$Ln(GaM^{2+})O_4$ and $Ln(AIMn^{2+})O_4$ Compounds Having a Laver Structure [Ln = Lu, Yb, Tm, Er, Ho, and Y, and M = Mg, Mn, Co,Cu, and Zn]

NOBORU KIMIZUKA¹ AND EIJI TAKAYAMA

National Institute for Research in Inorganic Materials, 1-1, Namiki, Sakuramura, Niiharigun, Ibaraki-ken 305, Japan

Received July 30, 1981; in revised form October 1, 1981

A series of new compounds $Ln(GaM^{2+})O_4$ and $Ln(AlMn^{2+})O_4$ having a layer structure were successfully prepared [Ln = Lu, Yb, Tm, Er, Ho, and Y, and M = Mg, Mn, Co, Cu, and Zn]. The synthesis conditions and the unit cell parameters for 23 compounds have been determined. These compounds are isostructural with YbFe₂O₄ (space group $R\bar{3}m$, a = 3.455(1) Å, and c = 25.109(2) Å).

Introduction

Recently Kimizuka and Katsura (1-5)prepared a series of new homologous compounds $(LnFeO_3)_nFeO$ [Ln = Lu, Yb, andTm, and $n = 1, 2, 3, \ldots$] by the reaction of rare earth orthoferrites (LnFeO₃) with wustite (FeO) under controlled oxygen partial pressures at high temperatures. Kato et al. (6, 7) and Matsui et al. (8) reported the crystal structures of YbFe₂O₄ ($R\bar{3}m$, a =3.455(1) Å, c = 25.109(2) Å), Yb₂Fe₃O₇ $(P6_{3}/mmc, a = 3.473(1) \text{ Å}, c = 28.351(1))$ Å), Yb₃Fe₄O₁₀ ($R\bar{3}m$, a = 3.490(1) Å, c =60.79(2) Å), and Yb₄Fe₅O₁₃ ($P6_3/mmc$, a =3.503(2) Å, c = 53.03(2) Å). They are compounds possessing a layer structure in which Fe²⁺ and Fe³⁺ are both in trigonal bipyramids formed by five oxygen ions. In previous work, Kimizuka and Takayama (9) prepared new $Ln(Fe^{3+}M^{2+})O_4$ compounds which are isostructural with

 $Yb(Fe^{3+}Fe^{2+})O_4$ and reported the synthesis conditions and the unit cell parameters based on a hexagonal cell [Ln = Lu, Yb,Tm, Er, Ho, and Y, and M = Mg, Mn, Co, Cu, and Zn]. The powder X-ray patterns of these compounds show no ordering phenomenon between Fe^{3+} and M^{2+} .

In the present work, we tried to replace Fe^{3+} in $Ln(Fe^{3+}M^{2+})O_4$ by other trivalent cations such as Ga³⁺ and Al³⁺ and obtained $Ln(GaM)O_4$ and $Ln(AlMn)O_4$ compounds [Ln = Lu, Yb, Tm, Er, Ho, and Y, and M]= Mg, Mn, Co, Cu, and Zn] which are isostructural with YbFe₂O₄.

In the present paper, we present only the synthesis conditions of 23 compounds and their unit cell parameters measured by the powder X-ray method. Nakagawa et al. (10), Inazumi et al. (11), Tanaka et al. (12), and Akimitsu et al. (13) have reported electrical transport phenomena, magnetic properties, Mössbauer spectroscopy, and neutron diffraction data on $Ln \operatorname{Fe}_2O_4$. They are currently studying the physical properties of the compounds reported in this paper.

¹ All correspondence should be addressed to Noboru Kimizuka.

