtain a quantitative idea of the 
highest possible carrier densities one can 
obtain in a crystal and also to estimate in a 
more qualitative way the lower stability 
limit of a particular CS series. We will 
return to this latter point in the discussion. 

The outcome of these considerations is to 
suggest that a reasonable model which ac- 
counts for the electrical properties of the 
WO,-, CS phases is one in which the 
excess charges created when W03 is re- 
duced are divided into two groups. We will 
have a polaron population between the CS 
planes which can be regarded as W6+ ions 
with trapped electrons to generate W5+ 
states. The balance of the charges will be 
localized in the CS planes themselves, 
again in the form of W5+ ions. If we assume 
that all of the W5+ states are to be found 
between the CS planes, then the CS planes 
will act as positively charged, electrically 
rather isolating planar faults containing 
only W6+ ions, in a negatively charged W03 
matrix. As we imagine W5+ states to be 
transferred from the inter-CS plane region 
into the CS planes, the polaron density will 
fall. Ultimately we end up with total locali- 
zation of the W5+ ions in the CS plane, no 
mobile charge carriers at all, and an insulat- 
ing oxide. This corresponds to the model 
used for our earlier electrostatic calcula- 
tions (6). For the purpose of the calcula- 
tions here, we will assume that the former 

situation holds, that is, that all or almost all 
of the W5+ states are in the inter-CS-plane 
region of the crystals to produce the highest 
possible polaron density for any particular 
degree of reduction. 

This polaron population introduces three 
terms in the free-energy function of the 
crystal. These are (i) the formation energy 
of the polarons, (ii) the polaron-polaron 
interactions, and (iii) polaron-CS plane in- 
teractions. Of these terms, we have evalu- 
ated only (ii) and (iii). Term (ii), polaron- 
polaron interactions, will be expected to be 
of greatest importance at high polaron den- 
sities, which corresponds to small CS plane 
spacings. Term (iii), polaron-CS plane in- 
teractions will be of importance at all CS 
plane spacings, but would be expected 
to dominate term (ii) at large CS plane 
spacings. 

2. The Polaron Distribution between CS 
Planes 

When one considers the geometry of a 
CS plane, it is seen that the metal to oxygen 
ratio within the CS plane itself falls to a 
value below that of the WO, matrix, 3.0 
(see (I, 2) for details). If we consider the 
CS plane to contain only W+ and 02- ions 
the CS plane will now have an overall 
positive charge per unit area given by cr,, e, 
where e is the charge on the electron and m0 
is given by Eq. (1) for a { 10 m} CS plane; 

2(2)“2(m - 1) 
uo = [@ _ I)2 + (m + ~)2]1/2 ;* (1) 

In this equation a is the lattice constant of 
the idealized cubic WO, structure, which is 
equal to an octahedron diagonal, approxi- 
mately 0.38 nm. If we wish to assume that 
not all of the charge is distributed in this 
way, but some W5+ ions exist in the CS 
plane we can formally adopt the device of 
making the value of e tend towards zero. 

Because the polarons are effectively neg- 
atively charged and the CS planes posi- 
tively charged, there will be a net attraction 
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between polarons and the CS planes. The 
polarons will therefore not be distributed 
evenly in the inter-CS-plane region, but 
will tend to aggregate in the regions near to 
the CS planes, creating a high-density re- 
gion and leaving a low density of polarons 
midway between the CS planes. This is 
shown schematically in Fig. 1. We also 
assume that this polaron distribution 
shields the CS planes from one another, so 
that electrostatic interactions of the sort 
described in (6) can be neglected. 

The positive charge on the CS planes will 
give rise to a potential in the inter-CS-plane 
region. Thus the potentials due to two 
adjacent CS planes in an array of { 10 m} CS 
planes, denoted by CS 1 and CS 2 can be 
estimated by classical electrostatic for- 
mulas. In doing this though, we will assume 
that these potentials are shielded by the 
polaron population in the vicinity of the CS 
planes CS 1 and CS 2, and so we introduce 
a shielding constant, K, into the equations. 
We can therefore write the potentials due to 
CS 1 and CS 2, V, and V, respectively, as 

POLARON DENSITY 

t t 

V, = (a0 eA*/47r~o)e-K~‘+d’2’, (2) 

V, = ((~~eX*/4~~,)e~(~-~‘~‘, (3) 

where we refer to the coordinate axes 
shown in Fig. 1, and d is the spacing between 
CS 1 and CS 2, A* is the strength constant, 
defined further below, K is the screening 
constant, Y is the distance from the origin, 
midway between the CS planes, and o,,e 
the surface charge per unit area on CS 1 and 
2, as defined above. The quantity 47~5, 
appears as we are working in SI units. The 
value of the screening constant has to be 
estimated, and for physical reasons it is 
reasonable to chose a value about equal to 
the reciprocal of the polaron radius rP. 

