
JOURNAL OF SOLID STATE CHEMISTRY 43, 339-345 (1982) 

The Crystal Structure of p-Ga,Se, 

D. LUBBERS AND V. LEUTE 

Znstitut fiir Physikalische Chemie 
der Universitiit Miinster, Schlossplatz 4, D-4400 Miinster, Germany 

Received December 21, 1981 

From new X-ray powder diffraction data reported in this paper, the structure of the ordered, super- 
structural phase of Ga,Ses is found to be different from the structures stated in the literature up to now. 
The difference relates essentially to the structure distortion involved in the formation of the superstruc- 
ture. This distortion is clarified in a way which, in general, is suitable for investigations of small 
distortions of cubic structures. The superstructure cell turns out to be monoclinic, with a = 6.6608(3), 
b = 11.6516(4), c = 6.6491(3) A, p = 108.840(5)“, and Z = 4. Furthermore, the coordinates of the Ga 
and Se positions in this cell are deduced. The space group is shown to be @Cc (No. 9). 

Introduction 

The structure of P-Ga,Sea is a super- 
structure, originating from the zinc blende- 
type structure of cr-Ga&es (I), in which 
one-third of the cation sites are vacant. The 
formation of the superstructure results from 
the ordering of the randomly distributed Ga 
atoms and “structural vacancies” on the 
cation sites of the zinc blende lattice. In the 
literature, we find three different structures 
proposed for &Ga,Se, by different authors 
(2-4). These three structures differ in the 
superstructure unit cell and space group, 
whereas the underlying substructure is the 
same in all the three cases, namely, tetra- 
gonal, with lattice constants close to the 
constant of cr-Ga,Se,. 

The lines we observed in our X-ray pow- 
der films and diffractometer diagrams made 
us doubt whether any of the three struc- 
tures was correct. That given by Ghemard 
et al. (3) does not allow all the lines we 
found. Furthermore, there are some greater 
differences between the angles of the ex- 

petted and the observed reflections. Palat- 
nik and Belova (2) suggest a structure al- 
lowing many additional reflections. But we 
could not find these additional lines. Fi- 
nally, the structure proposed by Khan and 
Ah (4) demands a number of reflections 
which is much too great compared to the 
number of observed lines. Thus we at- 
tempted a new analysis of the PGa,Se, 
structure. 

Experimental 

We prepared our G&Se, by fusion of the 
very pure elements (Ga, 99.9999%, Se, 
99.999%, from Koch-Light Laboratories, 
England) in sealed evacuated quartz am- 
poules. We found that the best method for 
obtaining the p phase is to apply an excess 
of Se and to quench the compound directly 
after its crystallization from the melt, with 
subsequent annealing between 550 and 
600°C for a few weeks. By applying 39.5 
mole% Ga and 60.5 mole% Se, Se satura- 
tion of the &GazSe3 is achieved because, 
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after the annealing, Se in elemental form is 
still found besides the compound. This was 
clarified by electron microprobe measure- 
ments. After being quenched from its liquid 
phase, the Se was noncrystalline and did 
not disturb the X-ray diffraction measure- 
ments. The /3-Ga,SeS crystals have a brown 
color, they are brittle, and can be powdered 
easily. 

The X-ray diffraction was measured with 
a diffractometer (CuKcr radiation) and a 
Guinier camera (CuKa,). Adjusting the ap- 
paratus, we concentrated our efforts on 
achieving maximum resolution. The Kol 
and Ka2 components in the diffractometer 
diagrams were resolved for 8 > 13”. We 
preferred the diffractometer diagrams to the 
Guinier films because of the higher resolu- 
tion and precision. If CuK/3 reflections 
were disturbing, we made use of the films. 
Numerical values used were A(Kq) = 
1.54051, h(Ka) = 1.54178 A. 