Experimental

Solid state reactions between Ln_2O_3 , MO, and Ga_2O_3 or Al_2O_3 at high temperatures were carried out to prepare $Ln(GaM^{2+})O_4$ and $Ln(AlMn^{2+})O_4$ compounds. As starting reagents, Lu₂O₃, Yb_2O_3 , Tm_2O_3 , Er_2O_3 , Ho_2O_3 , Y_2O_3 , MgO, MnO₂, Co₂O₃, CuO, ZnO, Al₂O₃ (99.99%) and Ga₂O₃ (99.9%) were used. Prior to use Ga₂O₃ and Al₂O₃ were calcined in air at 1200°C for 2 days and 1300°C for 3 days, respectively. Purities and the methods of pretreatment of the other materials were described previously (9). Ln_2O_3 , MO, and Ga_2O_3 or Al_2O_3 were mixed in the mole ratio of 1:2:1, respectively. Temperature and heating period were determined by trial and error method for each sample. After the heat treatment, each sample was quenched to room temperature. For MnO-containing samples, the experiments were performed in a closed system to avoid oxidation of MnO. Evacuated silica tubes were used for the Ln_2O_3 -MnO-Ga₂O₃ systems [Ln = Lu, Yb, andTm] and Pt tubes were used for the system Ln_2O_3 -MnO-Ga₂O₃ [Ln = Er, Ho, and Y] and Ln_2O_3 -MnO-Al₂O₃ which need a higher temperature to react fully. All other samples were heated in air using a Pt crucible. No chemical reaction was observed visually between Pt or silica and the sample. Sample weights were measured before and after the heat treatment and no differences were detected. Powder X-ray patterns were recorded by using $CuK\alpha$ radiation on a diffractometer (Philips Co. Type

TABLE Ia POWDER X-RAY DATA FOR $Ln(GaMg)O_4$ (Ln = Er, Tm, Yb, and Lu)

	Er(GaMg)O4			Tm(GaMg)O4			Yb(GaMg)O4			Lu(GaMg)O4		
h k l	d ₀ [Å]	d _e [Å]	I [%]	<i>d</i> ₀ [Å]	<i>d</i> _e [Å]	I [%]	d ₀ [Å]	<i>d</i> _e [Å]	I [%]	d ₀ [Å]	d _e [Å]	I [%]
003	8.393	8.374	37	8.354	8.368	77	8.369	8.377	72	8.401	8.411	97
006	4.189	4.187	20	4.181	4.184	43	4.187	4.189	37	4.205	4.205	40
101	2.951	2.952	100	2.938	2.939	100	2.922	2.924	100	2.911	2.913	100
102	—		_		_	_	2.867	2.866	2			_
009	2.793	2.791	36	2.789	2.789	45	2.792	2.792	45	2.803	2.804	48
104	2.688	2.687	77	2.680	2.676	83	2.665	2.666	86	2.659	2.659	97
105	2.557	2.559	56	2.549	2.549	56	2.539	2.540	63	2.536	2.535	70
107	2.2897	2.2895	17	2.2824	2.2823	18	2.2752	2.2765	21	2.2747	2.2747	19
108	2.1590	2.1589	15	2.1521	2.1527	29	2.1477	2.1481	29	2.1477	2.1475	27
1010	1.9194	1.9189	57	1.9141	1.9142	45	1.9111	1.9114	45	1.9126	1.9126	49
1011						_	1.8052	1.8049	3		_	
110	1.7184	1.7165	92	1.7083	1.7083	49	1.6998	1.6997	60	1.6934	1.6930	57
113			_	1.6740	1.6738	12	1.6656	1.6658	11	1.6603	1.6597	9
0 0 15	_			_	_	_	1.6757	1.6755	5			_
1013	1.6198	1.6202	17	1.6174	1.6171	11	1.6161	1.6160	10	1.6195	1.6185	16
116	1.5884	1.5882	24	1.5813	1.5815	14	1.5743	1.5750	20	1.5705	1.5705	14
1014	1.5367	1.5363	20	1.5336	1.5335	27	1.5330	1.5327	30	1.5352	1.5354	37
20Ī	1.4841	1.4839	14	1.4769	1.4769	12	1.4696	1.4695	12	1.4636	1.4637	12
119	1.4621	1.4621	30	1.4568	1.4568	37	1.4527	1.4519	34	1.4491	1.4492	36
204	1.4467	1.4465	11	1.4401	1.4400	12	1.4332	1.4332	14	1.4281	1.4281	13
205	1.4250	1.4254	15	1.4190	1.4191	11	1.4130	1.4127	10	1.4080	1.4079	12
0018			_	_			1.3960	1.3962	4			_
2010	1.2793	1.2793	15	1.2747	1.2746	9	1.2702	1.2702	9	1.2676	1.2677	11