The resultant potential V, due to CS 1 and 
CS 2 is given by 

v = v, + v, 

= (u,eh*/4~~o)e-Kd’2(e--Kr + eKr) 

= (u,,eh*/2mo)e-Kd’2 cash (Kr). (4) 

These potentials are shown schematically 
in Fig. 2. 

The next task is to estimate the distribu- 
tion of the polarons in the inter-CS-plane 
region. As explained, this distribution will 
not be uniform due to interaction with the 

r+ r=-rc r=rJ r=rc r+ 

CSl CSZ 

FIG. 1. Schematic illustration of the variation in 
polaron density between two { 10m) CS planes, CS 1 
and CS 2, separated by a distanced. The regions L.D. 
and H.D. refer to low-polaron-density and high-po- 
laron-density regions, the change coming at a distance 
r = *r,. The origin of the coordinate system for the 
calculations is taken as midway between the CS 
planes. 

POTENTIAL 

I 
r=-4 r=lJ r= d 
CSl CST 

FIG. 2. Schematic illustration of the variation of the 
potentials V,, V,, and V = VI + V, due to two { 10m } 
CS planes in an array of { 10m } CS planes separated by 
a distance d. 
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overall positive charge which we have 
taken to exist on the CS planes. We assume 
that the polarons are distributed in tunnels 
of unit area separating the CS planes. In 
reality the polarons are localized at cation 
sites, but this does not significantly change 
the theoretical arguments, and in this way 
we can obtain the density of carriers by use 
of Poisson’s equation: 

In this case, according to Masumi (16), the 
charge on a polaron, which we can write as 
-up e, will be given by 

9 (8) 

p = -e,v2v 

where K~ and ~~ are the optical and static 
dielectric constants for WOZ. The values 
we have taken are those given by Salje (8); 
i.e., 

= -(uoeh*/2r)e-Kd’2K2 cash (Kr). (5) KC0 = 6.02, Kg = 7.9-9.8. 

We can make further use of this equa- Taking an average value for Kg we find 
tion. We know that reduced crystals will be 
electrically neutral overall, that is, the net 
charge on the CS planes must balance the 
polaron charges between the CS planes. 
Using this neutrality condition we can de- 
termine the strength constant, A* from the 
equation 

aoe + 2 I od’e pdu = 0, (6) 

where dv is a volume element, s x dr, s 
being the cross-sectional area of the tunnel 
containing the polarons which we take as 
unity to agree with the units of charge per 
unit area on the CS planes. From Eq. (6) we 
find 

X* = (T/K)eKd12 [sinh (iKd)]-‘, (7) 

and substituting from Eq. (7) we can re- 
write Eq. (4) and (5) as 

upe = 0.95e. (9) 

These terms refer to stoichiometric WO,. 
In order to be strictly correct we should, of 
course, use dielectric-constant data perti- 
nent to reduced WO,. These values are 
likely to be much higher than the values 
used, especially at higher temperatures. 
However, the results presented later will all 
be moved by similar amounts by any such 
change, and comparisons such as we will 
present will not be seriously effected. Be- 
cause of this we have not bothered to 
repeat the calculations for a variety of 
dielectric-constant values. 

Using the equations above, we can finally 
write 

V = (croe/2KEo) 

[sinh (aKd)]-l cash (Kr), (4’) 

pp = p/(-u,4 = boK/2flp) 

[sinh @Z&f)]-’ cash (Kr) 

= I,/J cash (Kr), (10) 

where 
p = -(uoeK/2) 

[sinh (+Kd)]-’ cash (Kr). (5’) 

The Polaron Theory that we have fol- 
lowed is that of Masumi (16, 17) and we 
have taken the case of intermediate polaron 
coupling. In this case, as investigated in 
other materials (15), the coupling constant, 
(Y, is taken as being somewhat greater than 
unity, and probably in the range 4 > (Y > 1. 

I,!I = (croK/20p)[sinh (dKd)]-‘. (11) 

3. The Interaction between Polarons and 
CS Planes, E,-, 

This potential energy term is due to the 
interaction of a polaron at r with the poten- 
tial V from CS planes CS 1 and CS 2, which 
we write as U,-,. This is simply given by 

Us-, = V(-u,e). (12) 
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The total potential energy of all the po- 
larons within the tunnel of unit area lying 
between CS 1 and C’S 2 will therefore be 
given as ES+ where 