Powder Diffraction Data 

The interplanar spacings, dabs, and the 
relative intensities, lobs, calculated from the 
measured reflections are given in Table I. 
The estimated maximum error of the inten- 
sities is & 20% +- 1, taking account of the 
statistic variations and the difficulty in re- 
solving superposed lines. In some 8 regions 
there are very closely bunched lines. Their 
analysis is complicated by the superposi- 
tion of the Ka, and Ka2 components. The 
relative intensities of the lines differ quite a 
lot between diagrams originating from dif- 
ferent preparations. This allows one, in 
some cases, to resolve the superposed lines 
by the combined evaluation of several dia- 
grams. 

The data show that the intense lines ap- 
pear in groups. Each of these groups is 
placed in a region, where the (r phase would 
display a line. The weaker lines are more 
uniformly distributed and also appear at 

lower angles. The two types of lines do not 
differ in line sharpness. 

We assume that the weaker, more uni- 
formly distributed lines originate from the 
superstructure only, whereas the groups of 
intense lines are generated by the substruc- 
ture, which is similar to the structure of the 
(r phase and emerges from this by a small 
distortion associated with the formation of 
the superstructure. The symmetry de- 
crease, caused by the distortion, results in a 
splitting of the single a-phase lines. 

Our observation of the similar sharp- 
nesses of the Superstructure and substruc- 
ture lines makes us assume that the distor- 
tion is nearly homogeneous; i.e., the cation 
and the anion lattices are distorted equally, 
and the substructure cells are distinguish- 
able only by the different arrangements of 
the Ga atoms on the cation sites. Apart 
from that, the periodicity of the substruc- 
ture is preserved. One can imagine this ho- 
mogeneous distortion as a distortion of a 
homogeneous, elastic substance into which 
the atom sites are embedded. Nevertheless, 
small deviations from the homogeneity of 
the distortion are to be expected around the 
structural vacancies. 

Method of Analysis 

In order to determine the symmetry of 
the substructure, we consider the number 
of lines into which one cubic reflection line 
splits, if the cubic lattice is distorted into a 
triclinic one. This number of different tri- 
clinic lines depends on the type of the origi- 
nal cubic reflection, i.e., on its Miller indi- 
ces, how many of them are equal, and how 
many are zero. Then we consider how 
many of these different triclinic lines remain 
different and how many coincide in the case 
of any distortion leading to a symmetry 
higher than the triclinic one. The results of 
these considerations are compiled in Table 
II. For the triclinic and the monoclinic sys- 
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TABLE I 

X-RAY POWDER DIFFRACTION DATA OF /3-Ga$3e3 

I obe No.~ hkl 4 -3% 
A 

is!! 
A L 

- 
NO.” 4 2 

.A 
4 -k I, 
A 

N0.b hkl h !!L?E 
A A 

1 0 2 0 5.8258 
2 1 10 5.5445 
3 1 1 i 4.9087 
4 0 2 1 4.2751 
5 1 1 1 3.6745 
7= 13 i 3.1555 
8” 200 3.1520 
9 1 1 i 3.1469 

lo= 002 3.1464 I 
11 040 2.9129 
12 2 2 i 2.8535 
13 2 2 0 2.7722 
14 0 2 2 2.7685 
15” 131 2.7421 
16a 2 0 i 2.7062 
17 0 4 1 2.6434 

5.829 
5.554 
4.914 
4.278 
3.679 
3.1551 
3.1530 

3.1474 

2.9125 
2.8544 
2.7742 
2.7692 
2.7420 

3ij 

hkl 

1 33 
0 25 
4 22 
191 
3 33 
4 60 
3 73 
0 64 
5 3j 
1 54 
3 33 
2 83 
0 100 
5 si 
1 55 
0 10 1 
3 53 
3 9i 
i 93 
5 31 
1 35 
4 6i 
6 02 
2 06 
3 14 
4 8i 
2 65 
4 23 
2 83 
3 91 
4 62 
2 64 
3 93 
3 36 
0 06 
6 04 
5 3s 
5 51 
4 06 
6 4i 
2 10 2 
4 04 
2 63 

2 
4 

48 
49 
5; 