KIMIZUKA AND TAKAYAMA

		Y(GaMn)O₄	ł	I	Ho(GaMn)O	4	Er(GaMn)O ₄		
h k l	d ₀ [Å]	<i>d</i> _c [Å]	I [%]	d ₀ [Å]	<i>d</i> _e [Å]	I [%]	d ₀ [Å]	d _c [Å]	I [%]
003	8.409	8.431	7	8.377	8.379	19	8.425	8.433	43
006	4.216	4.215	26	4.189	4.189	20	4.216	4.216	32
101	2.986	2.982	81	3.001	3.001	100	2.987	2.987	100
009	2.811	2.810	100	2.793	2.793	41	2.810	2.811	54
104	2.714	2.712	51	2.724	2.724	99	2.716	2.717	98
105	2.583	2.582	68	2.591	2.591	84	2.585	2.586	77
107	_			2.3128	2.3125	6	2.3111	2.3121	7
108	2,1774	2,1772	20	2.1774	2,1784	23	2.1794	2.1796	20
1 0 10	1 9348	1.9344	54	1 9321	1 9327	42	1 9360	1 9362	39
110	1 7335	1.7336	43	1 7455	1.7452	69	1 7371	1.7369	53
113							1 7018	1 7012	35
1013		_	_						_
116			_	1 6117	1 6110		1 6057	1 6059	12
1014	1 5481	1 5480	22	1.0117	1.0110	,	1 5492	1 5490	23
201	1.5401	1.5400	22	1 5087	1 5087	12	1.5492	1.5490	11
110	—		_	1.3067	1.3087	37	1 4777	1.3013	34
119 20 Å	_	—	_	1.4601	1.4600	57	1.4///	1.4/75	12
204		_	_	1.4091	1.409.5	13	1.4055	1.4033	13
203	_	_	_	1.44/1	1.44/4	12	1.4419	1.4410	12
2010	_	_		1.2757	1.2755	0	1.6/6/	1.2/2/	0
	Tm(GaMn)O₄			<u> </u>	(b(GaMn)O	4	Lu(GaMn)O₄		
	d ₀ [Å]	<i>d</i> _c [Å]	I [%]	d₀ [Å]	<i>d</i> _c [Å]	I [%]	<i>d</i> ₀ [Å]	$d_{\rm c}[{\rm \AA}]$	I [%]
003	8.580	8.564	31	8.622	8.567	44	8.613	8.608	56
006	4.285	4.282	19	4.283	4.284	26	4.303	4.304	31
101	2.975	2.973	90	2.963	2.962	100	2.950	2.949	100
009	2.855	2.855	45	2.856	2.856	45	2.868	2.869	70
104	2.714	2.713	100	2.706	2.705	89	2.697	2.697	51
105	2.587	2.586	65	2.581	2.579	72	2.573	2.573	95
107	2.3191	2.3196	6	2.3151	2.3148	9	2.3128	2.3126	10
108	2.1890	2.1896	20	2.1860	2.1857	26	2.1855	2.1849	27
1 0 10	1.9501	1.9495	37	1.9470	1.9469	43	1.9486	1.9482	46
110	1.7284	1.7282	51			_	1.7139	1.7136	55
113	1.6940	1.6940	6	1.6882	1.6880	9	1.6805	1.6807	7
1013	1 6491	1.6492	11	1.6474	1.6478	16	1.6507	1.6509	16
116	1.6027	1.6026	8	1.5976	1.5975	12	1.5920	1.5921	12
		1 56 14	27	1 5635	1.5633	26	1.5669	1.5667	36
1014	1.5644	1.2044	21						
10 <u>14</u> 20 <u>1</u>	1.5644 1.4942	1.3644	12	1.4886	1.4886	14	1.4818	1.4816	12
10 <u>14</u> 20 <u>1</u> 119	1.5644 1.4942 1.4784	1.3644 1.4941 1.4784	12 39	1.4886 1.4746	1.4886	14 44	1.4818 1.4712	1.4816 1.4712	12 43
10 <u>14</u> 20 <u>1</u> 119 20 <u>4</u>	1.5644 1.4942 1.4784 1.4576	1.3644 1.4941 1.4784 1.4576	12 39 17	1.4886 1.4746 1.4525	1.4886 1.4745 1.4525	14 44 16	1.4818 1.4712 1.4465	1.4816 1.4712 1. 446 3	12 43 17
$ \begin{array}{r} 1 \ 0 \ \overline{14} \\ 2 \ 0 \ \overline{1} \\ 1 \ 1 \ 9 \\ 2 \ 0 \ \overline{4} \\ 2 \ 0 \ 5 \end{array} $	1.5644 1.4942 1.4784 1.4576 1.4369	1.3644 1.4941 1.4784 1.4576 1.4369	12 39 17 13	1.4886 1.4746 1.4525 1.4320	1.4886 1.4745 1.4525 1.4321	14 44 16 16	1.4818 1.4712 1.4465 1.4263	1.4816 1.4712 1.4463 1.4263	12 43 17 12

