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We present results of a detailed atomistic computer simulation study of extended defect formation in 
ReO,-structured nonstoichiometric oxides. Our results show, in accordance with experiment, that 
{ 102) shear planes are the most energetically favored isolared shear planes in such oxides. However, 
we show that lattice relaxations play an essential role in stabilizing these defects over (001) and higher- 
index planes. The latter are, however, sufficiently close in energy to permit the difference in the 
energies of the isolated defects to be outweighed by the defect interaction term considered in Part II of 
this study. We also establish that the energies of point defect modes of reduction for these oxides are 
sufficiently close to allow dissociation of shear planes into vacancies at very low deviations from 
stoichiometry. 

1. Introduction initial stages of reduction of WO,-, lead to 
the formation of the { 102) shear plane. 

It is well established that the reduction of With increasing deviation from stoichiome- 
certain transition metal oxides (TiOz, VOZ, try, the { 103) and then { 104) planes are 
MOO,, and WOs) leads to the formation of observed, but are replaced at the highest 
extended, rather than point, defects (1-3). degree of reduction by (001) planes. These 
Electron microscopy (1, 2) has demon- observations obviously raise the question 
strated that crystallographic shear planes of the relative stabilities of the different 
are present in these reduced oxides and has shear plane orientations, and the factors 
provided a considerable amount of strut- which lead to the change in stability with 
tural information. The properties of these stoichiometry. A third point concerns the 
nonstoichiometric phases raise, however, a observation of ordered arrays of shear 
number of fundamental problems. The first plane defects which lead to homologous se- 
concerns the factors that stabilize shear ries of compounds (e.g., Ti,Oz,-l (4, 5), 
planes and the relationship between point WnOsn-p (6, 7)). The exceptionally large 
and extended defects. Are point defects spacings (100-150 A) observed in nonstoi- 
present in these oxides and if so, in what chiometric crystals imply long interactions 
ConcentraGons? The orientation of shear between the shear planes. 
planes provides the second problem. The Theoretical investigations have until re- 

cently been based largely on continuum 
elasticity-a technique applied with suc- 
cess to the study of other extended defects, 
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Thus Tilley (9) and Iguchi and Tilley 
(10. I I) in a series of papers have at- 
tempted to calculate formation and interac- 
tion energies of shear planes in WOS+ 
Their approach combines empirical infor- 
mation on the enthalpy of reduction of WO, 
with estimates of the change in electrostatic 
energy on shear plane formation; contin- 
uum elasticity methods are used to calcu- 
late the strain energy of the host lattice sur- 
rounding an extended defect, and the 
interaction between these defects. Shear 
plane interactions were also investigated 
using continuum elasticity techniques by 
Stoneham and Durham (12). 

Recently, however, shear planes have 
been studied by direct atomistic model- 
ing-a method which has been applied with 
considerable success to point defects 
(13, 14). Calculations have succeeded in 
identifying the important factors stabilizing 
extended defects in TiOz-Z and have dem- 
onstrated that an equilibrium between point 
and extended defects exists in these oxides 
(15, 16). In the present paper we applied 
these methods to isolated shear planes in 
ReO,-structured oxides’ and the calcula- 
tions were made for shear planes in ReO, 
itself. Although a reduced nonstoichiomet- 
ric Re03-, does not form, the high symme- 
try of the crystal structure simplifies the de- 
tailed calculation. WO, has a distorted 
Re03 structure at low temperatures and 
Moos adopts a different structure in its stoi- 
chiometric form which complicates atomis- 
tic simulation. Therefore the results from 
this study will provide general information 
on the behavior of crystals with the ReO, 
structure rather than relating specifically to 
WOS-Z or MOO,+ 

We studied all three of the problems out- 
lined above. The relationship between point 

L Certain of the MOO,-, shear plane systems may be 
included in this category, since although the stoi- 
chiometric oxide does not have an Re03-based struc- 
ture, these reduced oxides do contain shear planes in 
an ReO,-structured host. 

and extended defects and the factors which 
control shear plane orientation are consid- 
ered in this paper; the interactions between 
shear planes are treated in Part II. We give 
an account of the basic formalism neces- 
sary to treat shear plane stabilities and in- 
teractions. The techniques of our calcula- 
tions are described below. We then present 
our results on the energetics of different 
shear plane orientations and the relative en- 
ergies of point and extended defects. How- 
ever, it is first necessary to clarify the struc- 
tural aspects of shear plane formation since 
these defects cannot always be described in 
terms of the removal of a single plane of 
oxygen atoms followed by shear, as has 
been commonly assumed. 