1.52 
243 

52 26i 

1 .I829 
1.7078 
1.6949 
1.6701 
1.6533 
1.6525 
1.6510 
1.6494 
1.6365 
1.6362 I 
1.6342 
1.5778 
1.5735 
1.5732 I 
1.5543 
1.5213 
1.5205 I 
1.5188 
1.4832 
1.4268) 

1.7831 
1.7079 
1.6952 
1.6698 
1.6535 
1.6524 
I .6505 
1.6491 

1.6361 

1.6331 
1.5776 

1.5734 

1.5539 

1.5208 

1.5190 
1.4833 

1.4265 

1.3710 
1.3530 
1.3453 

1.3307 

137’ 
138 
141 
147 
145” 
146= 
147 
14P 
149’ 
150 
151’ 
158 
161 
167 
173 
174 
180 
181’ 
182” 
183” 
184” 
185’ 
1860 
188’ 
193 
194 
195 
204 
216 
217’ 
219’ 
22w 
223O 

1.2487 
1.2302 
1.2218 
1.2278 I 
1.2248 
1.2237 
1.2234 
1.2224 I 
1.2141 
1.2140 
1.2128 
1.1938 
1.1652 
1.1536 
1.1477 

1.2486 4 
1.2301 <l 

1.2217 <l 

1.2247 <l 

1.2232 Cl 

1 
<I 
<l 

7 

<I 
3 

530 
5c 
55’ 
56” 
58’ 
59” 
600 
67” 
70 
71” 
73 
77 
78 
79 
81 
88 
89 
90 

101= 
103” 
105 
108 
109 
112 
115 
116 
117 
120 
123 
124 
125 
128 
12Y 
131’ 

260 
062 
331 
133 
402 
331 
204 
262 
224 
004 
35i 
420 
312 

100 
50 

50 

2 
10 1.2143 1 

1.2127 <I 
1.1938 <I 
1.1652 <I 
1.1537 -Cl 
1.1477 <l 

2 
3 
5 

2.7072 
2.6443 1.1457 1.1456 1 

1.1196 1.11% 1 <l 

-Cl 
Cl 

<I 

19 2 2 i 2.4543 
20 1 1 2 2.4537 I 
21 2 2 1 2.3067 
22 15 0 2.1858 
23 3li 2.1809 
24 113 2.1772 
25 24i 2.1760 

26 lsi 
27 240 2.1393 
28 042 2.1404 I 2.1375 
30 310 2.0680 
31 3 1 e? 2.0534 
32 15 1 1.9966 
33 242 1.9826 
34 023 1.9736 
35 225 1.9623 
36a 060 1.9419 
370 202 1.9361 
38” 33i 1.9274 
3Y 13 j 1.9249 
40 241 I .9024 
41 15 i 1.8974 

2.4544 

2.3066 
2.1861 

024 
172 
44i 

1.1184 
1.1179 
1.1166 

1.1183 3 
1.1180 3 
1.1165 4 
1.1152 4 

1.1102 6 

1.1081 2 
1.0954 1 

1.0950 1 

1.0818 Cl 

1.0559 2 

1.0544 1 

1.0518 <I 

1.0491 <I 

3 
3 

<l 
-Cl 
‘Cl 

Cl 

2.1801 
2.1770 

35j 1.4266 
332 1.4264 

1.1151 
1.1102 
1.1101 I 2.1750 

2.1406 

2.0682 
2.0531 
1.99&l 
1.9819 
1.9738 
1.9620 
1.9417 
1.9363 
1.9269 
1.9247 
1.9023 
1.8982 
1.8553 
1.8388 
1.8370 

1.8010 

262 
403 
443 
17j 
28i 
5ii 
115 
370 
372 
282 
35i 
513 
3Ij 

1.3711 
1.3531 
1.3455 
1.3309 
1.3307 I 
1.3191 
1.3103 
1.3048 
1.3011 
1.2825 

6 
4 

<l 

<l 

<l 
-Cl 
<1 

1.1081 
1.0955 
1 a949 
1.0948 I 
1.0817 
1.0558 
1.0557 I 
1.0546 
I.0540 I 
1.0518 
1.0490 
1.0488 1 
1.0430 
1.0428 
1.0426 I 
1.0420 
1.0253 
0.9983 
0.9680 
0.9625 

