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A method of systematic linearization of the crystal-field matrices appropriate for obtaining empirical 
parameters of transition metal complexes of any symmetry is presented and applied to forty complexes 
of Ni*+ of 0, and D, symmetries. The method is a generalization of that proposed by L. Pueyo, M. 
Bermejo, and J. W. Richardson (J. Solid Stare Chem. 31, 217 (1980)) for complexes of 0, symmetry 
and incorporates the spin-orbit coupling in a very simple manner. Using this method, classical param- 
eters, such as lODq, and punctual quantities, such as the ligand perturbing charges q, , were obtained 
for these complexes. The former are transferable within 10% if (a) there are not big changes in the 
metal-ligand distances and (b) the chemical environments of the ligand atoms are comparable. How- 
ever, the punctual parameters show variations of 20% or more. Electronic repulsion integrals seem to 
be nicely transferable by means of addition rules based on the hypothesis of isotropic repulsion in the 
low-symmetry field. Since one of the fitting parameters is a scaling factor of the R,(r) metal function, 
the process of optimization generates an empirical representation, R,(k), of the locally perturbed 
metallic state. 

I. Introduction priate for dealing with complexes of any 
symmetry and which is able to incorporate 

In a recent work Pueyo et al. (I) reported the spin-orbit coupling in a simple way. 
a systematic procedure for obtaining crys- We applied the method to a collection of 
tal-field parameters from the optical spectra Ni*+ complexes of Oh and Ddh symmetries 
of transition metal complexes. The method with different types of ligand species. In this 
is based on a linearization of the electro- way, sets of parameters obtained from com- 
static matrices which makes it possible to plexes of different symmetries by means 
write down the spectral frequencies as lin- of a systematic and objective method can be 
ear functions of 1ODq and the Racah elec- compared and analyzed. 
tronic repulsion parameters. The optimal An important feature of the present 
linear equations are simpler than those pro- method is the use, as an empirical parame- 
posed earlier by Boxall et al. (2) and like ter, of a scaling factor in the metallic radial 
those they are restricted to complexes of wavefunction, as proposed by Jprgensen 
octahedral symmetry. In these two papers some years ago (3). This scaling allows for 
the spin-orbit interaction is neglected. a substantial reduction in the number of in- 

In this report we present an extension of dependent parameters without loss of qual- 
the method described in (I) which is appro- ity in the description of the spectra. 
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We chose the Ni*+ ion because we are 
currently interested in the optical spectra 
and magnetochemistry of species such as 
the dimer nickel dithiobenzoate (4, 5). In 
dealing with this type of complex an exami- 
nation of their electronic energy levels in 
terms of a simple crystal-field treatment 
could be useful, but in order to do that one 
needs a good set of appropriate empirical 
parameters. Then, the question of the trans- 
ferability of these parameters arises. This 
matter has been discussed several times in 
the literature and generally it is believed 
that the classical parameters, like lODq, are 
transferable among complexes of a given 
cation in different symmetries (6). This 
transferability has been observed, for in- 
stance, in C?+ and Co3+ complexes by 
Wentworth and Piper (6), in chlorocuprates 
by Hatfield and Piper (7) and by Day (a), 
and in Ni(py)J, compounds by Schreiner 
and Hamm (9). 

We also explored the transferability of 
the punctual parameters, such as the per- 
turbing electric charges or dipole moments 
associated with the ligands. These parame- 
ters appear naturally in our method as func- 
tions of the classical ones and the scaled 
splitting integrals B k. 

From this work we conclude that the 
classical parameters obtained by lineariza- 
tion of the electrostatic matrices of NiZ+ 
complexes are transferable within lo%, in 
the worst case. However, the punctual pa- 
rameters show a more scattered behavior 
which makes their transferability uncertain. 
This last result is less satisfactory than that 
obtained by Glerup et al. (10) in their analy- 
sis of the Ni(py)&, complexes within the 
Angular Overlap model. 