Es-, = s 
I 

‘I2 
0 

Us-, . pP * dr 

= -$$ [sinh (+Kd)l-’ 

sinh tKd + d . (13) 
K 1 

4. The Polaron-Polaron Interaction, E,-, 

4.1. General 

The interaction energy between two po- 
larons will clearly depend upon their sepa- 
ration. The form that this interaction will 
take is difhcult to express analytically, but 
relatively easy to describe qualitatively. 
At low polaron densities the interaction will 
be small, and will increase smoothly as the 
polaron separation decreases, until we 
reach the stage where we can consider 
ourselves to be in the high-density region. 
If a further decrease in interpolaron separa- 

“P-P 
A 

D 

a 
R 

tion is envisaged the interaction would be 
expected to increase steeply through a 
dense packing regime to a hard core. In this 
latter case we are effectively trying to su- 
perimpose polarons to produce W4+ states, 
which we assume to require prohibitively 
high energies in the present analysis. We 
have shown this qualitative form of the 
interaction energy in Fig. 3a. 

As described earlier, the region between 
CS planes can be divided into a low-po- 
laron-density region, roughly speaking mid- 
way between the CS planes, and a high- 
polaron-density region in the neighborhood 
of the CS planes. Analytical forms for the 
interaction energy between two polarons, 
VP-,, for these two regions, have been 
given by Masumi (16) as 

V,-,(HD) = A exp(-2R/r,) 

0 5 R 5 R, (high density), ( 14) 

a (-a,e)2 
V,-&D) = 4TE0 R 

R 5 R, (low density), ( 15) 

where R is the interpolaron distance as 

“P-P 

b 

I 

l 

R=R, R 

FIG. 3.(a) Idealized representation of the poiaron-polaron interaction potential, UP-,, for two 
polarons vs interpolaron spacing, R. A corresponds to the low-polaron-density region, B to the high- 
density region, C to a dense-packing regime, and D to the hard-core region which physically 
corresponds to the formation of WCC ions. (b) A more detailed illustration of the interaction potentials 
used in our calculations for the regions of low (L.D.) and high (H.D.) polaron densities. At R = R, the 
form of the interaction changes in accordance with Eqs. (14) and (15). 
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used by Masumi, r, is the polaron radius, 
and R, is the interpolaron distance at which 
the low-density interaction changes to the 
high-density interaction. These interactions 
are shown in Fig. 3b from which it can be 
seen that the interaction in the high-density 
region is much stronger than that in the 
low-density region in the range of R I R,. 

In considering Fig. 3b we notice a discon- 
tinuity between the low-density region and 
the high-density region which occurs at R = 
R,. This discontinuity is, of course, due to 
using Eq. (14) and (15) in too rigid a man- 
ner, and in reality a smooth transition from 
one region to the other, as shown in Fig. 3a, 
will surely occur in practice. The term R, 
therefore has no precise meaning in physi- 
cal terms, but will be retained as useful in 
delineating the extent of the high- and low- 
density regions. 

If we compare Fig. 3 with Fig. 1 we see 
that R, in Fig. 3b corresponds to r = +rc in 
Fig. 1, and furthermore that the region 1 r 1 
I rc corresponds to the low-density region 
and the area rc 5 ) r 1 5 d/2 contains high- 
density polarons. In addition, at r = +r,, R 
is equal to R,, and hence the following 
relation must be satisfied. 

A exp 

so that the constant A is given by Eq. (17): 

A=-&yexp (17) 
0 c 

We can also relate the interpolaron dis- 
tance, R, to the polaron density pp, given 
earlier, by the simple relationship 

R = Q/3. (18) 

To express this in terms of the other vari- 
ables in Eqs. (10) and (11) we introduce a 
function 4, given by 

4 = $I sinh (Kr), (19) 
then 

d$ = K[I,/J cash (Kr)]dr = Kp,dr; 

i.e., 

ppdr = (l/W+ (20) 

and 

R = Q/3 zz [(@ + q,“)l’“]-“3 

= (42 + JI”)-“6. (21) 

We can now write expressions for the 
total polaron interactions in the inter-U- 
plane regions of the crystal. Firstly, for the 
high-density region, we find the total inter- 
action E,-, (high) is given by 

%,(Qh) 

= 2 J-Z’ 
Up-, * pp * dr 

= (2/K) j-+y Up44 

= 2A/K 16: exp [ - 2(‘2 :p’2)P1’6 dc$, 

(22) 

where 

$Q = [JI sinh (Kr)], = d/2 

= $J sinh ()Kd), (23j 

4, = [I/J sinh (Kr)], = rc 

= (Ri6 - JI”)““. (24.) 

It is impossible to solve the integral in Eq. 
(22) algebraically, but it can be evaluated 
numerically using a computer. 

In the low-density region, the total po- 
laron-polaron interaction, E,-, (low), is 
given as 

Ep-p(loW) = 2 lo” Up-, . pr . dr 

= 2a(- (+pe)2/47rKco jo” (4,’ 

+ $J~)-“” d& (25) 

Thus we can write the total polaron-po- 
laron interaction, E,-, as the sum of E,.-, 
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(high) and E,-, (low); i.e., the sum of Eqs. 
(22) and (25). 