2. Shear Plane Structure and Oxygen 
Elimination 

The rationalization of the complex struc- 
tural geometry of crystallographic shear 
planes in the Re03 structure has been at- 
tempted previously in two different ways. 
The more usual view is that these extended 
defects are formed by the virtual elimina- 
tion of a plane of anions aligned along the 
defect. This is done by shearing the struc- 
ture (see Fig. 1). It can be seen that a neces- 
sary feature of this operation is the continu- 
ity of the anion sublattice in the defect 
crystal. 

This idea derives from the observation 
that the rutile structure could be described 
in terms of two types of crystallographic (or 
lattice) planes parallel to the shear plane, 
one of which contained only anions, while 
the other contained all the cations in addi- 
tion to some anions. Examination of the 
structure of shear planes in ReO&ruc- 
tured oxides produced an apparently simi- 
lar observation: namely, that the crystallo- 
graphic planes such as (102) and (103) are of 
two kinds, type A containing only anions, 
and type B containing both cations and an- 
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FIG. 1. Structures of the (a) (102), (b) (103), (c) (104), and (d) (001) shear planes in ReO,-structured 
oxides. The diagrams show the octahedra of the oxygen sublattice with cations in the centers. The 
marked octahedra contain reduced cations. These positions were chosen since they give the lowest 
energies for the relaxed configurations. 

ions. These types alternate throughout the 
structure to give the regular stacking se- 
quence ABABABABAB. . . . For (102) 
and (103) shear planes it appears as though 
one plane of anions is removed to give the 
stacking sequence ABABBABAB. . . . In 
the (103) shear plane the resulting two adja- 
cent B sheets are collapsed to form a single 
sheet but with twice the density of cations 
(see the review by Anderson (6)). 

During the course of this study it became 

clear that this approach was not acceptable 
for (104) and higher-index shear planes. 
The simple recipe of removing a plane of 
anion sites and sheaving the crystal does 
not result in a (104) shear plane since only 
one anion lattice site per unit cell has been 
eliminated. Consequently, we examined 
more closely the structural changes occur- 
ring during the introduction of a shear plane 
into the crystal. 

It has already been established that in or- 
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der to maintain continuity of the anion sub- This behavior is best understood in terms 
lattice the displacement, or shear vector, of the value of the scalar product r . n, 
which we will denote by r (= t [lot]), must where n is the vector normal to the shear 
connect two anion sites. It is a common plane. For shear planes with odd 1 indices, 
misconception that this displacement is an r .n will be integral. This implies that a 
identity operation. Only for shear planes plane of type B is displaced onto another 
with odd-numbered 1 indices, (103), (105), similar plane in going from the perfect to 
etc., does the vector r relate anions in a the defect structure. For instance, r * n = 
plane containing only anions to identical - 1 for (103) and so the type B plane is 
sites in another plane. For shear planes mapped onto the nearest type B plane on 
with even1 indices, (102), (104) . . . , these introduction of a shear plane. For (105) r * n 
anions are related to anion sites in the = -2 and so a plane is mapped onto the 
planes containing cations. This causes all second nearest plane of the same kind, and 
the planes of type B in the structure above so on. This results in the same stacking se- 
the shear plane to become type A planes quence of planes in the sheared structure as 
after the introduction of the defect plane, in the perfect structure, except that there 
and vice versa. are now type B planes with twice the den- 
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(b) 

FIG. 2. (a) Unsheared ReO, structure showing the stacking sequence of (103) crystallographic 
planes. (b) Stacking sequence of (103) crystallographic planes in the sheared structure. Planes labeled 
A contain anions only, and those labeled B contain anions and cations. The sequence in the sheared 
structure is the same as in the unsheared structure except that the arrowed B plane has twice the 
normal density of cations. 
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sity of cations, the number of which is given 
by the absolute value of r . n. 

For shear planes with even 1 indices, 
(102), (104), etc., r * n will be of the form k 
+ 4. This implies that a type B plane will be 
mapped to a type A plane: the presence of 
the “+” term indicates a change in plane 
type after the shear operation. The value of 
r . n again indicates the relative displace- 
ment of the planes. 