Our results seem to be consistent with 
a sharp variation of 1ODq with the 
bondlength, R, (7). Such variation de- 
stroys any possibility of transference when 
there are large changes in geometry. On the 
other hand, ditferences in the chemical en- 
vironment of the donor atom give rise to 

differences of even 35% in the classical pa- 
rameters. These changes should be taken 
into account in any attempt of transferabil- 
ity of parameters. 

In the next section we detail the charac- 
teristics of our method. Section III contains 
the results and the discussion. 

II. Methodology 

In this paper we will deal with the usual 
crystal-field matrices whose elements can 
be written down as (II) 

II(ij) = z a(iJ,k) F(k) 
k 

k 1 

where the linear coefficients a(i,j,k) and 
b(ij,k,l) are known numbers, F(k) the Sla- 
ter-Condon interelectronic repulsion inte- 
grals (12), p(f) the dipole moment associ- 
ated with the Ith ligand species, and B(k,f) 
the radial splitting integral of order k de- 
fined as (23) 

B(k,l) = dC(k,l)/dR,, . (2) 

In Eq. (2), R,, is the internuclear dis- 
tance between the metal ion and the Ith li- 
gand and 

WV) = (R&9 j -$- 1 R,,(r)), (3) 

where Y, is the lesser and r, the greater of r 
and R,,. R.(r) is the radial metallic wave- 
function of the nl state. 

The Racah parameters A = F(0) - 49F(4), 
B = F(2) -5F(4), and C = 35F(4) (14) are 
commonly used instead of the Slater-Con- 
don integrals. The splitting interactions are 
generally collected in the form of the well- 
known quantities Dq, Ds, Dt appropriate 
for dealing with fields of octahedral, tetrag- 
onal, trigonal, and cylindrical symmetries 
(Z5). 

As is well known, in complexes of octa- 
hedral symmetry only one splitting parame- 
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ter appears, the familiar A = 1ODq. In fields 
created by arbitrary arrangements of arbi- 
trary types of ligand species the general ex- 
pression (1) will contain different values of 
~(1) and different orders, k, and distances, 
RML, in B(k,l). 

In our previous work (I), we used the 
classical parameter 1ODq without delving 
into the details of its structure. In this work 
we considered this structure for two rea- 
sons. First, we are interested in the possi- 
bility of obtaining reliable empirical punc- 
tual parameters associated with a given 
ligand. Second, we can argue that we can 
understand the fitting of the crystal-field 
matrices to the observed spectrum as a 
method of obtaining an empirical nl metal 
wavefunction. This function will determine 
all the electronic repulsion integrals as well 
as the B(k,l) splitting integrals once the ge- 
ometry of the complex is specified. In doing 
that all the B(k,l) become interrelated and 
the number of splitting parameters is no- 
ticeably reduced. 

The empirical nl wavefunction discussed 
in this paper will have the form 

‘J’eh-A&A) = ~,(~~)Y,,n(8,4), (4) 

where Ytm(&+) are the spherical harmonics, 
R,(r) is any reference normalized radial 
wavefunction, and A is the scaler that will 
be considered as a fitting parameter. Once a 
numerical value is given to A all the F(k) 
integrals are determined by the relationship 

F(k,A) = hF(k,l), (5) 

F(k,l) being the F(k) integral computed 
with the reference function R,(r). The split- 
ting integrals will need, also, the geometry 
of the complex, the reference function, and 
a value of A in order to be fully determined. 
We will write, then, B(k,l,A) for B(k,l). 

Now, the number of independent param- 
eters wiIl be equal to the number of differ- 
ent ligand species plus one, A. The descrip- 
tion of the spectrum of a complex like the 
rrans-Ni(py),Cl, , formed by a pseudooc- 

tahedron of four equatorial nitrogen atoms 
and two chloride ions in the C, axis, will 
need three parameters, say, A,, , AZ, A, in- 
stead of the usual set formed by Dq, Ds, Dt, 
B, and C. 

In our scheme the spin-orbit coupling 
can be incorporated without further in- 
crease in the number of parameters, since 
the spin-orbit coupling constant has the 
property 

L,(A) = A3 Ml). (6) 

The general form of the perturbing matrix 
element can then be written as 

H&j) = a( + b(i,j)A3 

In this expression the first term collects 
all the electronic repulsion normally written 
as aB + PC, the second represents the 
spin-orbit contribution, and the double sum 
the splitting terms. The coefficients a, b, 
and c are all predetermined by the angular 
integrations and the reference values, (A = 
l), of the correspondent radial integrals. 