TABLE Ib Powder X-Ray Data for $Ln(GaMn)O_4$ (Ln = Y, Ho, Er, Tm, Yb, and Lu)

	1	fm(GaCo)O	•		Yb(GaCo)O	4	Lu(GaCo)O4		
h k l	<i>d</i> ₀ [Å]	<i>d</i> _c [Å]	I [%]	d ₀ [Å]	<i>d</i> _c [Å]	I [%]	d ₀ [Å]	<i>d</i> _c [Å]	I [%]
003	8.354	8.364	29	8.354	8.360	53	8.393	8.397	51
006	4.179	4.182	24	4.179	4.180	45	4.201	4.199	31
101	2.956	2.956	100	2.938	2.938	100	2.922	2.924	94
009	2.786	2.788	53	2.787	2.787	70	2.799	2.799	46
104	2.689	2.689	77	2.677	2.676	83	2.666	2.667	100
105	2.560	2.560	81	2.548	2.549	76	2.540	2.542	92
107	2.2897	2.2900	10	2.2813	2.2814	10	2.2791	2.2788	12
108	2.1590	2.1591	18	2.1516	2.1518	20	2.1507	2.1506	26
1010	1.9187	1.9185	54	1.9133	1.9132	42	1.9141	1.9142	50
110	1.7184	1.7185	60	1.7080	1.7083	59	1.6995	1.6999	78
113	_		_	1.6735	1.6737	16	1.6659	1.6661	8
1 0 13	1.6192	1.6196	12	1.6164	1.6161	11	1.6190	1.6187	14
116	1.5895	1.5895	13	1.5816	1.5813	11	1.5755	1.5756	15
1014	1.5359	1.5355	36	1.5328	1.5325	27	1.5355	1.5354	33
201	1.4856	1.4856	13	1.4769	1.4768	11	1.4700	1.4696	9
119	1.4631	1.4629	34	1.4566	1.4564	33	1.4531	1.4529	40
204	1.4481	1.4481	14	1.4399	1.4399	11	1.4342	1.4335	11
205	1.4271	1.4268	13	1.4188	1.4190	11	1.4130	1.4130	14
2010		_	_	1.2741	1.2742	8	1.2714	1.2710	12

TABLE IC POWDER X-RAY DATA FOR $Ln(GaCo)O_4$ (Ln = Tm, Yb, and Lu)

TABLE Id Powder X-Ray Data for $Ln(GaCu)O_4$ (Ln = Tm, Yb, and Lu)