Because the type of the planes is 
switched, there will be a discontinuity in 
the stacking sequence in structures with 
even I-indexed shear planes. However, the 
number of consecutive type B (cation and 
anion) planes in the sequence is not always 
two. For (104) CS planes, this number is 4, 

for (106) it is 6, and in general for a (1021) 
CS plane there will be 21 consecutive type 
B planes. The relationship between the 
stacking sequence of planes and the overall 
shear plane structure is illustrated for the 
(103) and (104) cases in Figs. 2 and 3. Thus 
the deduction that shear planes are formed 
by annihilating a plane of anions is founded 
on the fortuitous examples of the (102) and 
(IO.?) structures. Rather, these extended 
defects involve a number of lattice or crys- 
tallographic planes which increase as the 
orientation of the defect changes from (102) 
through (103), (104), (105) . . . to (001). 

The second main approach to shear plane 
geometry, formulated by Bursill and Hyde, 
resolves a lattice plane in the ReO, struc- 

a 
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FIG. 3. (a) Unsheared structure showing regular stacking sequence of (104) crystallographic planes. 
(b) Stacking sequence across (104) crystallographic shear plane. The planes are labeled as in Fig. 2. 
The lattice planes drawn in (b) are the same as in (a) but the sequence contains four consecutive type B 
planes after which type A planes in the original sequence become type B planes and vice versa. 
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ture into two components, 

(h0l) = p(OO1) + q(101) 

= (4, 0, P + 41, 

where the (001) displacement produces 
changes in the stoichiometry and the (101) 
component is a conservative antiphase 
boundary. In the simplest case of q = 1, 
(102) shear planes are produced by p = 1, 
(103) planes by p = 2, etc. The number of 
edge-sharing pairs of octahedra in the struc- 
ture is (p + q) and the formulae of the vari- 
ous homologous series derived from regular 
arrays of shear planes is MnOsn+. 

This approach reinforces the conclusion 
of our argument since it is clear that it does 
not allow the formation of crystallographic 
shear planes to be considered simply in 
terms of the removal of a plane of anion 
lattice sites followed by collapse to restore 
the topology of the anion sublattice. In- 
deed, the displacement responsible for 
the nonstoichiometry of reduced ReOs- 
structured oxides is always in the (001) di- 
rection when the commonly observed shear 
planes, (102), (103) . . . (100, are involved. 

In summary, a description of shear plane 
formation in terms of the elimination of 
planes of oxygen ions is an oversimplified 
approach which, although correct for cer- 
tain specific cases, has no general validity. 
The point is crucial in theoretical studies 
since generation of the structures of the 
high-index shear planes cannot be achieved 
in this simple way. 

3. The Energetics of Point Defect and 
Shear Plane Formation 

Since our aim is to compare point defect 
and shear plane energies, and the energies 
of ditferent shear plane orientations, it is 
necessary to express the appropriate en- 
ergy terms (free energy or internal energy) 
in a manner which permits direct compari- 
son between these different modes of reduc- 

tion. The significant quantity to be used in 
such comparisons is the energy per elimi- 
nated oxygen atom. This is because, for a 
given degree of reduction, the same number 
of oxygen atoms must have been lost from 
the oxide regardless of the way in which the 
oxygen loss is accommodated. Thus, in 
thermodynamic equilibrium, the system 
will adopt the structure which minimizes 
the free energy per eliminated oxygen 
atom. We have neglected entropy contribu- 
tions to the free energy in our calculations; 
this term is unlikely to be significant in the 
comparison of different shear plane orienta- 
tions. We should emphasize that the energy 
per unit area (10, II), although of impor- 
tance when strain energy terms are con- 
cerned, is nevertheless not the quantity 
which should be used for comparisons. En- 
ergy per unit area is the important quantity 
when discussing the properties of conserva- 
tive defects (e.g., dislocations and stacking 
faults); but for nonconservative defects the 
energy per degree of reduction or oxidation 
is the essential term. 