We now want to linearize the eigenvalues 
of the hamiltonian matrix H in a systematic 
manner. In order to do that, we define a 
splitting parameter A(Z) for each different 
ligand species, 

A(1) = -5~(1) B(k”,l,A)/3, (8) 

where k” is any convenient value of k. We 
chose k” = 4 in order to have A(I) = 1ODq 
in the octahedral case. Then, we assume 
that the eigenvalues of H can be expressed 
as linear functions of A and all the A(l), plus 
a cubic term in A. If this linearization is 
possible, any transition energy, AE(i), will 
adopt the form 

Al?(i) = a(i) A + p(i) A3 

+ z y&l) NO. (9) 
2 

The problem now is to obtain the best 
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values of o(i), p(i), r(Q), A, and A([) for a 
given spectrum. 

The working procedure for solving this 
problem follows the lines described in (I). 
First, we adopt a geometry for the complex 
and a reference function R,(r). Some trial 
values for A and A(I) are taken, and accord- 
ing to Eq. (8) the dipole moments ~(1) = 
-3A(l)/M(4,I,A) are calculated. Then, all 
the splitting terms are generated by the 
equations 

p(1)B(k,l,A) = -3A(1)B(k,1,A)/5~(4,1,A), 
k f 4. (10) 

The perturbing matrix can now be com- 
pletely calculated and diagonalized giving 
rise to a set of computed transition ener- 
gies. 

Next, we compute the coefficients a(i), 
p(i), y(i,l) by generating new sets of transi- 
tion energies with the correspondent pa- 
rameters incremented in a small amount. 
For instance, we compute the matrix 
H(. . . A(I) . . .), its eigenvalues 
E(i, . . . A(1). . .), and the transition en- 
ergies AE(i, . . . A(I) . . .). Then, we in- 
crement A(I) to A(l) + 6A(1) and compute 
the matrix H(. . . A(f) + SA(1) . . ), its 
eigenvalues E(i, . . . A( 1) + SA( 1) . . .), 
and the transition energies A&i, . . . A(I) 
+ SA(l) . . .), having 

y(i,Z) = {AE(i, . . . A(l) + SA(1) . . .) 
- AE(i, . . . A(I) . . .)}/6A(1). (11) 

Once we have the coefficients we per- 
form a least-squares fitting to the experi- 
mentally observed frequencies, using Eq. 
(9). With the new values of A and A(1) a 
second cycle of calculations can be exe- 
cuted. An iterative sequence of calculations 
follows. The cycles stop when the parame- 
ters and the coefficients are reproduced 
within a given stability threshold (low5 in 
this work). We obtain, in that way, an opti- 
mum set of classical parameters, A(l), a cor- 
respondent set of punctual parameters, 
from Eq. (Q and an optimum scaler that 

gives rise to an optimum empirical R,(r) 
wavefunction. 

III. Results and Discussion 
Our main interest in this calculation has 

been the comparison of the splitting and re- 
pulsion parameters of Ni2+ complexes of Oh 
and Ddh symmetries. We analyzed 29 NiL, 
clusters, 20 with L = oxygen, 8 with L = 
nitrogen, and 1 with L = sulfur. The spec- 
trum of the NiSs compound was taken from 
Tarantelli et al. (Z6), the spectra of all the 
other NiL, complexes from Reedijk et ul. 
(17). 

We used R(Ni-0) = 2.05 8, in the 20 
NiO, complexes, R(Ni-N) = 2.11 8, in the 
8 NiNG complexes, and R(Ni-S) = 2.45 A in 
NiS, (18). As examples of clusters of Ddh 
symmetry we took seven Ni(stien)%+ com- 
plexes (stien = 1,2-diphenylethylenedi- 
amine) whose spectra have been reported 
by Zink and Drag0 (19) and two Ni&& 
complexes studied by Tarantelli et al. (16). 
The Ni(stien)i+ compounds were analyzed 
in this work with R(Ni-N) = 2.084 A and 
R(Ni-0) = 2.102 A and the NiS&, with 
R(Ni-S) = 2.48 8, and R(Ni-X) = 2.45 8, 
(IO 

These spectra do not show fine structure 
and accordingly we have not included the 
spin-orbit coupling in the analysis. As ref- 
erence wavefunction for the Ni2+ 3d states 
we used the double-t function of Richard- 
son et al. (22). 