	1	Ր <mark>m(Ga</mark> Cu)Օ	4		Yb(GaCu)O₄	ŀ	Lu(GaCu)O₄		
h k l	d ₀ [Å]	d _c [Å]	I [%]	d ₀ [Å]	d _e [Å]	I [%]	d ₀ [Å]	d _e [Å]	I [%]
003	8.043	8.053	17	8.058	8.057	25	8.087	8.095	37
006	4.024	4.027	19	4.033	4.029	28	4.046	4.047	34
101	2.985	2.984	62	2.973	2.974	72	2.957	2.958	100
009] 2 608	2.684	1100	10.004	2.686	1100	2.698	2.698	35
104	2.098	2.692	100	} 2.084	2.685	} 100	2.675	2.675	95
105	2.554	2.553	51	2.546	2.547	59	2.540	2.540	88
107	2.2670	2.2672	3	2.2626	2.2632	5	2.2605	2.2605	7
108	2.1308	2.1310	8	2.1270	2.1276	12	2.1265	2.1265	20
1010	1.8835	1.8835	33	1.8810	1.8814	36	1.8828	1.8825	42
110	1.7374	1.7363	33	1.7298	1.7300	39	1.7208	1.7206	60
113	1.6978	1.6973	31	1.6923	1.6915	28	1.6837	1.6830	8
116	1.5949	1.5944	6	1.5896	1.5897	11]	1.5834] 10
1013	1.5809	1.5809	3	1.5809	1.5799	8	£1.3851	1.5827	}19
1014	1.4966	1.4968	7	1 4062	1.4960	- 11	1.4990	1.4991	23
20Ī	1.5012	1.5008	12	f 1.4903	1.4954∫	25	1.4873	1.4873	11
119	1 4587	1.4579	1 20	1 45 45	1.4544	10	1.4505	1.4507	24
204	f 1.4502	1.4591	<u>ح</u> ک	f 1.4343	1.4542∫	20	1.4471	1.4471	17
205	1.4361	1.4357	5	1.4310	1.4311	10	1.4248	1.4245	12
2010	1.2765	1.2766	4	1.2731	1.2735	9	1.2702	1.2700	10

	Т	m(GaZn)O	4		Yb(GaZn)O₄		Lu(GaZn)O ₄		
h k l	<i>d</i> ₀ [Å]	d _c [Å]	I [%]	d ₀ [Å]	<i>d</i> _c [Å]	I [%]	d ₀ [Å]	<i>d</i> _c [Å]	I [%]
003	8.314	8.355	31	8.362	8.364	39	8.417	8.418	39
006	4.171	4.178	45	4.183	4.182	30	4.208	4.209	32
101	2.949	2.950	21	2.935	2.937	87	2.923	2.925	100
009	2.784	2.785	100	2.790	2.778	55	2.806	2.806	52
104	2.683	2.684	21	2.674	2.675	100	2.668	2.669	97
105	2.554	2.556	21	2.548	2.548	84	2.543	2.544	83
107	2.2858	2.2863	2	2.2813	2.2814	17	2.2808	2.2812	6
108	2.1546	2.1557	4	2.1526	2.1519	18	2.1531	2.1532	26
1 0 10	1.9149	1.9157	11	1.9141	1.9134	48	1.9171	1.9169	48
110	1.7145	1.7150	13	1.7077	1.7077	44	1.7001	1.7001	66
113	_	_	<u> </u>		_		1.6667	1.6665	7
1013	1.6177	1.6173	3	_	_		1.6219	1.6215	13
116	1.5861	1.5865	2	1.5812	1.5810	10	1.5767	1.5764	10
1014	1.5335	1.5334	11	1.5321	1.5329	31	1.5383	1.5381	39
20Ī	1.4826	1.4826	3	1.4760	1.4763	14	1.4700	1.4699	13
119	1.4607	1.4604	8	1.4566	1.4562	44	1.4541	1.4540	37
204	1.4455	1.4452	3	_	_		1.4340	1 4339	14
205	1.4239	1.4241	3	_	_	_	1.4137	1.4135	12
2010	1.2784	1.2778	2	1.2746	1.2741	6	1.2718	1.2719	8

TABLE Ie Powder X-Ray Data for $Ln(GaZn)O_4$ (Ln = Tm, Yb, and Lu)

