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Use of Nd3+, Eu3+, and Gd3+ as local structural probes allows the determination of the rare earth 
positions in the Na,Sr,-&n,(PO1)z (Ln = La to Tb) and KCaLn(PG& phases (Ln = rare earth). 
Moreover, a common feature of both series is a particularly high splitting of the excitation BP,n and 
BP,p levels of the Gd3+ ions. 

In a previous structural study the Na, II. The Na,Sr,-,&,(PO& Phases (ZA = 
Sr3+LLnr(P0& (I) and KCaLn(PO& (2) La to Th) 
phases have been assumed to be isotypic, 
respectively, with Sr,(P04)2 (3) and the 

The Sr3(POJ2 structure involves two 

hexagonal variety of CePO, . 
types of strontium sites (Fig. 1): 

In order to determine the cationic distri- 
-a Sri C.N. XII site with inversion sym- 

bution in the lattices an optical study using 
metry (&), in which (Sr-0) = 2.87 A. 

Nd3+, Eu3+, or Gd3+ ion probes was carried 
-a Sri, C.N. X site without inversion 

out. The activator concentrations were cho- 
symmetry (C,,), in which (Sr-0) = 2.67 

sen to allow a good emission intensity. A. 

The investigated NazSr3-&z,(P04)2 
phases have a Sr,(PO,),-type structure due 

I. Preparation of the Materials to coupled substitution: 

The powder samples were prepared from 2 Srz+ = ,~r3+ + Naf 
stoichiometric mixtures of alkali or alka- 
line-earth carbonates (99.5%), rare earth (Ln = La to Tb). (1) 

oxides (Rhone-Poulenc 99.99%), and diam- 
monium hydrogenophosphate (Merck min. 

The Ln3+ ions may fill either Sr, or Sri, 

99%). 
sites. A study of the luminescent properties 

Single crystals of KCaNd(PO& were 
of N~.30Sr3.soEu0.PO(~I)3 and N+d+-l.oo 

grown by recrystallization Of the powder at 
Gdo.ss(P04)2 has allowed us to determine 

1600°C in a sealed platinum tube followed 
the cationic distribution 

by slow cooling. 
The coupled substitution induces only 

cell-parameter variations below or equal to 
l%, and the Ln-0 distances were assumed 

* Present address: Faculte des Sciences, Universite to be equal to the Sr-0 distances in 
Mohammed V, avenue Ibn Batouta, Rabat, Morocco. Sr3(p04h (3). 
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FIG. 1. Sr, and Sr,, sites in the Sr&Q& lattice. 

11.1. 5D,, + ‘F, (J = 0,1,2) Emission of 
Eu3’ in Nao.toSrz.soEuo.zo(P032 

The 5D0 + ‘FJ ( J = 0,1,2) emission spec- 
trum of Eu3+ in N~.20Sr2.&uo.20(P04)2 re- 
corded at 80K under 380-nm excitation is 
given in Fig. 2. 

It consists of one line for the 5D0 + 7F0 
transition, two lines for 5D,, --, ‘F1, and 
three lines for 5D0 + ‘F2 (Table I). 

This result illustrates the occupancy of 
only one site without inversion symmetry 
and with a hexagonal or trigonal point sym- 
metry, i.e., the CsV Srn position in the 
Sr,(POJ2 network. 

The energy corresponding to the 5D0 -+ 
‘FO emission (17,316 cm-‘) is of the same 
order of magnitude as those observed for 

TABLE I 

SD,, + 7FJ (J = 0,1,2) EMISSION LINES OF Eu3+ 
IN Na0.&,.&u0.w(PG3~ UNDER 38&m 

EXCITATION (T = 8OK) 

A E 

(nm) (cm-‘) 

577.5 17,316 

586.5 17,050 
598.9 16,697 

609.6 16,404 
612.3 16,332 
616.2 16,228 

TABLE II 

WAVELENGTHS AND ENERGIES OF THE OP,,% + “S,,, 
TRANSITIONS OF GdS+ IN Nao.S5SrI.gOGd0.JS(P04)Z 

(T = 80 AND 3OOK) 

Nao.~Sr1.80Gd0.J5~POl)P Unm) E(cm-‘) 

T= 300K 310.89 32,166 
311.20 32,134 
311.86 32,066 
312.91 31,958 

T= 80K 310.98 32,156 
311.37 32,116 
311.97 32,054 
313.05 31,944 

SrTi&: Eu3+ (17,034 cm-‘) or Sr2 
TiOl: Eu3+ (17.340 cm-‘) (5), in which 
(Eu-0) distances are, respectively, 2.76 
and 2.72 A. 

11.2 Optical Properties of 
Na0.55Srl.soGd0.55(P04)2 

The 6P,/2 + 8S,12 emission was studied at 
80 and 300K under 273~nm excitation (Fig. 
3, Table II). 

Whatever the recording temperature the 
emission spectrum is constituted by four 

I 
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FIG. 2. Emission spectrum of Eua+ in 
Na,,.&r~.&uO.&G& under 38bnm excitation (T = 
8OK). 
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FIG. 3. V,,, + *S,,* emission spectra of Gds+ in 
NaO..&l.eoGdo.&OJ~ under 273-nm excitation. (T = 
80 and 300 K) . 