A sample of the calculation performed in 
the complexes of octahedral symmetry is 
presented in Table I. Table II contains our 
results in the Ddh group. First, we note that 
these calculations reproduce the observed 
spectra within 200-400 cm-l in the Oh 
group and within 300-700 cm-l in the Ddh 
group. Results of the NiS,X, complexes are 
worse. In all these cases the method shows 
a good convergence in 10 - 15 iterations. We 
recall that we describe the four octahedral 
transitions 3A, + 3Tzn, ‘E,, a3T,, , b3T,, 
with only two parameters, A and A, and the 
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TABLE I 

SELECTEDRESULTSOFTHE FITTING CALCULATIONSIN OCTAHEDRAL COMPLEXES 

Compounda 
RffL 
(h 

A 
(au.) 

rms 
(W 

I. Ni(AcOH),(ClO,), 2.05 7.90 4.03 0.729 0.31 
2. Ni(EtOH),(ClO,), 2.05 8.00 4.13 0.733 0.34 
3. Ni(MeOH),(ClO,), 2.05 8.09 4.28 0.740 0.38 
4. NOWMCQh 2.05 8.21 4.51 0.749 0.36 
5. Ni(CH,CN),(ClO,), 2.11 10.40 5.17 0.686 0.28 
6. NlWHddClO,), 2.11 10.78 5.01 0.667 0.13 
7. Ni(en),(ClO,), 2.11 10.54 4.64 0.624 0.20 
8. Ni(stien),(ClO,), 2.11 11.42 4.89 0.643 0.20 
9. Ni(dbtu),I, 2.50 8.74 3.42 0.400 0.38 

D The spectra of compounds l-7 were taken from Ref. (17); the spectrum of compound 8 from Ref. (20) 
(stien = 1,2-diphenylethylenediamine); and the spectrum of compound 9 from Ref. (16) (dbtu = dibutyl- 
thiourea). 

b See Ref. (18). 

six tetragonal transitions 3B, + a3E,, 3B,, , 
a3A,, b3E,, b3A,, c3E, with three parame- 
ters, Aru, A,, and A. In these circum- 
stances, the rms deviation obtained here 
seems to be good. 

In order to examine the transferability of 
the crystal-field parameters obtained in this 
calculation we summarized our results in 
Table III. In this table we present the aver- 
age values of the best punctual and classical 
parameters obtained in all the octahedral 
and tetragonal complexes studied in this 

work. In Table III we observe that in the 
group of octahedral complexes A is stable 
with relative deviations of about 6-7%. 
Still better is the stability of A(0) and A(N) 
in the tetragonal complexes, with devia- 
tions smaller than 5%. We discuss below 
the significative influence of Rm in A. The 
influence of RML on the electronic repulsion 
parameters is in all probability much 
smaller and we will neglect it in this analy- 
sis. Accordingly, we will enter into the 
analysis of the transferability of A without 

TABLE II 

RESULT~OFTHE FITTINGCALCULATIONSIN COMPLEXES OF D, SYMMETRY 

(k) 
AZ Psv A rms 

Compound” W) 0) (au.) W) 

1. Ni(stien),Ac, 11.61 9.76 5.24 6.00 0.711 0.38 
2. Ni(stien),(ClAc), 11.01 9.67 3.73 4.11 0.614 0.30 
3. Ni(stien),(QAc), 11.38 9.41 5.64 5.70 0.731 0.47 
4. Ni(stien)#&Ac), 11.77 8.% 5.17 6.50 0.730 0.50 
5. Ni(stien),(+COO)z 11.41 9.57 4.38 5.04 0.667 0.71 
6. Ni(stien),(Cl-+COO), 11.74 10.35 4.23 4.64 0.632 0.69 
7. Ni(stien),(CH,-+COO), 11.38 9.69 5.64 6.35 0.733 0.40 
8. Ni(dbtu)& 9.23 8.60 4.69 4.56 0.518 1.30 
9. Ni(dbtu),Br, 9.40 8.71 4.28 4.16 0.486 1.47 