4.2. Estimation of Polar-on Density 

In the previous section we considered a 
high-density and a low-density polaron re- 
gion between CS planes CS 1 and CS 2. 
Clearly the extent of these two regions will 
depend upon the polaron radius and 
whether we assume that polarons can over- 
lap or not. It is not easy to estimate the 
polaron radius. According to Masumi ( 17)) 
however, it is reasonable that the polaron 
radius has a value larger than the spacing 
between cations. As the distance between 
the nearest cation sites in WO, is about 0.38 
nm, it would seem reasonable to consider 
the polaron radius to lie in the range from 
0.2 to 1 nm. 

We can also make an independent esti- 
mate of the polaron radius by considering 
the carrier densities in reduced WOa crys- 
tals. To do this, we assume that each oxy- 
gen atom lost contributes two mobile 
charge carriers. We may then proceed as 
follows: 

(i) We know that W4+ states do not 
occur in these crystals and this indicates a 
very high formation energy for electronic 
entities such as bipolarons with two elec- 
trons at the same lattice site. We can there- 
fore suggest that the minimal polaron-po- 
laron distance will be the W-W distance in 
WO,, with a polaron centred upon each 
metal atom. As the tungsten atoms are 
separated by about 0.38 nm we would thus 
have a polaron radius of about 0.19 nm. If 
each tungsten atom acts as a polaron site, 
i.e., they are all formally in the W5+ state, 
the carrier density will be a maximum at 1.8 
x 10z2 cmm3 and the composition will be 
W205, i.e., W02.5. 

(ii) From this most closely packed 
stage we can imagine other polaron distri- 
butions that are more open. For example, if 
polarons are located on every other tung- 
sten atom along two of the unit cell diagonal 

110 directions of the idealized cubic unit 
cell, they can be allocated a disk shape of 
about 1.1 nm diameter and 0.38 nm in 
thickness. This will give a maximum den- 
sity of about 2 x 10zl charge carriers/cm3 in 
crystals with an overall composition of 
about WOZ.ss. 

(iii) If we assume that the polarons are 
spherical, and occupy every other tungsten 
position along all of the ( 110) directions of 
the idealized cubic unit cell of WO,, they 
will have about 1.1 nm diameter. Closest 
packing of these polarons will lead to a 
carrier density of about 6.7 x 102O cmP3 in 
crystals of composition about W02.90. 

This latter value is in fairly good agree- 
ment with observed carrier concentrations 
in W03-, crystals. We can suggest, there- 
fore, that a reasonable polaron radius in 
these reduced oxides is about 0.55 nm. 
Once again, therefore, a choice of polaron 
radius in the range 0.2-1.0 nm would seem 
to cover all reasonable possibilities, and we 
are led to the conclusion that for all but the 
smallest degrees of reduction, polarons -of 
these radii will be fairly densely packed. 

We can illustrate this in the following 
way. Let us consider the larger of these 
values, i.e., rP, the polaron radius, = 1 nm. 
If we assume that polarons do not overlap, 
then clearly the spacing between CS 1 and 
CS 2 must have a minimum of approxi- 
mately 2 nm. This corresponds to n values 
of about 13 for { 102) CS planes, n = 18 for 
{ 103) CS planes and n = 6 for (001) CS 
planes, where n is an integer in the series 
formula Wn03n--m+l, which represents the 
compositions available to a crystal contain- 
ing an ordered array of { 10m) CS planes 
(I, 2). We can also note that in such cases 
there is only room for one polaron in the 
tunnel of unit area that we are considering 
and hence we have no polaron-polaron 
interaction within the tunnel to contend 
with. This would seem to be unreasonable, 
so we will suppose that the polarons do 
overlap one another to some extent and we 
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are lead to the conclusion that the whole of 
the matrix between CS planes CS 1 and CS 
2 must be considered as a high-density 
region. 

We can consider the interpolaron spacing 
in a more quantitative way by making use 
of Eqs. (18) and (10). To do this, however, 
it is necessary to include a value for the 
screening length, l/K. Earlier it was sug- 
gested that a value of l/K approximately 
equal to the polaron radius would be appro- 
priate, and hence we have chosen values 
for the screening length, 1 /K, to range from 
0.2 to 1 nm. To make the estimate we have 
also considered CS plane arrays with n 
taking values of from 6 to 34 for { 102) CS 
planes, 9 to 46 for { 103) CS planes, and 
from 3 to 17 for { 001 } CS plane arrays. 
Putting the CS plane spacings, d, into Eq. 
(10) and also substituting a value of r = 0, 
yields a minimum value for p,,, which from 
Eq. (18) allows us to calculate a maximum 
value for the interpolaron spacing, R,,,. A 
similar procedure is used to calculate the 
minimum polaron separation, R,i,. In this 
case we use r = d/2 instead of r = 0 in Eq. 
(10). The results are given in Table I. From 
these values, the case of an R,,, of 44.5 nm 
for l/K = 0.2 nm seems to be anomalously 
large, therefore in further calculations we 
have only employed 1 /K values of from 0.4 
to 1.0 nm. 