TABLE III 

EXCITATION LINES OF THE GdJ+ “P,,, + BS7,z 
EMISSION IN Na0.&rl,wGd0.~(P0,)2 (T = 8OK) 

A E 
bun) (cm-‘) 

8Snl + 6p3is 300.5 33,278 
301.1 33,212 

Bs7r2 + 6p3n 305.7 32,712 
306.2 32,658 
306.8 32,594 

lines whose intensities are in good agree- 
ment with a Boltzmann distribution. 

The excitation spectrum corresponding 
to this emission recorded at 80K is given in 
Fig. 4. The obtained wavelengths and ener- 
gies are listed in Table III. No variation of 
this spectrum was observed by changing 
the emission wavelength. It consists of 
three lines for the 8S,n + 2P5m transition 
and two lines for BS,n + 2Psfl. 

Such an emission spectrum and, mainly, 
the presence of the dipolar electric 8S,e + 
2P3n transition confirm the occupancy by 
Gd3+ ions of only one type of site, the St-,, 
site, without inversion symmetry. 

The barycenters of the 6P,, and 6P,n lev- 
els at 80K are found at high energies (re- 
spectively, 32,102 and 32,655 cm-‘) typical 
of a large (Gd-0) distance, i.e., here about 
2.67 H, (6, 7). 

The crystal-field splitting for both levels, 

LeY-7-2, >-_ --x00 302 sod xl6 A hII 

FIG. 4. Excitation spectrum of the eP,,+ 8S,,o emis- 
sion of Gd3+ in N~.&rl.poG&.S, (PO,), (T = 80 K). 

212cm-’ for 6P,n and 118 cm-’ for 6P,m, is 
rather large for a C.N. X site (7). This effect 
is likely due to the strong anisotropy of the 
Sr,, site which involves in Sr,(PO,), a short 
Sr-0 distance (2.48&, three longer (2.62 A), 
and six quite longer lengths (2.72 A). 

III. The KCaLn(PO& Phases (Ln = Rare 
Earth) 

The LnPO, (Ln = La, Ce, Nd) phos- 
phates crystallize with two allotropic vari- 
eties. One has the monazite-type structure 
with monoclinic symmetry, the other one 
has a hexagonal symmetry. In this last 
structure, a three-dimensional covalent net- 
work is made up of (PO,) groups and 
(LnO,J polyhedra sharing edges or corners. 
The point symmetry of the rare earth site is 
DZ with (Ln-0) = 2.40 8, (Fig. 5). The 
structure is characterized by the existence 

b 

-- -- 
* Ln di I 2.3OA 1=(1,2,3,4) 

00 1, = 2.5Oi J ,(5,6.7.81 

FIG. 5. Rare earth coordination polyhedron in the 
hexagonal LnPO, orthophosphates (b = La, Ce, 
Nd) . 
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FIG. 6. ‘ZIp,2 + *P,,z absorption spectra of NdS in 
KCaNd(PO& at 4 and 3OOK. 

of large tunnels running along the c axis and 
able to contain zeolitic water. 

New isotypical phases with general for- 
mula ACaLn(PG& (A = K, Rb, Cs; Ln = 
rare earth) have been prepared by introduc- 
ingA+ ions in these tunnels and Ca2+ ions in 
half of the rare earth sites (2). 

To confirm this hypothesis of cationic 
distribution the luminescence of three of 
these orthophosphates, KCaNd(PO&, 
KCaEu(PO&, and KCaGd(PO& was stud- 
ied. 

III. 1. 41912 + 2P1,2 Absorption of Nd3+ in 
KCaNd(P04)2 

The 4Z9n + 2P 1n absorption of Nd3+ in 
single crystals of KCaNd(PO,), was studied 
at 4 and 300K (Fig. 6, Table IV). 

The number of absorption lines (one at 

The most intense 4Z9n ---, 2P,Iz line at 300 K 
which corresponds to the lowest 4Z,R Stark 
level is located at 23,321 cm-‘. This value is 
close to that observed for the orthophos- 
phate Na3Nd(P04)2 (23,225 cm-‘) in which 
neodymium is in very similar eight- and 
nine-coordinated sites with a (Nd-0) dis- 
tance of about 2.50 A (8). 

111.2. 5D0 + 7F, (J = 0,1,2) Emission of 
Eu3+ in KCaEu(P04)2 

TABLE IV The 5D0 + ‘F, (J = 0,1,2) emission was 
‘Isi2 -+ =pm ABSORPTION OF Nd3+ IN KCaNd(PO& studied at 80K under 380-nm excitation 

(T = 4 AND 3OOK) (Fig. 7, Table V). 

Y BR -+ 2pw 
The number of the observed lines (one 

for 5D,,+ ‘FO, three for 5D,,d ‘F,, and five 
for 5D,, + ‘F2) confirms the unicity of the 
rare earth site and may be in accordance 
with a D2 symmetry. 