0 The spectra of complexes l-7 (R, = 2.084, R, = 2.102 A) were taken from Ref. (19); the spectra of 
compounds 8-9 (R,, = 2.480, R, = 2.450 A) taken from Ref. (16). 
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TABLE III pyridine in Ni(py),&, is observed (10). 
AVERAGE VALUES OF THE BEST PARAMETERS 

OBTAINEDINTHIS WORK 
Our results in Table III give rise to an 

interesting observation concerning the in- 
fluence of the geometry and the chemical 
environment in the stability of the empirical 
parameters. If we assume that the empirical 
A changes with R, as R&i, as the theoreti- 
cal A does, we can write for the empirical 
parameters the equation 

Parameter Group 0, Group D,, 

WO) 3.93(7.4) 5.4tq15.3) 
ii(N) 4.83(5.5) 4.86(14.3) 
i(O) 
j$‘U 

0.714(3.3) 
0.661(3.4) 

0.688(6.8) 

m 8.13(7.1) 9.63(4.0) 

&N) 10.62(6.4) 11.47(2.1) 

Note. Dipole moments are in Debye units, A in 
atomic units, and A in kK. The variation coefficients a/ 
% (96) are in parentheses. 

taking into account the differences in RML in 
the calculations collected in Table III. In 
these circumstances, the scaling parameter 
seems to be transferable according to the 
addition rule 

X(NiN,OJ = {2h(NiN,) + X(Ni0,)}/3 
(12) 

as can be seen in Table III for the average 
values of h. This result suggests that the 
usual assumption of isotropy of the elec- 
tronic repulsion in fields of low symmetry 
(6) is satisfied in the complexes explored 
here up to 7%. Our results on the transfer- 
ability of the classical parameters, even 
without considering the effects of the 
changes in R,, are quite comparable with 
those reported by Wentworth and Piper in 
monoacid0 and diacidopentamine com- 
plexes of Co3+ and Cfl+ (6), and by Day in 
chlorocuprates (8). 

It is interesting to note that the transfer- 
ability is worse when we look at the punc- 
tual parameters ~(0) and p(N), in Table III. 
This is not surprising if we recall that the 
final value of p is atfected by the variations 
in h, which, in turn, are mainly determined 
by the electronic repulsion terms. This diffi- 
culty in dealing with punctual parameters 
seems to be avoided in the Angular Overlap 
model, where a nice transferability in the 
quantities Ah and &, associated with the 

A(R’) = A(R)(R/R')5. (13) 

Equation (13) could then be used in com- 
paring the values of A since they were ob- 
tained at ditTerent values of R,,. For in- 
stance, the A(0) in Table III (8.13 kK) was 
calculated at RML = 2.05 A. According to 
Eq. (13) this value becomes 7.17 kK at R, 
= 2.102 A, the distance of the D,,, com- 
plexes. This corrected value has to be com- 
pared with the tetragonal d(0) = 9.63 kK, 
some 35% larger. The same correction 
transforms A(N) = 10.62 kK, in Table III, 
into A(N) = 11.30 kK, which has to be com- 
pared with the tetragonal d(N) = 11.47 kK 
in Table III. Now, one can argue that if the 
known changes in geometry were taken into 
account by means of the A = A(RzL) law, 
the residual discrepancies in the analysis of 
the transferability could be assigned to 
changes in the chemical environment of the 
ligand atom. If this hypothesis is accepted 
and the R& law is valid, we find an insignifi- 
cant effect of the chemical environment in 
passing from NiN, to NiNJ, complexes, 
whereas a rather remarkable contribution 
of 2.46 kK is obtained in the group of oxy- 
gen complexes. These results seem reason- 
able when we recall that most of the NiN, 
complexes studied here are formed by 
amines and all the tetragonal NiNJ’, are 
amine complexes too. On the other hand, 
the NiO, complexes contain six neutral ox- 
ygens as ligands, whereas the tetragonal 
complexes have the charged oxygens of 
two carboxylate anions as axial ligands. 