TABLE I 

THE MAXIMUM (R,,,) AND MINIMUM (R,,& 
VALUES OF THE POLARON SPACING BETWEEN CS 
PLANES IN { 102}, { 103}, AND (001) ARRAYS FOR 

VALUES OF THE SCREENING CONSTANT, K, SPECIFIED, 
AND MAXIMUM POSSIBLE VALUES OF THE POLARON 

RADIUS, rbmax CALCULATED FROM EQ. (27) 

l/K R 
(“5 

R tin rummax 

md (nm) M-4 

0.2 44.5 0.2 16.4 
0.4 4.1 0.3 2.9 
0.6 2.0 0.3 1.8 
0.8 1.4 0.3 1.4 
1.0 1.2 0.3 1.3 

As it would seem reasonable to consider 
the whole of the matrix between the CS 
planes as a high-polaron-density region, we 
can also write, in the limits R,i” > R > 
R max 7 

’ 4rrq, R 
Lo”. (26) 

This can be considered to be equivalent to 
the assumption R, = R,,, and is shown 
diagrammatically in Fig. 4. In reality this 
condition is somewhat of a mathematical 
fiction but even so it has some measure of 
usefulness and is worth retaining as a sim- 
plifying approximation. 

From Eqs. (26) and (17), we can now 
write 

exp (2) exp (I.$+) 

“P-P 
4 

R=&l,ll R=R mox’h R 

FIG. 4. Schematic illustration of the model for 
polaron distribution used in the present calculations. 
All of the inter-CS matrix is considered to be a high- 
polaron-density (H.D.) region, which persists to 
R = R,. Curve V,-, (I-ID) represents the term A 
e:py--2R/r,) and curve UP-, (LD) the term [o/4~re~] 
[(-c~,e)~/R] in Eq. (26). 
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hence 

and 

ULax - Rmin) = 
ln(Rmax/Rmin) rPmax > rp* (27) 

This means that the polaron radius, rp, must 
always be less than rp,,,. The value of rPmax 
is readily obtained from the data already 
given in Table I and is also included in 
Table I. It is seen that the values of the 
screening length, l/K, and polaron radius, 
rp, that we will use, 0.4 to 1.0 nm satisfy 
Eq. (27) and provide further verification 

that the inter-CS-plane region is best 
treated as a high-density polaron region is 
the most suitable model to adopt. 

The purpose of the considerations in this 
section has been to try to determine the 
most realistic situation holding in the CS 
phases. The arguments presented thus sug- 
gest that we should only consider the high- 
density equations when calculating the po- 
laron-polaron interaction E,-,. We can 
therefore return to the Eqs. (18) to (24). 
Equations (18) to (21) remain unchanged. 
The form of Eq. (22) also remains the same, 
but the limits of the integration are changed 
so that we write 

E,-, = 2 i,“” U,-; p; dv = 2 s,“” Up-,.p; dr 

= (2/K) jo@@=“‘“’ U,-,d+ 

2A Q(r=dlP) 

=-I 

-2(l#? + tp-1’6 
Ko em 

TP 
(28) 

As we mentioned in conjunction with Eq. 
(22), Eq. (28) has been evaluated numeri- 
cally by computer. 

5. Total Polaron Interaction Energy 

The total polaron interaction energy will 
now be the sum of the polaron-CS plane 
interaction energy, detailed in Section 3, 
and the high-density-region polaron-po- 
laron interaction energy detailed in Section 
4 above. We can therefore write for the 
total interaction energy, Etota,, 

E total = Es-, + EPmP, (2% 

where Es-, is given by Eq. (13) and E,-, by 
Eq. (28). Et,, has been estimated by com- 
puter for various degrees of reduction of 
wo, . 