1.3190 
1.3104 <l 

<I 
-Cl 

1.3045 
1.3012 
1.2823 

1.2706 

1.2689 
1.2601 
1.2591 
1.2558 
1.2549 
1.2536 
1.2517 
1.2507 
1.2500 

Cl 
20 
20 
40 
40 

2 
Cl 

1.2707 
1.2705 I 
1.2690 

226 
227’ -Cl 

<l 
3 
3 

281 
19i 

1.2600 
1.2591 
1.2560 
1.2550 
1.2535 
1.2514 
I .2507 
1.2504 

229” 
230” 
231 
232’ 
246 
260 
279” 
284a 

1.0428 2 

1.0419 1 
1.0253 <l 
0.9984 <I 
0.9682 <l 
0.9626 cl 

402 
204 
5 10 
462 
53i 
263 

42 061 1.8556 
44 3 3 i 1.8377 

-Cl 13P 
<I 133 <l 

2 
4 
4 

45 2 2 2 1.8373 
46 3 1 1 1.8021 
47 1 I 3 1.8OGO I 

<l 

<l 

1340 
135’ 
136O 

= Reflection originating from the substructure. 
b Number refers to the set of calculated reflections; the absence of a number indicates that the reflection was not found 

experimentally. 

terns, additional special symmetries are 
considered because more lines coincide in 
these special cases than in the general tri- 
clinic and monoclinic symmetries, respec- 
tively. The hexagonal system is not listed 
because its unit cell cannot be produced out 
of the cubic one by only a small distortion. 
Now, Table II can be used to find the crys- 
tal system of a distorted cubic lattice from 
the observed splitting of some of the cubic 

lines. In the following, we will make use of 
this method. 

From Table I, we extract four groups of 
substructure lines by their comparatively 
high intensities. We name each group after 
the indices of the corresponding a-GapSes 
reflection found in the same region of angle. 
The four groups are: the 111 group with 
d,,,,JA = 3.1551 (s), 3.1530, 3.1474; the 220 
group with d,,,,JA = 1.9417, 1.9363, 1.9269 
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TABLE II 

MULTIPLICITY OF LINE SPLITTING BY A SMALL DISTORTION OF A CUBIC LATTICE 

Reflection indices 

Symmetry of 
distorted 
unit cell Two indices 0 

One index 0, One index 0, 
the others the others 
with equal with dEer. 
abs. values abs. values 

No index 0, 
all indices 
with equal 
abs. values 

No index 0, 
two indices 
with equal 
abs. values 

No index 0, 
all indices 

with diier. 
abs. values 

Triclinic 
Tkiclinic, special 

a. = 4, cr, = t% 
Monoclinic 
Monoclinic, special 

ap = C@, & + 90” 
Orthorhombic 
Rhombohedral 
Telragonal 
Cubic 

381 6* I 12* 1 4* 1 12* 1 24* 1 

1*2+ I*1 2*2+2*1 6*2 1*2+2*1 5*2+2*1 12*2 
3*1 2*2+2*1 4*2+4*1 2*2 6*2 12* 2 

1*2+1*1 1*4+2*1 2*4+2+2 2+2 2*4+ 2*2 6*4 
3*1 3*2 6*2 1*4 3*4 6*4 
1*3 2+3 2*6 1*3+ 1*1 1*6+2*3 4*6 

1*2+1*1 1*4+ 1*2 3*4 1*4 1*8+ 1*4 3*8 
1*3 1*6 1 * 12 1*4 1 * 12 1 * 24 

Note. m * n means m different lines, each one composed of n coinciding triclinic lines. 