If our analysis is correct, we can con- 
clude that when dealing with transference 
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of empirical parameters, changes in geome- 
try and chemical environment of the ligand 
species could be significant factors which 
should be taken into consideration as care- 
fully as possible. For instance, a large re- 
duction in R,, can produce an increase in A 
big enough to change the ground state of a 
complex. This is, of course, the crystal-field 
interpretation of the diamagnetism of the 
tetracoordinated NiS, complexes (R (Ni - S) 
= 2.23 versus 2.50 A in NiS, (4)) and many 
other Ni2+ complexes, like the yellow Ni 
(stien),(Cl,CH -COO), reported by Nyburg 
and Wood (21). Evidently, the exact way in 
which the empirical A varies with R, has 
to be found from a large number of parame- 
ter determinations in clusters of different 
geometries. We have not attempted to an- 
swer this problem in this report. 

Finally, we will comment on some inter- 

esting results of the fitting process that are 
particularly clear when a method of linear- 
ization of the spectral frequencies is used. 
We present in Table IV the observed and 
computed spectral frequencies, with our 
best parameters, of Ni(stien),(ClO,), and 
Ni(stien),(CH,-COO), . The linear coeffi- 
cients a(i), y(i, I) of Eq. (9) at convergence 
are also presented. If the coefficients of A, 
a(i) are expressed in units of the reference 
Racah parameter B(1) = 1334 kK, we ob- 
tain for the two CX(~T,,) of Ni(stien),(ClO,), 
3.3733 and 11.6267, respectively. These 
two numbers add to 15, as they should (I), 
and they are closer to the diagonal-only val- 
ues, 3 and 12, than those of NiF4,- (1). In 
Ni(stien)i+ these two triplets become 
strongly mixed via configuration interac- 
tion, as the coefficients of A reveal: 1.331 
and 1.669 versus the diagonal-only values 

TABLE IV 

OBSERVED AND CALCULATED SPECTRAL FREQUENCIES (IN kK) AND LINEAR EXPANSION 
COEFFICIENTS FOR Ni(stien)%+ (0,) AND Ni(stien),Ac, (DJ 

A. Ni(stien),(ClO,), AE(i) = a( + y(i)A 

Transition Obsd.” Calcd. a(i) y(i) 

3A, + 3T, 11.11 11.42 0.0 1.0 
+ ‘E, 12.70 12.85 19.45 0.0305 
+ a3T,, 18.08 18.09 4.500 1.331 
+ b3T,, 29.24 29.03 15.15 1.669 

rms deviat. - 0.20 
Best parameters: A = 11.42 kK; A = 0.643 a.u. 

B. Ni(stien),(CH,-COO), AE(i) = a( + y(i,xy)A,, + y(i,z)A, 

Transition Obsd.* Calcd. 44 Y(i,XY) y(i,zl 

Q, + a3E, 10.01 10.53 0.1450 
-+ %, 12.19 11.61 0.0 
+ a3A, 16.89 16.51 5.509 
--f b3E, 18.18 18.38 2.320 
-+ b3A, 28.98 29.23 14.51 
+ c3E, 29.85 29.73 17.56 

rms deviat. - 0.38 
Best parameters: A,, = 11.61 kK; A, = 9.76 kK; A = 0.711 a.u. 

0.3432 0.6604 
1.0 0.0 
0.0278 1.257 
1.330 0.1324 
1.140 0.5818 
1.243 0.2880 

a Data drawn from Ref. (21). 
b Data drawn from Ref. (19). 
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of 2.0 and 1.0. Notice that these two num- 
bers add to 3. From Table IV the near inde- 
pendence of the 'E, from A is also clear. 
This is a well-known characteristic of this 
singlet whose equation in Ni(stien)g+ and 
NiF4,- is almost the same (I). 

