by large plasmon-phonon interactions with anomalous temperature shifts of the resonance frequencies. Substitution of arsenic in $CoAs_3$ by small amounts of phosphorus or antimony results in an additional short-waved mode at 362 and 342 cm⁻¹, respectively, which can be assigned to an internal vibration of the four-membered anionic rings not allowed in the binary skutterudites. The infrared spectra of the ordered ternary skutterudites $MGe_{1.5}Y_{1.5}$ (M = Co, Ir) show a large number of the total of 64 ir-allowed lattice modes, whereas the spectra of the rhodium compounds are mainly of the free carrier type. RhGe_{1.5}S_{1.5} and the firstly obtained RhGe_{1.5}Se_{1.5} exhibit small deviations from the formerly claimed pseudocubic cell. The lattice constants (space group R3) are a = 828.2(1) pm, $\alpha = 89.85(1)^{\circ}$ and a = 854.6(1) pm, $\alpha = 89.86(1)^{\circ}$, respectively.

Monoclinic-Trigonal Transition in Some $M_3^4M'^{11}(XO_4)_3$ Compounds: The High-Temperature Form of $(NH_4)_3In(SO_4)_3$. B. Jolibois, G. Laplace, F. Abraham,* and G. Nowogrocki. Universite des Sciences et Techniques de Lille, B.P. 36, 59655 Villeneuve d'Ascq Cedex, France. The high-temperature form of $(NH_4)_3In(SO_4)_3$ is rhombohedral, R3c, with a=15.531 (12), c=9.163 (8) Å, Z=6. The structure was solved to R=0.023 for 570 independent reflections measured at about 140°C. The structure is built up of $[In(SO_4)_3]_\infty$ columns extending along the c axis and composed of InO_6 octahedra and SO_4 tetrahedra linked together; this arrangement is very similar to that found in the low-temperature form. To explain the transition mechanism, existence of an intermediate phase of point symmetry $\bar{3}m$ is postulated. This phase would be the prototypic structure of the possibly ferroelastic low-temperature modification which can apparently exist only with non-spherical monovalent cations.

Lithium Substituted Cobalt Oxide Spinels $\operatorname{Li}_x M_{1-x} \operatorname{Co}_2 O_4$ ($M = \operatorname{Co}^{2+}$, $\operatorname{Z} n^{2+}$; $0 \le x \le 0.4$). N. K. APPANDAIRAJAN, B. VISWANATHAN,* AND J. GOPALAKRISHNAN, Department of Chemistry, Indian Institute of Technology, Madras 600 036, India. Substitution of Li^+ into $\operatorname{Co}_3 O_4$ and $\operatorname{ZnCo}_2 O_4$ gives rise to the solid solution series $\operatorname{Li}_x M_{1-x} \operatorname{Co}_2 O_4$ ($M = \operatorname{Co}^{2+}$ or Zn^{2+}) having the spinel structure up to x = 0.4. X-Ray diffraction intensities show that the spinel solid solutions are likely to have the following cation distribution: $(\operatorname{Co}^{2+})_t [\operatorname{Li}_x^+ \operatorname{Co}_{2-3x}^2 \operatorname{Co}_{2+1}^2]_0 O_4$ and $(\operatorname{Zn}_{1-x}^2 \operatorname{Co}_{2-1}^2)_t [\operatorname{Li}_x^+ \operatorname{Co}_{2-3x}^2 \operatorname{Co}_{2-1}^2]_0 O_4$. Electrical resistivity and Seebeck coefficient data indicate that the electron transport in these systems occurs by a small polaron hopping mechanism.

X-Ray Study of $Hg_2Cl_2-Br_2$ and $HgCl_2-HgBr_2$ Reactions in Solid State. S. Mehdi* and S. M. Ansari. X-Ray Division, Regional Research Laboratory, Hyderabad 500 009, Andhra Pradesh, India. The reactions (i) $Hg_2Cl_2(s) + Br_2(g)$ and (ii) $HgCl_2(s) + HgBr_2(s)$ have been investigated by an X-ray method. Both the reactions yield two forms of the mixed halide HgClBr designated as α -HgClBr and β -HgClBr. The cell parameters of the two are as follows: α -HgClBr: a = 6.196 Å, b = 13.12 Å, c = 4.37 Å, Z = 4, $\rho = 5.91$ g/cm³. The powder pattern and cell parameters are similar to that of $HgCl_2$. Therefore it is probable that the chlorine atoms, in the linear halogen-Hg-halogen molecules of $HgCl_2$ structure have been replaced by bromines, and since the radius of bromine atom is larger than that of chlorine, the lattice is larger in this case. β -HgClBr: a = 6.78, b = 13.175 Å, c = 4.17 Å, z = 4, $\rho = 5.40$ g/cm³. These parameters are the same as those reported in the literature for β -Hg(ClBr)₂, and its X-ray powder pattern is similar to $HgCl_2$. Therefore this phase also has linear halogen-Hg-halogen molecules but the distribution of Cl and Br atoms is perhaps random. Heating the products (i) and (ii) up to the melting point increases the amount of α -phase and decreases the β -phase, whereas crystallisation increases the β -phase. DTA study has supported the X-ray findings.

Reduction of the Titanium Niobium Oxides. I. $TiNb_2O_7$ and $Ti_2Nb_{10}O_{20}$. S. K. E. FORGHANY AND J. S. ANDERSON,* Research School of Chemistry, Australian National University, P.O. Box 4, Canberra, A.C.T. 2600, Australia. Reduction of the titanium-niobium oxides follows a common pattern. TiO_2 is eliminated, to form a new phase richer in titanium than the original compound, and Nb(IV) replaces Ti(IV) in the original block structure, which is thereby enriched in niobium. With $TiNb_2O_7$, the second phase is a TiO_2 -NbO₂ solid solution, with the rutile structure, initially with a high titanium content, in equilibrium with a solid solution of composition Me_3O_7 , isostructural with $TiNb_2O_7$. At $log\ P_{O_2}$ (atm) about -9.0 this reaches the limiting composition $Ti_{0.72}Nb_{2.28}O_7$, in equilibrium with $Ti_{0.56}Nb_{0.44}O_2$. The Me_3O_7 block structure then transforms into the $Me_{12}O_{20}$ block structure ($Ti_2Nb_{10}O_{20}$ -Nb $_{12}O_{20}$) solid solution), which rapidly increases in niobium content as reduction continues. Reduction of $Ti_2Nb_{10}O_{20}$ at oxygen fugacities above $log\ P_{O_2}$ (atm) = -9.0 forms the Me_3O_7 phase as the titanium-rich phase. At $log\ P_{O_2} = -9.0$, and a composition about $Ti_{1.6}Nb_{10.4}O_{20}$, the rutile