TABLE If

Powder X-Ray Data for $Ln(AlMn)O_4$ (Ln = Tm, Yb, and Lu) and $Tm(FeZn)O_4$

h k l	Tm(AlMn)O ₄			Yb(AlMn)O4			Lu(AlMn)O ₄			Tm(FeZn)O ₄		
	<i>d</i> ₀ [Å]	d _c [Å]	I [%]	d ₀ [Å]	d _c [Å]	I [%]	<i>d</i> ₀ [Å]	d _c [Å]	I [%]	<i>d</i> ₀ [Å]	<i>d</i> _c [Å]	I [%]
003	8.299	8.304	59	8.299	8.324	35	8.338	8.339	61	8.409	8.416	40
006	4.152	4.152	34	4.156	4.162	20	4.169	4.169	29	4.208	4.208	43
101	2.975	2.974	100	2.961	2.964	100	2.945	2.945	100	2.969	2.967	11
009	2.768	2.768	46	2.773	2.775	25	2.780	2.780	34	2.804	2.805	100
104	2.702	2.700	82	2.694	2.693	50	2.680	2.680	68	2.702	2.701	12
105	2.567	2.567	85	2.562	2.563	41	2.550	2.551	47	2.572	2.572	7
107	2.2919	2.2918	13	2.2902	2.2895	7	2.2819	2.2822	9	2.3015	2.3010	1
108	2.1590	2.1588	18	2.1570	2.1575	13	2.1516	2.1518	14	2.1698	2.1698	2
1010	1.9152	1.9154	41	1.9160	1.9154	15	1.9126	1.9122	34	1.9286	1.9285	5
110	1.7289	1.7295	98	1.7235	1.7237	66	1.7127	1.7123	34	1.7251	1.7251	4
0 0 15	_	_		_	_	_		—	—	1.6831	1.6832	7
1013		—	_		_	_	_	_	_	1.6283	1.6284	1
113	—	_	_	1.6888	1.6789	6	1.6766	1.6773	14		_	
116	_	_	—	_		_	_			1.5957	1.5962	1
1014	1.5296	1.5298	13	1.5313	1.5312	15	1.5309	1.5305	18	1.5442	1.5440	4
20Ī	_			_		—	1.4805	1.4803	31	1.4913	1.4914	1
119	1.4667	1.4667	26	1.4646	1.4642	17	1.4578	1.4579	16	1.4697	1.4695	3
20 4	_	_	—	1.4517	1.4518	8	1.4431	1.4429	15	1.4538	1.4538	1
205	_	_	_	1.4300	1.4303	8	1.4221	1.4217	14	1.4330	1.4326	1
0018	_	<u> </u>	—	_		—		_	_	1.4028	1.4027	7
$2 \ 0 \ \overline{10}$	1.2837	1.2836	8	1.2814	1.2813	5	—	—		_		_

	Er(GaMg)O4	Tm(GaMg)O4	Yb(GaMg)O4	Lu(GaMg)O4	Y(GaMn)O ₄	Ho(GaMn)O
a(Å)	3.4330(4)	3.4166(2)	3.3994(3)	3.3859(2)	3.4673(7)	3.4905(4)
c(Å)	25.122(6)	25.103(4)	25.132(3)	25.232(4)	25.292(6)	25.136(8)
	Er(GaMn)O₄	Tm(GaMn)O₄	Yb(GaMn)O₄	Lu(GaMn)O₄	Tm(GaCo)O₄	Yb(GaCo)O
$a(\text{\AA})$	3.4737(3)	3.4564(1)	3.4435(2)	3.4273(1)	3,4370(3)	3.4165(1)
$c(\mathbf{A})$	25.298(5)	25.690(2)	25.702(3)	25.824(2)	25.093(4)	25.081(2)
	Lu(GaCo)O4	Tm(GaCu)O4	Yb(GaCu)O4	Lu(GaCu)O4	Tm(GaZn)O4	Yb(GaZn)O₄
$a(\text{\AA})$	3.3997(3)	3.4726(5)	3.4601(4)	3.4412(2)	3.4300(4)	3.4153(5)
c(Å)	25.192(5)	24.160(6)	24.172(6)	24.283(3)	25.066(6)	25.093(7)
	Lu(GaZn)O₄	Tm(AlMn)O ₄	Yb(AlMn)O ₄	Lu(AlMn)O₄	Tm(FeZn)O ₄	
$a(\text{\AA})$	3.4003(2)	3.4590(4)	3.4474(4)	3.4246(3)	3.4503(2)	
$c(\mathbf{A})$	25.253(3)	24.912(4)	24.971(6)	25.016(6)	25.248(2)	

TABLE II LATTICE CONSTANTS OF $Ln(AB)O_4$ as a Hexagonal Crystal System

PW 1050/80). The unit cell parameters were calculated in the same way as described in the previous paper (9).