In the tetragonal complex shown in Table 
IV we observe, first, that the energy of the 
3B,, state, coming from the octahedral 3T,, , 
is controlled only by Aru. Therefore, the 
3&, -+ 3Bl, frequency gives Arg directly 
even after the mixture. The lower excited 
state a3E,, however, is a big mixture of A,, 
and A, and it shows a small dependence on 
A. Second, we know that the octahedral 
a3T,, gives rise to the a3A,,, b3E, states in 
the tetragonal clusters; from Table IV we 
see that these two triplets are controlled by 
the axial and equatorial perturbations, re- 
spectively. Finally, the two triplets coming 
from the b3T,, are strongly dependent on A. 
They mainly determine the value of the em- 
pirical electron repulsion parameter. As in 
octahedral complexes (I), the coefficients 
in Eq. (9) are easily obtainable indicators of 
the configurational character of the multi- 
plets. That, indeed, is an advantage of this 
systematic calculation of the crystal-field 
parameters. 

In order to compare our results with 
those currently available a final remark 
should be made. The values of A in the oc- 
tahedral complexes and those of A,, in the 
tetragonal complexes are directly compara- 
ble with 1ODq. On the other hand, the pa- 
rameter A contains information about the 
nephelauxetic effect in the complex but it is 
not, by itself, a direct measure of such ef- 
fect. The reason is clear: A measures the 
expansion of the reference radial function 
necessary to have a best representation of 
the complex spectrum. This expansion has 
to be compared with the expansion that the 
reference function experiences when a best 
description of the free metal ion is required. 
This means that, given a reference function, 
we have a A,,, (free-ion) and a A,,, (com- 

plex). The obtention of the former is 
straightforward since the free-ion spectral 
frequencies have the form 

V(i) = 2 a(i,k)F(k) 
k 

(14) 

and, according to Eq. (5), 

c(i) = 2 u(i,k)t;(k, 1)A = A(i (15) 
k 

Therefore, 

A&free-ion) 

= N-l 5 {V(i; exptl)lA(i)}, (16) 

where V(i; exptl) are the observed values of 
the free-ion frequencies and N the number 
of frequencies. Using formula (16), the ap- 
proximate Hartree-Fock function of Rich- 
ardson ef al. (22) used here as reference 
function {B(l) = 1334 cm-l, C(1) = 4943 
cm-l} gives Aopt (free-ion) = 0.797. The 
transitions 3F + 'D (13,038 cm-l), + 
3Z’(15,836 cm-‘), + ‘G (20,813 cm-l) are 
taken from Shenstone (24) and the -+ ‘S 
(51,538 cm-l) from Garcia-Riquelme (25). 

The nephelauxetic effect (independent of 
the reference radial function) is then given 
by 

p = A,,,(complex)/A,,,(free-ion). (17) 

Using formula (17) and the values of h in 
Table III, we obtain the following average 
nephelauxetic effects: p(O) = 0.896 for the 
NiOG complexes and j(N) = 0.829 for the 
NiN, group. We find p(S) = 0.501 in the 
NiS, complex. These estimations of the 
nephelauxetic effect are in very good agree- 
ment with those given by Jorgensen (23). 

Summary 

A systematic method for obtaining opti- 
mum crystal-field parameters is presented. 
The method is easy to apply and produces 
parameters that describe well the observed 
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optical spectrum of 40 complexes of NP. 
The usual information about orbital split- 
ting and nephelauxetic effect is readily ob- 
tamable. The fitting variables in this 
method are the ligand perturbing charges 
(or dipole moments) and the shape of the 
metallic radial 3d function. The method de- 
scribes the spectral frequencies by means 
of a linear transformation of the best param- 
eters. The elements of the transformation 
matrix give immediate information on the 
configurational character of the multiplets 
involved in the fitting. 

The method is appropriate for analyzing 
the transferability of the parameters among 
complexes of different symmetries, since it 
works as an objective and systematic tool. 
Our study on complexes of Ni2+ has shown 
that the classical parameters can be trans- 
ferred within 10% if the metal-ligand dis- 
tances and the chemical environment of the 
ligands do not suffer big changes. On the 
other hand, the transferability of the punc- 
tual parameters seems to be uncertain. 
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