We assume that reduction of the oxide to 
produce point defects would occur through 
the formation of anion vacancies* rather 
than cation interstitials. This assumption is 
supported by point defect calculations dis- 
cussed later. Thus reduction results in the 
creation of anion vacancies plus electrons. 
The simplest description of the latter as- 
sumes localization on the metal cations. For 
the purposes of our calculations we de- 
scribed the localized species as M5+ ions. 
The calculations described below are based 
on this description and we assume that the 
reduction can be represented by the reac- 
tion 

Perfect Lattice + 
0 VAC + 2M5+ + bodf$ (3.1) 

(all symbols are defined in Table I), giving, 

* We have not considered more complex species in 
which vacancies have trapped electrons. 



TABLE I between the energy of the rigid shear plane 
SYMBOLS USED IN EQUATIONS (3.1)-(3.3) AND (4.2) and that of the fully equilibrated structure. 

All shear plane energies refer to the energy 
0 vAc-Oxygen vacancy. 
M5+- Metal cation in oxidation state V. 

per eliminated oxygen atom and include the 

PO,- Change in internal energy (per eliminated ox- 
energy of the reduced cations. The arrange- 

ygen ion) on reduction with vacancy forma- ment of these reduced ions in the defect 
tion . plane is discussed later. 

E,- Change in internal energy (per eliminated ox- The simulations reported below will al- 
ygen ion) on reduction with shear plane for- 
mation. 

low us to calculate directly AE, and EREL. 

E,- Oxygen vacancy formation energy (i.e., en- 
The important term AE,,, representing the 

ergy to remove an Oz- ion from the difference between the energies of point de- 
lattice to infinity). fect and shear plane modes of reduction, 

E - e Energy to reduce an M6+ ion to the hP+ which is given by AE,, = AE, + EREL, may 
state. 

ED- The dissociation energy of oxygen. 
thus also be obtained. Estimates of EE; and 

AE,- Difference between energy of reduction via 
Es, need values of the electron affinities of 

formation of point defects or unrelaxed oxygen and the metal cations and the disso- 
shear planes. ciation energy of oxygen in addition to lat- 

EREL-- Relaxation energy of shear plane. tice energy terms calculated by the simula- 
A&,-Difference in energy of reduction via forma- tions; these will be discussed in Part II of 

tion of point defects and that via formation 
of shear planes. 

our study. 

x,- Concentration of vacancy point defects. Equation (3.3) is, we believe, a more use- 
ful way of expressing shear plane energies 
for atomistic treatment than are the alterna- 

for the energy Ev, of reduction per elimi- tive and more complex expressions used by 
nated oxygen atom, Iguchi and Tilley (10, II), which are based 

on continuum descriptions. In particular, 
Ev, = E, + 2E, - )ED (3.2) the use of Eq. (3.3) focuses attention on the 

(symbols are given in Table I). Of course 
very important role that lattice relaxations 

interaction between the electrons and the 
play in determining the relative energies of 

vacancies will occur at higher deviations 
shear planes. 

from stoichiometry . Such terms are omitted 
from Eq. (3.2), which refers therefore to 
the system at low deviations horn stoichi- 

4. Techniques 

ometry . 4.1. Simulation Methods 
For shear plane formation we use the fol- 

lowing expression for the energy of reduc- 
Results using two types of atomistic sim- 

tion, Es,, 
ulation technique are presented in this pa- 
per. The first method simulates defects that 

E. = Ev, + AE, + EREL, (3.3) are periodic in two dimensions and is used 
in obtaining shear plane energies. The sec- 

where AE, is the difference between the en- ond performs calculations on point defects; 
ergies of the vacancy plus reduced cations the vacancy energies and energies of the 
and that of the rigid shear plane; the latter reduced cation were obtained using this 
are the structures produced by application method. They have the following features 
of the shear vectors to eliminate the vacan- in common. First, they use the Born model 
cies without allowing ion relaxations. EREL for the solid to calculate the formation ener- 
is the relaxation energy, i.e., the difference gies of the defects. Second, they estimate 
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the relaxation of the lattice surrounding the 
defect by a procedure which divides the 
crystal into two regions. In the inner region 
adjacent to the defect the coordinates of the 
ions are explicitly relaxed to equilibrium. In 
the point defect calculations, the outer re- 
gion is treated by the methods of Mott and 
Littleton (17), while rigid crystal blocks are 
used for the planar defects. However, in 
the latter case, this outer boundary is al- 
lowed to move to permit volume changes 
and shearing of the crystal. Detailed de- 
scriptions of both point (13, 14) and ex- 
tended (18) defect simulation techniques 
are available elsewhere. These studies have 
established the quantitative reliability of 
the methods (14). Limitations on the accu- 
racy of the calculations arise entirely from 
interatomic potentials used in the simula- 
tions. 