6. The Polaron Formulation Employed 

The majority of the preceding theory has 
been of general validity, and not bound to 

any particular choice of polaron theory. 
However, at two points, which are (a) 
estimating the charge on thepolaron, Eq. (8)) 
and (b) estimating the polaron-polaron in- 
teraction, Eqs. (14) and (15), we have cho- 
sen to use the Feynman-Masumi model for 
polaron behavior and taken the equations 
directly from Masumi’s paper (16). As the 
Masumi paper is concerned with polaron 
dynamics, while the present study con- 
siders only static interaction energies, it 
may be queried as to whether this is reason- 
able. Let us consider Eqs. (14) and (15) 
first. In our model we ideally need to repro- 
duce the interaction curve shown in Fig. 3a. 
Equations ( 14) and (15) are, in fact, only an 
approximation to that curve, but we con- 
sider them to be an adequate approximation 
in the context of the present study. When 
we consider the use of Eq. (8) there are 
similar difficulties and a number of factors 
need to be balanced against one another. 
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Our main consideration is that it is neces- 
sary to obtain an estimate of the charge on 
the polaron. While Masumi’s equation 
which we have used as Eq. (8) may not be 
altogether ideal for our use it is the best 
theoretical relationship we have found in 
the literature. Rather than invent an alter- 
native, it seemed reasonable to use Eq. (8) 
as it stands in the context of the present 
calculations. 

Finally we should draw attention to the 
fact that Masumi’s study is concerned with 
large polarons, rather than the small po- 
larons which probably exist in slightly re- 
duced WO,. Our calculations, though, 
cover a range of polaron radii which en- 
compass small, medium, and large polarons 
and which, using Masumi’s criterion that 
the polaron radius should be larger than the 
cation separation, mostly fall into the large- 
polaron group. Moreover, it was found that 
the extension of the equation from the large 
regions toward smaller polaron radii pre- 
sented no inconsistencies in the results, 
but smooth trends resulted, as described 
below. 

In conclusion, we can reiterate that our 
study is, in effect, an exploratory treatment 
of polaron interaction energies in reduced 
tungsten trioxide. At this stage in the inves- 
tigation, it seemed reasonable to adopt the 
analytical forms of the Masumi equation, 
although they apply to large-polaron dy- 
namics, rather than to derive new alterna- 
tives. The results reported below, support 
this decision by showing that in the main 
polaron interaction energies are rather 
small compared to other interactions, and 
even severe changes in the forms of Eqs. 
(8), (14), and (15) are unlikely to reverse 
this overall result. 

Results and Discussion 

Various values of the total polaron inter- 
action energy per unit volume, which is 
obtained by dividing E,,, by d, have been 

calculated. The units used are electron 
volts per cubic nanometer (eV nmP3), 
where 1 eV = 1.602 x lo-l9 J, and the 
calculations have been made as a function 
of the degree of reduction of the tungsten 
trioxide crystals, x in WO,. In general, x 
lies in the range of 2.70 to 3.0, specifying 
the oxides WO,,, to WO,. In practice the 
C’S phase range for the tungsten oxides only 
extends to about W02.SS, and the composi- 
tion region below this must be regarded as 
showing trends rather than applying to real 
systems. The calculations have been made 
for four values of the screening length, l/K, 
0.4, 0.6, 0.8, and 1.0 nm and values of the 
polaron radius yP of 0.6, 0.8, and 1.0 nm, 
which seem reasonable when the data in 
Table I are consulted. The results are 
shown in Figs. 5, 6, 7, and 8. 

We will begin by considering the overall 
form of the curves shown in Figs. 5-8 
rather than their numerical values. It is 
apparent that there is a considerable change 
as we pass from Fig. 5 to Fig. 8. If we look 
at Fig. 5, we see that the interaction energy 
increases smoothly as the degree of reduc- 
tion of the crystal, x, decreases. Moreover, 
the value of Etotal is seen to be positive. This 
indicates that the polaron-polaron interac- 
tion, E,,+ is dominant, because Ep--p is a 
positive term in the equation for Etotal. In 
Figs. 7 and 8 we see that Et,,, is now 
negative and, moreover, decreases as the 
degree of reduction increases. This indi- 
cates that in these figures Es-, is dominant 
as Es-, is a negative term in the equation for 
E total * 

We therefore see that as the polaron 
screening length increases the interaction 
changes from being principally polaron- 
polaron at small screening lengths to mainly 
polaron-CS plane interactions at large 
screening lengths. We can also see that the 
value chosen for the polaron radius r, does 
not change this conclusion. Certainly the 
value of the polaron radius changes the 
magnitude of Ema, but not the overall trend. 
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FIG. 5. Total polaron interaction energy per unit volume E (eV/nm”) versus degree of reduction x in 
WO, for a screening length of l/K = 0.4 nm and polaron radii, rD, of (a) 0.6 nm, (b) 0.8 nm, and (c) 1.0 
nm. 

Thus we find that a small degree of screen- 
ing allows the polarons to see each other 
clearly while large screening distances 
cause the polarons to see the CS planes. 
This suggests that CS planes may not act as 
a barrier to the movement of polarons when 
the screening length is small and that they 
may be able to move relatively freely 
through the crystal, endowing it with a 
quasi-isotropic electronic conductivity. 