(s), 1.9247 (s); the 3 11 group with dobslA = 
1.6535, 1.6524, 1.6505, 1.6491, 1.6361 (s), 
1.6337 (w); the 400 group with do,,JH) = 
1.3710 (s), 1.3530. The lines labeled (s) are 
stronger, and those labeled (w) are weaker 
than the other lines of the same group. 
Now, making use of Table II, we can con- 
clude from these groups that the substruc- 
ture must be the special trlclinic one, with 
a, = b. and (r. = PO. (The 1.6361-A line of 
the 311 group is assumed to contain unre- 
solved the second weaker reflection.) Thus 
the tetragonal substructure, suggested in 
the literature, must be replaced by a tri- 
clinic one. 

Lattice Parameters 

We propose a superstructure unit cell 
with the same content of formula units (4 
G&Se3) and with similar volume and shape 
as that stated by Ghkmard et al. It can be 
regarded as being composed of two quar- 
ters of the unit cell first suggested by Palat- 
nik and Belova. The symmetry, however, 
of our unit cell must be another one, being 
compatible with the triclinic symmetry of 
the substructure. Figure 1 shows the tri- 
clinic substructure cell and the superstruc- 

ture cell, each of them embedded into the 
lattice of an alternative substructure, the 
cell of which is body centered and has half 
the volume of the triclinic cell. The rela- 
tions between the different cells can be 
taken from Fig. 1. Therefore, both the 
smaller substructure cell and the super- 
structure cell must be monoclinic with all 
the three edges having different lengths. 

According to this superstructure unit 
cell, all the lines observed can be indexed 
(see Table I). Least-squares analysis of all 
the observed reflections yields the follow- 
ing values for the superstructure lattice pa- 
rameters (with the standard deviations in 
parentheses): a = 6.6608(3), b = 11.6516(4), 
c = 6.6491(3) A, j3 = 108.840(5)“. From 
these values, the lattice parameters for the 
triclinic and the monoclinic substructures 
are calculated-face-centered triclinic: a, 
= bo = 5.4843(3), c,, = 5.4125(3) A, q-, = PO 
= 90.075(4)“, y. = 90.174(5)“; body-cen- 
tered monoclinic: a, = 3.8721(2), 6, = 
3.8839(2), c, = 5.4125(3) ii, &, = 
90.106(6)“. The volume of the superstruc- 
ture cell is V = 3 . V. = 6 . V,,, = 488.39(3) 
A3, and the resulting X-ray density is d, = 
5.118 g/cm”. The calculated angles of the 
reflections are in convincingly good agree- 
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a b 

FIG. 1. Relations between the two different substructure cells (a) and the superstructure cell (b). The 
indices 0 and m refer to the face-centered triclinic and the body-centered monoclinic substructures, 
respectively. 

ment with the observed ones. The figure of 
merit after de Wolff (5), a reliability crite- 
rion, is M,, = 58. 

Position Coordinates and Space Group 

The conditions limiting possible reflec- 
tions are found to be h -t k = 2 . n and, with 
k = 0, 1 = 2 . n. The only monoclinic space 
groups fulfilling these conditions are cI,Cc 
and &C2/c, Nos. 9 and 15, respectively, 
of the International Tables for X-Ray Crys- 
tallography (6). 

A consequence of a strictly homogeneous 
distortion is that the coordinates of the 
atom positions in the distorted and in the 
undistorted lattice are exactly the same. 
Therefore, with the assumption of homoge- 
neous distortion, the atom positions in the 
superstructure cell can be calculated. Now, 
we must find out which of the cation sites 
have to be vacant according to the order of 
the superstructure. If we take the corners 
of the superstructure cell as occupied by 
structural vacancies (SV), the centers of the 
C faces must also be occupied by SV be- 

cause of the reflection condition h + k = 
2. IZ. Thus two of the four vacant cation 
sites per unit cell are already fixed. The 
other two are given by the second reflection 
condition, saying that there is a (010) glide 
plane with a c/2 translation in [OOl] direc- 
tion. The spacing between this glide plane 
and the B face can only be [(2 * n + 1)/121 b. 
From these values, &. b and & . b are ruled 
out because they are consistent only with 
an all-faces centered unit cell. Figure 2 
shows the arrangement of the Ga atoms and 
SV on the cation sites. This arrangement 
results from each of the only possible spac- 
ings, &. b, R ’ b, & ’ b, and fi. b. 