4.2. Potentials 

We developed a pair potential model for 
Re03. The long-range Coulomb interactions 
are modeled by treating both metal and ox- 
ygen ions as unpolarizable entities of inte- 
gral ionic charge, i.e., Re6+ and 02- ions. 
Short-range potentials are described by a 
simple analytical function of the Born- 
Mayer or Buckingham form. The parame- 
ters for the 0 . . . 0 potential were based 
on previous studies on transition metal ox- 
ides (19), but it was found necessary to 
vary the coefficient of the attractive part of 
the potential. Parameters for the metal . . . 
oxygen interaction were adjusted to give 
the best possible values for measured elas- 
tic, dielectric, and structural properties of 
the crystal. It is particularly important in 
this work that our potentials, when applied 
to the observed crystal structure, should 
give negligible residual strain, because the 
shear plane calculations reported subse- 
quently are performed at constant pressure, 
i.e., the crystal is allowed to dilate. Thus 
the potentials that were obtained were fitted 
to give very small values for these strain 

TABLE II 

PARAMETERSFORMODEL ReO, POTENTIAL 

Short-range potentials represented by function of 
form = Ae-“P - Cr6 

Interaction A P c 

Re.. .O 741.39 0.4383 0.0 
0.. .o 22,764.3 0.1490 17.89 
Re . Re short-range interactions ignored 

Perfect lattice Properties 
(i) Lattice parameter: 3.734 A (fitted) 

(ii) Elastic constants (dyne cm-’ x 10”) (calcu- 
lated) 
Cl1 : 54.15 
c,, : c,, : 8.096 

(iii) Static dielectric constant : 11.34 (calculated) 

terms; the parameters derived, together 
with the calculated perfect lattice proper- 
ties, are reported in Table II. 

The potentials used are of the “rigid ion” 
type which neglects effects arising from 
electronic polarization of the ions, although 
displacement polarizability is automatically 
included in our treatment, via relaxation ef- 
fects. Our earlier work (15, f6) found that 
displacement polarization was the major 
factor in stabilizing shear planes. The omis- 
sion of the electronic term may affect the 
detailed features of the results; but it is an 
acceptable approximation when studying a 
“model” ReO, system as in this paper. We 
should note that addition of polarization 
greatly increases the computational de- 
mands of the calculations. We also used the 
full ionic charges which is, of course, a con- 
siderable oversimplification. Partial charges 
of -3 + have been found (for e.g., MOO,) in 
recent photoelectron studies (20). We be- 
lieve, however, that the model is adequate 
for our purposes as it calculates reasonable 
values for the cohesive, dielectric, and elas- 
tic properties of the crystal. Several studies 
have shown that an accurate representation 
of these properties is the most important 
requirement of potentials used in defect 
simulations. 
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5. Results and Discussions 

5.1. Shear Plane Energies 

We report in Table III the calculated en- 
ergies for (OOl), (102), (103), and (104) shear 
planes in Reds. Values are given for both 
unrelaxed and relaxed structures, from 
which we obtain the relaxation energies, 
E aEL. The unrelaxed structures were gener- 
ated by shearing the structure and remov- 
ing the redundant oxygen ions as described 
in Section 2. The reduced cations were 
placed at sites neighboring the shear plane. 
In each case a number of distributions of 
these ions were investigated and the results 
given in Table III correspond to the distri- 
butions with the lowest relaxed energies. 
These distributions of reduced cations are 
shown on Fig. 1. We should note that these 
configurations are not always the most fa- 
vored for the unrelaxed structures. The re- 

TABLE III 

ENERGW OF SHEAR PLANES IN ReOs PER 
ELIMINATED OXYGEN ION” 

Shear plane 
orientation 

Unrelaxed Energy after 
energy relaxation 
(eV) (eV) 

{W 181.77 128.59 53.18 
11031 166.76 129.39 37.37 
I1041 161.59 129.50 32.09 
I@Jll 152.35 129.46 22.89 

B These energies include only the lattice energy con- 
tribution to the total shear plane energy. 

laxed structure for the (102) plane is illus- 
trated in Fig. 4. 