When the screening length is large, though, 
polarons will interact with the CS planes 
and it is likely that their movement normal 
to CS planes would be impeded compared 
to that parallel to the CS planes. Hence 
electronic conductivity would be expected 
to be noticeably anisotropic. Of course the 
degree to which these polarons are aware of 
the CS planes will depend upon the overall 
magnitude of the interaction energy. For 
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FIG. 6. Total polaron interaction energy per unit volume E (eV/nm3) versus degree of reduction x in 
WO, for a screening length of l/K = 0.6nm and polaron radii, r,, of (a) 0.6 nm, (b) 0.8 nm, and (c) 1.0 
nm. 

small values of this interaction energy the radius chosen, but depends critically upon 
degree of impedence may in fact be rather the degree of screening assumed to be 
small. It is also noticeable that this behav- present. 
ior is relatively insensitive to the polaron The change from the polaron-CS plane 
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FIG. 7. Total polaron interaction energy per unit volume E (eV/nm3) versus degree of reduction x in 
WO, for a screening length of l/K = 0.8 nm and polaron radii, r,, of (a) 0.6 nm, (b) 0.8 nm, and (c) 1.0 
nm. 

interaction dominant region to the polaron- tions are very delicately balanced, so that 
polaron interaction dominant region occurs not only is the total interaction energy 
for a screening length of l/K = 0.6 nm, dependent upon polaron radius, but also 
illustrated in Fig. 6. In this case the interac- upon CS plane type. Thus we see that for 
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FIG. 8. Total polaron interaction energy per unit volume E (eV/nrrP) versus degree of reduction x in 
WO, for a screening length of l/K = 1.0 nm and polaron radii, T,,, of (a) 0.6 nm, (b) 0.8 nm, and (c) 1.0 
nm. 

small polaron radii, i.e., 0.6 nm, the inter- the polaron-C’S plane interactions. Be- 
action is principally due to polaron-polaron tween these values, at a polaron radius of 
interactions. When the polaron radius 0.8 nm the interaction changes from mainly 
reaches 1 .O nm the energy is mainly due to polaron-polaron in the case of (001) and 
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{ 102) CS plane arrays to mainly polaron- 
CS plane in the case of a { 103) CS plane 
array. Clearly if the screening length and 
polaron radius are allowed to vary freely it 
would be possible, in this region of values, 
to make the total polaron interaction energy 
zero. It must be remembered, however, 
that it is not an absolute zero for the 
energy, and crystals with a total negative 
energy will be more stable than ones with 
zero energy. 

We see from Figs. 5-8 that the overall 
shape of the interaction energy curves are 
rather critically dependent upon the degree 
of screening but insensitive to the polaron 
radius used. When we come to consider the 
magnitude of the interaction we see that the 
polaron radius, rp, plays a larger role. In 
Fig. 5 we see that as the polaron radius 
increases the interaction energy decreases. 
This trend is actually due to the following 
two reasons. Firstly, both polaron-polaron 
and polaron-CS interactions weaken as the 
polaron radius increases so that the magni- 
tude of these energies becomes smaller. 
Secondly, we have an increase in the po- 
laron-CS plane interaction at the expense 
of the polaron-polaron interaction. Thus 
increasing polaron radius causes the nega- 
tive polaron-polaron interaction to become 
more dominant. This trend is seen in all the 
remaining curves of Figs. 6 to 8. Hence in 
Fig. 8 we see that the total interaction 
energy becomes more negative as the po- 
laron radius increases, in accord with Fig. 
5. 

The magnitude of the interaction also 
varies with the screening length l/K. When 
l/K is smallest, 0.4 nm, the interaction 
energy is very large, particularly for small 
polaron radii. The values are in fact so large 
as to make them of great importance in any 
energy scheme for CS phases. We do not 
have any experimental evidence to show 
whether such interaction energies are real- 
istic and it would be of some interest to 
investigate this further. When the screening 

length increases we find that the interaction 
energy becomes small and hardly varies 
significantly with either screening length or 
polaron radius. 

We can summarize these results thus: 
(i) The degree of screening of the po- 

larons from the CS planes, represented by 
the screening length, l/K, in our calcula- 
tions, is of prime importance in controlling 
the interaction energy. As the screening 
length increases the total interaction falls, 
but we find only very small changes for 
screening lengths much more than 0.6 nm. 
We also find that as the screening length 
increases the interaction changes from be- 
ing dominated by polaron-polaron interac- 
tions, which are positive, to polaron-CS 
plane interactions, which are negative. 

(ii) The polaron radius is not so critical 
as the screening length, but we find that as 
the polaron radius increases the polaron- 
CS plane interaction increases in impor- 
tance compared to the polaron-polaron in- 
teraction. 