Figure 2 also shows the Se positions. Ac- 
cording to Newman (7), the Se atoms are 
called Se(X) (Se(Y)), when their nearest 
neighbors are two Ga and two SV (three Ga 
and one SV). One-third of the anion sites 
are occupied by Se(X) and two-thirds by 
Se(Y). 

After a fi . b translation of the coordinate 
system in [OlO] direction, the new coordi- 
nates x, y, z of the SV, Ga, Se(X), and 
Se( I’) positions are the following. SV: 0, a, 
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a Go 
0 S” 

Se IX) 

@ Se(Y) 

FIG. 2. Positions in the superstructure unit cell. Se(X) is neighbored by two, Se(Y) by three, Ga 
atoms. 

0; Ga: 0, &, 0 and 0, &, 0; Se(X): 8, &, B; 
Se(Y): 3, A, Q and #, +$, 9; plus the coordi- 
nates of the equivalent positions for the 
space group C-Cc according to the Interna- 
tional Tables. Thus this space group is just 
the right one. The additional symmetry ele- 
ments of the space group C%-CUc would be 
correct only if SV, Ga, Se(X), and Se( Y) 
were equivalent. 

Additional Remarks 

The type of structure distortion associ- 
ated with the ordering of the Ga atoms on 
the cation sites can be predicted. For this 
purpose, it is sufficient to check which of 
the { 100) and which of the { 111) sets of the 
planes of thefcc phase with random Ga dis- 
tribution become inequivalent by the Ga or- 
dering. Inequivalence can be assumed to 
result in different spacings. As the Ga ar- 
rangements on the (100) and the (010) plane 
sets are also the same after ordering, 
whereas on the (001) plane set Ga is ordered 

in a different manner, one can predict a0 = 
b, # co and cxo = PO f yo. Of the plane sets 
(ill), (lli), (lil), and (ill), only the two 
latter ones show equivalent Ga arrange- 
ments after the ordering. The inequivalence 
of the two former ones results in a # c or &, 
# 90” or a0 # 90”. The inquivalence of the 
first and the third one makes a, # b, or 
yo # 90”. 

The superstructural ordering of Ga 
leaves unchanged the fact that, on the aver- 
age of the whole crystal, each of the four 
cation sites in the face-centered substruc- 
ture cell is occupied by Ga with the same 
frequency, which is two-thirds. This is in 
agreement with the reflection conditions 
found. 

Our results confirm some general state- 
ments made by Newman (7, 8) about the 
ordering in A.J**Br* compounds having tetra- 
hedral bonding. For instance, in our /3- 
Ga&e, structure, the nearest neighbors of 
any Ga atom really are one Se(X) and three 
Se( I’), and any SV really neighbors two 
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Se(X) and two Se( Y). The next nearest 
neighbors also agree with Newman’s pre- 
dictions. Moreover, the SV and the Se(X) 
form continuous, unbranched chains 
through the crystal; these chains are [OOl] 
directed. The (001) planes of the P-Gasses 
superstructure are a realization of the hex- 
agonal nets specified by Newman. They 
build up the /3-Ga2Se3 structure by stacking 
in the sequence -V-III-V-III- according 
to Newman’s nomenclature. 

Newman (8) states the structure of the 
ordered phase of the sulfide Ga& to be 
built up from the hexagonal nets by -II- 
VI-II-VI- stacking and to have the space 
group es-Cc. Comparison with the fi- 
Ga2Se3 phase shows that different stacking 
of equal planes results in the same super- 
structure, but different substructures of the 
wurtzite type and the zinc blende type, re- 
spectively. The C faces of the two super- 
structure cells correspond completely, 
whereas the monoclinic angle of the GazS3 
cell is made with the longer side of the C 
face instead of with the shorter one. Each 
of the two unit cells contains four formula 
units. The structure of the unordered Ga,S, 
phase also undergoes a small distortion as- 

sociated with the ordering (9). So, there is a 
close relation between Ga& and G&Se3 
not only for the unordered but also for the 
ordered phases. 
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