The most striking feature of the results 
concerns the magnitudes of the relaxation 
energies. These are clearly a major term in 
the total shear plane energy and no theory 
which omits lattice relaxations can achieve 

FIG. 4. This shows the distortion in the anion sublattice around a (102) shear plane from the results of 
the computer simulation. 
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results of quantitative significance. The 
results also underline a point we have made 
in previous publications (15, 16), namely, 
that lattice relaxation is a vital factor in sta- 
bilizing extended defects. 

On examining the calculated unrelaxed 
lattice energies we find large differences of 
-10-20 eV between the three types of 
shear plane. The predicted order of stabili- 
ties for the unrelaxed plane gives the (001) 
defects as most stable and the (102) as least 
stable. This result contrasts with the earlier 
calculations, using a semiempirical ap- 
proach, reported by Tilley (9). However, 
Tilley’s analysis, which was based on con- 
siderations of the energy per unit length of 
the shear plane, gives the same energy per 
eliminated oxygen for all shear plane orien- 
tations and therefore does not allow one to 
draw any conclusions concerning the pre- 
ferred initial formation of (102) shear 
planes. This underlines the importance of 
using quantities which permit comparison 
between the different orientations; the en- 
ergy per eliminated oxygen is, as stressed 
earlier, appropriate in this case. 

In contrast to these marked differences 
between the energies of the unrelaxed 
planes, those of the relaxed shear planes 
are very similar. Moreover, after relaxa- 
tion, the (102) shear plane is found to be the 
most stable. The greater stability of the 
(102) plane is thus entirely due to the occur- 
rence of more extensive lattice relaxation 
around these defects. Relaxation is more 
restricted around the (001) defect, as ion 
displacements are constrained to be per- 
pendicular to this plane by symmetry; the 
lower-symmetry (102) plane permits lateral 
as well as perpendicular ion relaxations. In- 
deed the (102) plane appears to give the 
maximum degree of relaxation; those ob- 
tained for the (103) and (104) defects are 
considerably less. These qualitative differ- 
ences between the relaxations around the 
different shear planes have important con- 
sequences for the interactions between the 

defects; these effects will be explained in 
Part II of this study. A remarkable feature 
of the calculations is that despite large dif- 
ferences between the unrelaxed defect en- 
ergies, the energies of the final relaxed con- 
figurations are very close. The similarity in 
the final defect energies is due to the ability 
of these materials to screen the interactions 
between defects through structural relaxa- 
tion. This is, of course, the factor which is 
responsible for the stability of shear planes 
with respect to point defects and is associ- 
ated with the relatively high dielectric con- 
stants. Specifically, the regions between 
groups of edge-sharing octahedra in the un- 
relaxed structures (Fig. 1) are associated 
with particularly high strain. Therefore the 
strain energy per oxygen eliminated de- 
creases with increasing numbers of edge- 
sharing octahedra and hence orientation in- 
dex. But the lower strain involved in these 
structures leads to lower relaxation energies. 
Indeed, the high static dielectric constant 
causes nearly exact compensation for the 
differences in unrelaxed strain. The (102) 
shear plane emerges with the lowest energy 
since the relaxation is the least constrained. 
The unrelaxed energies indicate the opposite 
order of shear plane stability. 

The prediction of the (102) plane as the 
lowest energy structure accords with the 
observation of these defects in near stoi- 
chiometric WO,-, (2). Moreover, the dif- 
ferences between the energies of the differ- 
ent shear planes are of the same order as 
the interaction energies between these de- 
fects, calculated in Part II. Interactions be- 
tween shear planes could therefore alter the 
orientations of the defects, leading to the 
observed change in shear plane structure 
with composition. A detailed discussion of 
this topic will be presented in Part II of this 
study. 