 $Ln(GaM)O_4$ and $Ln(AlMn)O_4$ were pre-

pared according to the following chemical

Results and Discussion

Lu

а

YЬ

Tm

Er

Y

Ho

equations,

 $Ln_2O_3 + 2MO + Ga_2O_3 = 2Ln(GaM)O_4$ $Ln_2O_3 + 2MnO + Al_2O_3 = 2Ln(AlMn)O_4$. Single phases of $Ln(GaMn)O_4$ [Ln = Lu, Yb, and Tm] were obtained at or above 1000°C, during a heating cycle of 1 day. $Ln(GaMn)O_4$ [Ln = Er, Ho, and Y] and

FIG. 1. The relationships between the unit cell parameters and the constituent rare earth ions in the $Ln(GaM)O_4$ and $Ln(AlMn)O_4$ compounds: (a) *a* axis and the rare earth element; (b) *c* axis and the rare earth element. \bigcirc , $Ln(GaMn)O_4$; \blacksquare , $Ln(GaMg)O_4$; \blacktriangle , $Ln(AlMn)O_4$; +, $Ln(GaCo)O_4$; \times , $Ln(GaCu)O_4$; \blacklozenge , $Ln(GaZn)O_4$.

b

Lu

Yb

Τm

Er

γ

Ho

 $Ln(A|Mn)O_{4}$ [Ln = Lu, Yb, and Tm] were obtained at and above 1300°C for 3 days and 1500°C for 3 days, respectively. All compounds described above are black. $Ln(GaMg)O_4$ [Ln = Lu, Yb, Tm, and Er] were synthesized at 1500°C for 3 days. These compounds are colorless except for Er(GaMg)O₄ which has a pink color. In the Ln_2O_3 -CoO-Ga₂O₃ systems [Ln = Lu, Yb, and Tm], each mixture was heated at 1350°C for 3 days, to obtain black compounds. Lu(GaCu)O₄ and Yb(GaCu)O₄ could be prepared at 1010°C for 1 week. However, Tm(GaCu)O₄ could not be isolated as a single phase but could be obtained only as a mixture with starting reagents and TmGaO₃, in spite of continued heating at 1010°C for 2 weeks. The lines due to Tm(GaCu)O₄ were observed in the powder X-ray patterns and indexed. These three compounds were black.

Lu(GaZn)O₄ was formed at 1350°C for 3 days. Yb(GaZn)O₄ and Tm(GaZn)O₄ were also detected by means of the powder Xray method, after heat treatment at 1350°C for 1 day. However, after a second heat treatment for 3 more days, both compounds decomposed totally. They were not obtained even at 1500°C for 2 more days. Finally, both mixtures were heated until melt phases appeared (1600°C) and after 5 min they were quenched to room temperature. The products thus obtained have characteristic powder X-ray patterns indicating that they are isostructural with YbFe₂O₄. $Yb(GaZn)O_4$ and $Tm(GaZn)O_4$ may be metastable. We are currently studying the phase diagram of the Yb₂O₃-ZnO-Ga₂O₃ system at 1300°C. Thermochemical stability of Yb(GaZn)O₄ will be determined in that study. The Zn-containing compounds formed in this study are colorless.

In the previous study, we did not report $Tm(FeZn)O_4$. Since we could prepare $Tm(GaZn)O_4$ in the present work, we tried to prepare $Tm(FeZn)O_4$ more carefully. After getting the melt phase, it was quenched

to room temperature. Utilizing this method, single phase $Tm(FeZn)O_4$ was obtained. *d*-Spacings and unit cell parameters for this compound are listed in Tables I and II, together with the other compounds.

In the Ln_2O_3 -NiO-Ga₂O₃ system [Ln = Lu and Yb], each mixture was heated until the melt phase appeared and then the product was quenched. However, no YbFe₂O₄ type of compounds were prepared.

In Tables I and II, the *d*-spacings and the unit cell parameters for the 23 compounds described above are listed. From the close correspondence of *d*-spacing in each compound to those of $YbFe_2O_4$, it can be concluded that they are isostructural with $YbFe_2O_4$. No extra peaks indicative of a super structure were detected. In Figs. 1a and b are shown the relationships between the lengths of the *a* axis and *c* axis and the constituent rare earth elements and their ionic radii adopted from Shannon and Prewitt (14).