Having discussed the general nature of 
the results and their dependence on the 
numerical parameters, we can now turn to 
the question of the extent to which these 
polaron interaction energies are likely to 
influence or control the microstructures of 
the WO,-related CS phases. 

Initially let us consider the results shown 
in Fig. 5. In this case the interaction ener- 
gies are high, particularly for a polaron 
radius of 0.6 nm. As such, they are at least 
comparable to CS plane formation energies 
(3) and so, if these conditions held in prac- 
tice, we would expect them to dominate CS 
plane microstructures. We note from Fig. 5 
that (00 l} CS phases are those with the 
lowest interaction energy, and hence (001) 
CS planes would be expected to occur in 
practice. This is not so, as { 102) CS planes 
form on initially reducing W03, and these 
give way to { 103) CS planes at composi- 
tions below about Wq.,. We also note, 
from the data shown in Fig. 5, that the 
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change from { 102) CS to { 103) CS arrays 
will actually increase the interaction en- 
ergy. Hence we feel that the polaron radius 
and small screening length combination 
shown in Fig. 5 does not hold in real 
crystals, as the magnitudes of the interac- 
tion energy terms do not agree with obser- 
vations. 

When we consider the magnitudes of the 
total polaron interaction energies for the 
combination of screening lengths and po- 
laron radii shown in Figs. 6-8, we find them 
to be fairly small. Elastic strain energy 
interactions calculated previously ( I-3) are 
considerably higher for similar composition 
ranges. It therefore seems reasonable to 
suppose that polaron interactions in both 
the low-density and high-density regions 
investigated here will not influence CS 
phase microstructures significantly. We can 
also note that for most of the situations 
investigated, { 103) CS arrays have a lower 
polaron interaction energy than { 102) CS 
arrays. Thus, for a crystal of any particular 
composition a change from a { 102) micro- 
structure to a { 103) microstructure will 
result in a gain in energy. This is a similar 
situation to that found for elastic strain 
energies, and as such we would expect the 
polaron interactions to reinforce the trend 
given by the elastic strain calculations. 

The changes in interaction energy with 
CS plane type can be viewed in another 
way. It was pointed out above that in Fig. 5 
polaron-polaron interactions are dominant, 
whereas in Figs. 8 and 9 polaron-CS plane 
interactions come to the fore. Hence, if 
polaron-polaron interactions are more im- 
portant, { 102) CS planes are preferred over 
{ 103) CS planes, and this preference will 
become more apparent as the degree of 
reduction increases. Similarly, though, if 
the polaron-CS plane interaction domi- 
nates, { 103) CS planes will be preferred, 
and again this preference will become more 
pronounced as the degree of reduction in- 
creases. It is possible to conceive that at 

low-CS-plane densities polaron-polaron in- 
teractions will predominate and that at 
high-CS-plane densities polaron-CS plane 
interactions will be more important. This is 
formally equivalent to the situation shown 
in Fig. 6, where we change from a state in 
which { 102) CS arrays have lower energy 
than { 103) CS arrays to that in which { 103) 
arrays are preferred. 

We can summarize this section by con- 
cluding that: 

(i) For most of the low- and high- 
polaron density regions investigated here, 
polaron interactions are in general too small 
to dominate CS plane interaction energies 
and so control CS phase microstructures. 

(ii) The combination of small polaron 
radius and screening length, does, how- 
ever, lead to very high interaction energies. 
Experimental observations on CS plane mi- 
crostructures suggest that this combination 
is unlikely to occur in real crystals and it is 
more likely that polaron interaction will be 
better represented by larger polaron radii 
and screening lengths. 

Finally, we wish to consider, in a qualita- 
tive fashion, some of the consequences of 
the hard-core type of potential which we 
have illustrated in Fig. 3a, but which we 
have not investigated numerically, as we do 
not have reliable potential functions to em- 
ploy. In this regime, polaron-polaron inter- 
actions are likely to increase rapidly and 
may well provide the major energy criterion 
for termination of a CS phase series. We 
can illustrate this by comparing the 
(Mo,W),O,,-, oxides with the binary 
W,O,,-, oxides. In the binary oxides, as we 
have pointed out, charge carrier densities 
are high, and we clearly have an apprecia- 
ble polaron density between the CS planes. 
In contrast, the charge carrier densities in 
(Mo,W)O,,-, are low (15), suggesting that 
Mo5+ states are preferred to W5+ states, and 
that they are localized in the CS plane. 
Thus on reduction of the respective series, 
the binary oxide series will reach a high 
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polaron density, and approach the hard K anai and Mr. M. Taiji for their assistance with 
core potential region at much smaller degrees calculations. 
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The points in this final section are some- 
what speculative as they lie outside the 
domain of our calculations. Further experi- 
mental results and calculations relevant to 
this regime of polaron-polaron interactions 
would be of some interest. 
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