5.2. Point Defect-Shear Plane Equilibria 

We have shown elsewhere (22) by a sim- 
ple statistical mechanical argument that for 
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systems containing shear planes, there 
must exist an equilibrium concentration of 
point defects. If vacancies are assumed to 
be the predominant point defect, then since 
a shear plane may be considered as a col- 
lapsed vacancy aggregate, the equilibrium 
may be represented by the following type of 
reaction, 

shear plane + OVAC + 2e-, (4.1) 
where O,,, represents the oxygen vacancy 
and e- the electrons created on reduction. 
If X, is the vacancy concentration, the reac- 
tion represented in Eq. (4.1) will give rise to 
the mass-action expression 

K = 4x$, 
provided the variation of shear plane activ- 
ity with concentration can be ignored. If we 
approximate the free energy change associ- 
ated with reaction (4.1) by the internal en- 
ergy term, AE,,, as defined in Section 2, we 
may then write 

4x3, = exp(AE,,/kT).’ (4.2) 
A Es, for dissociation of the various shear 

planes depends on the energies of the iso- 
lated vacancies and reduced cations. Calcu- 
lations were performed using the point de- 
fect simulation methods discussed in 
Section 4, and the results are reported in 
Table IV. The values of & for the three 
shear planes are also given in Table IV. In 
all cases, Es, is negative in accordance with 
the observation of extended defects in these 
systems. Also reported are the calculated 
values of AE,,, i.e., the difference between 
point and extended defect energies, when 
relaxation is omitted from the latter. The 
large positive values once again emphasize 
the importance of lattice relaxation in stabi- 
lizing the extended defects. 

The values of x, for a temperature of 
lOOOK are reported in Table IV. In all cases 
we predict appreciable concentrations of 
vacancies in equilibrium with the shear 
planes at these temperatures. Shear plane 
dissociation into vacancies will be complete 

TABLE IV 

Point defect formation energies 
Anion vacant y 17.54 eV 
Rej+ cations 56.59 eV 

Energy, A E,, of vacancy relative to point defects 
Shear plane A&v 
orientation (eV) (:: X”” 

I1021 -2.13 51.05 0.2 x 10-z 
I1031 - 1.33 36.05 3.7 x 10-Z 
(1041 -1.22 31.17 5.6 x 1O-3 
{loll - 1.26 21.63 4.8 x 10-Z 

a This calculation refers to lOOOK. 

for compositions with a deviation from stoi- 
chiometry, less than x,. Our results predict, 
therefore, that there will be a significant 
range of compositions in the near stoi- 
chiometric region for which point defects 
dominate. Tilley (23) has shown that for 
w&94 in the temperature range lOOO- 
HOOK, shear planes are still present. This 
composition is close to the boundary be- 
tween the formation of shear planes and 
point defect disorder predicted by our cal- 
culations. It would be interesting to deter- 
mine whether extended defect dissociation, 
as suggested by our results, was indeed ob- 
served in the nearer stoichiometric region. 

An additional possibility is the dissocia- 
tion of extended defect in the grossly non- 
stoichiometric region of the phase. Repul- 
sive defect interactions at these com- 
positions will raise the shear plane energy 
and hence lower the value of AE,,. We will 
return to this point in the light of our calcu- 
lations of the shear plane interaction func- 
tions presented in Part II. 

Finally, we return to the question of the 
validity of our model for the point defect 
structure of reduced ReO,. Calculations on 
the cation interstitial found that reduction 
with the formation of this defect was ener- 
getically less favored than reduction with 
vacancy formation, although the experi- 
mental evidence on this point is unclear. We 
also considered the question of the charge 
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state of the reduced cation. Our results con- 
firmed that on reduction Re(V) is preferred 
over Re(IV).3 The energetic preference for 
Re(V) of - 1.7 eV is, however, small and 
could be influenced by defect interactions. 

Summary and Conclusions 

The calculations discussed in this paper 
lead to two main conclusions. The first is 
that the energetic preference for (102) shear 
planes in reduced oxides with the ReO, 
structure is a consequence of the more ex- 
tensive relaxations which occur around 
these defects than around the (OOl), (103), 
and (104) orientations. However, the fine 
balance between the energies of the differ- 
ent relaxed shear planes suggests that shear 
plane orientation may be modified by rela- 
tively small terms, e.g., those arising from 
the defect interactions. The second conclu- 
sion is the existence of an equilibrium be- 
tween point and extended defects. A signifi- 
cant point defect population will affect both 
the transport and thermodynamic proper- 
ties of these oxides. 

Finally, our calculations demonstrate the 
necessity of atomistic calculations in these 
systems if qualitative reliability is to be 
achieved. The success of this study encour- 
ages the application of the techniques to the 
complex problems posed by defect interac- 
tion-the main topic of Part II. 
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