From the above results and the previous conclusions (9), we can obtain the following qualitative conclusions concerning the synthesis conditions of $Ln(GaM)O_{4}$ and $Ln(AlMn)O_4$. (a) Lu(GaM)O_4 can be prepared at the lowest temperatures and for shortest heating periods the in the $Ln(GaM)O_{4}$ compounds. As the Ln becomes larger, the higher temperature and the longer heating period are necessary. (b) For Mn in the divalent state, we could obtain most kinds of compounds. The spherical shape and the ionic radius of Mn²⁺ may be favorable to occupy a trigonal bipyramidal site formed by oxygen ions. (c) $Ln(GaNi)O_4$ could not be prepared in the present trial as $Ln(FeNi)O_4$ could not be obtained (9). In order to construct a twodimensional honeycomb structure with Ga³⁺ and O²⁻, Ni²⁺ may be too small in size and too anisotropic. It is well known that Ni²⁺ in a tetrahedral or pentahedral site in oxide crystals is very rare. (d) As to trivalent cations, only the spherical one

[Fe³⁺($3d^5$), Ga³⁺($3d^{10}$) and Al³⁺($2s^2$)($2p^6$)] can form the YbFe₂O₄ type of compounds, at the present stage.

From the unit cell parameters, we can conclude the following: (a) The length of the *a* axis tends to increase with the ionic radius of the rare earth element for each kind of compound. (b) In contrast, the length of the *c* axis has the opposite tendency. These features are shown in Figs. 1a and b. Similar results have been obtained for $Ln(Fe M)O_4$ (9).

Finally 23 new compounds of general formula $Ln(AB)O_4$ [A = trivalent element, B = divalent element] possessing a layer structure have been prepared at high temperature and their unit cell parameters have been determined. Preliminary physical measurements suggest that these compounds have interesting electrical and magnetic properties.

Acknowledgments

One of the authors (N.K.) expresses his sincere thanks to Dr. T. Kikuchi and Dr. A. Watanabe of the National Institute for Research in Inorganic Materials for their helpful discussion.

References

- N. KIMIZUKA AND T. KATSURA, J. Solid State Chem. 13, 176 (1975).
- 2. N. KIMIZUKA AND T. KATSURA, J. Solid State Chem. 15, 246 (1975).
- 3. N. KIMIZUKA, A. TAKENAKA, Y. SASADA, AND T. KATSURA, Solid State Commun. 15, 1321 (1974).
- N. KIMIZUKA, A. TAKENAKA, Y. SASADA, AND T. KATSURA, Solid State Commun. 15, 1192 (1974).
- N. KIMIZUKA, K. KATO, I. KAWADA, I. SHINDO, AND T. KATSURA, Acta Crystallogr. Sect. B 32, 1620 (1976).
- K. KATO, I. KAWADA, N. KIMIZUKA, AND T. KATSURA, Z. Krist. 141, 314 (1975).
- 7. K. KATO, I. KAWADA, N. KIMIZUKA, I. SHINDO, AND T. KATSURA, Z. Krist. 143, 278 (1976).
- 8. Y. MATSUI, K. KATO, N. KIMIZUKA, AND S. HORIUCHI, Acta Crystallogr. Sect. B 35, 561 (1979).
- 9. N. KIMIZUKA AND E. TAKAYAMA, J. Solid State Chem. 40, 109 (1981).
- 10. Y. NAKAGAWA, M. INAZUMI, N. KIMIZUKA, AND K. SHIRATORI, J. Phys. Soc. Japan 47, 1369 (1979).
- 11. M. INAZUMI, Y. NAKAGAWA, M. TANAKA, N. KIMIZUKA, AND K. SHIRATORI, J. Phys. Soc. Japan 50, 438 (1981).
- M. TANAKA, M. KATO, N. KIMIZUKA, AND K. SHIRATORI, J. Phys. Soc. Japan 47, 1737 (1979).
- 13. J. AKIMITSU, Y. INADA, K. SHIRATORI, I. SHINDO, AND N. KIMIZUKA, Solid State Commun. 32, 1065 (1979).
- 14. R. D. SHANNON AND C. T. PREWITT, Acta Crystallogr. Sect. B 25, 925 (1969).