Unm) E(cm-‘) 

T= 4K 428.6 23,332 

428.8 23,321 
430.7 23,218 

T=3OOK 433.3 23,079 
436.4 22,915 
440.7 22,691 

E km-') 17000 16500 16000 1ssOO 

5t 
r 

_i 
5Do -'Fo 

kI- - + ‘F, 
I 

L-2 
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FIG. 7. Emission spectrum of EuJ+ in KCaEu(POJ2 
under 380-nm excitation (T = 8OK). 

4 K, five at 300 K) is a proof of the presence 
of Nd3+ in one type of site only. 

The value of the 5D0 + ‘FO transition en- 
ergy is higher than the typical value for 
Eu3+ ions in a C.N. VIII site with (Eu-0) 
= 2.4Oa (5). According to Caro et al. such 

a behavior could be the consequence of par- 
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TABLE V 

V& + ‘FJ (.I = 0,1,2) EMISSION OF EL?+ IN 

KCaEu(PGJp UNDER 38t%nm EXCITATION 

(T = 8OK) 

KCaEu(PO& 
A E 

(nm) (cm-‘) 

5Do + ‘F. 578.0 

587.2 
“Do + ‘F, 588.0 

600.0 

609.2 
610.4 

=Do + ‘F. 612.0 
622.5 
627.0 

17,301 

17,030 
17,007 
16,667 

16,415 
16,383 
16,340 
16,064 
15,949 

ticulariy weak values of the E2 and E3 Ra- 
cab parameters which are related to specific 
arrangements of the ligands around the 
Eu3+ ion (5, 9). As a matter of fact two dif- 
ferent groups of Ln-0 distances exist in the 
& site (Fig. 5). 

111.3. Optical Properties of the 
KCaGd(P0,) 2 Phase 

Figure 8 gives the ‘!PTI, + 8S,n emission 
spectra of Gd3+ in KCaGd(PG& recorded 
at 80 and 300K under 274-nm excitation. 
The corresponding excitation spectrum of 
this emission is given in Fig. 9. The ob- 
tained wavelengths and energies are listed 
in Tables VI and VII. 

These results can be usefully compared 
with those relative to Nh.ssSrl,WGd,,ss 

FIG. 8. Y,,, + sSr,x emission spectra of GdJ+ in 
KCaGd(PG& under 274nm excitation (T = 80 and 

E km-') 35100 32900 32700 32m 

6sn-6%2~ 

8s,-6P, 

.i: 

L., 
ml M2 304 SC@ X hml 

FIG. 9. Excitation spectrum of the ok’,,2-+ *S,,z emis- 
sion of Gd*+ in KCaGd(PGJs (T = 8OK). 

(PO& : gadolinium ions are located in one 
site only, without inversion symmetry. 

Lowering of the 6P,n and 6P5B barycen- 
ters at 80K (found here at 32,033 and 32,643 
cm-‘) compared to the previous ones is 
consistent with decreasing (Gd-0) dis- 
tance (from 2.67 to 2.4OA). The positions of 
these 6P,B and 6P,,, barycenters are very 
close to those observed for the Gd( 1) site of 
Gd,(M,,O,),: 32,015 and 32,068 cm-‘. In 
this site the gadolinium ions are sevenfold 
coordinated with (Gd-0) = 2.36 A (10). 

Splitting of the 6P,m and 6P,n levels is 
very high, 227 and 138 cm-‘, respectively. 
These values can be compared with those 
observed in Gdz(Mo04)3: 107 and 85 cm-‘. 

TABLE VI 

WAVELENGTHS AND ENERGIES OF THE BP7,2 + *S7,2 
TRANSITIONS OF Gd8+ IN KCaGd(PG& (T = 80 AND 

300K) 

KCaGd(PG& Wnm) E(cm-‘) 

T=3OOK 311.26 
311.65 
312.35 
313.46 

32,127 
32,087 
32,015 
31,902 

3OOK). 

T = 80K 311.26 32,127 
311.65 32,087 
312.36 32,014 
313.48 31,900 
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TABLE VII 

EXCITATION LINES OF THE Gd3+ 6P,,~ -+ ‘&t 
EMISSION IN KCaGd(PO& (T = 8OK) 

A E 
KCaGd(PO,)l (nm) (cm-‘) 

ularly high splitting of the 6P,,2 and 6P5,2 ex- 
citation levels is observed. A structural jus- 
tification will be proposed in the near fu- 
ture . 

300.6 33,267 
References 

,,- -.- 
301.4 33,179 

?Y 712 + 6p51z 305.8 32,701 
306.4 32,637 
307.1 32,563 

1. 

2. 

This so far unexplained behavior is likely 
due to the particular shape of the coordina- 
tion polyhedron of gadolinium. 

IV. Conclusions 

The use of Eu3+ and Gd3+ as local probes 
has allowed us to determine the rare earth 
position in the Na,Sr,,.&,(PO& and 
KCaLn(PO& phases. 

In the first structural type the rare earth 
ions are located only in the smallest of both 
available sites, with a ten-fold coordination. 

In the second type Ln3+ occupies, as ex- 
pected, a C.N. VIII site. 

For the gadolinium compounds, a partic- 
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