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Orbital correlation diagrams for the black phosphorus to A7 (arsenic) phase transformation for various 
points in the Brillouin zone are presented and analyzed in symmetry terms. The level doublings 
observed at the black phosphorus geometry for several points are directly attributable to the nonsym- 
morphic nature of the space group (Herring’s theorem). Doublings observed at the A7 structure derive 
from the choice of a four-atom, rather than two-atom, unit cell to view the geometrical transformation. 
The space group requirements at the beginning and end points of the transformation process simply 
control the form of orbital correlation diagrams. In general, HOMO/LUMO crossings are found at k = 
($,a$) where bonds are made and broken along the x direction, a result with simple analogies to more 
easily visualized one-dimensional problems. 

Introduction 

The idea of the conservation of orbital 
symmetry during a concerted molecular 
process led, during the mid-1960s, to the 
Woodward-Hoffmanu rules for organic re- 
actions (I ). With breathtaking simplicity, 
the question of whether chemical reactions 
along particular pathways were thermally 
allowed or forbidden could be tackled using 
symmetry-based ideas. Figure la shows an 
orbital energy (E) versus reaction coordi- 
nate (q) diagram for a thermally allowed 
process in the Woodward-Hoffmann sense. 
Note that the highest occupied molecular 
orbit (HOMO) of the reactant correlates 
with that of the product. In Fig. lb we show 
a similar diagram for a thermally forbidden 
process. Note that here HOMO and LUMO 
(lowest unoccupied orbital) of different 
symmetry cross at q, . Since the HOMO- 
LUMO separation in stable molecules is in- 

variably large, such a crossing in Fig. lb 
demands a high, symmetry-imposed activa- 
tion energy barrier for reaction, not present 
in Fig. la. 

Recently we have applied similar logic to 
the question of polymorphic phase transfor- 
mations in solids (2). Here the problem is 
much more complex since now the E(q) di- 
agram has to be replaced by a set of E(k,q) 
diagrams, where the wavevector k maps 
out the Brillouin zone of the solid. In the 
molecular case a single diagram carrying 
symmetry labels appropriate to the molecu- 
lar point groups of reactant, product, and 
intermediate geometries was sufficient for 
the purpose. In the solid-state environment 
a set of diagrams for a representative set of 
k vectors needs to be constructed, where 
the symmetry labels are those appropriate 
to the group of the wavevector within the 
relevant space group. At high symmetry k 
points the group of the wavevector may 
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FIG. 1. (a) Noncrossing of HOMO and LUMO to 
give rise to a symmetry-allowed thermal process, (b) 
crossing of HOMO and LUMO to give rise to a sym- 
metry-forbidden thermal process. 

contain a respectably sized subgroup of the 
holohedral point group with several distinct 
representations. For k points which do not 
lie at symmetry points, or on symmetry 
lines or planes, then- the group of the 
wavevector is simply C, and all functions 
will transform as the a representation. 
HOMO-LUMO crossings (or indeed any 
other orbital crossings) are then forbidden 
via the noncrossing rule. Only at symmetry 
points, therefore, may orbital crossings oc- 
cur in principle to give a thermally forbid- 
den process in a Woodward-Hoffmann 
sense. Away from these locations no such 
crossings are allowed, although it will usu- 
ally be difficult to distinguish a narrowly 
avoided crossing at a k point close to a sym- 
metry point where such a crossing does oc- 
cur. The overall result is that for whole re- 
gions of the Brillouin zone, around 
symmetry points where a HOMO - LUMO 
crossing exists, there will also be high en- 
ergy barriers arising from such avoided 
crossings. Thus, although symmetry is lost 
on moving away from symmetry points in 
the zone, much of the energetic information 
is “remembered” by lower symmetry 
points close by. In our earlier study (2), we 
presented without much comment E(k,q) 
diagrams evaluated numerically using a 
tight-binding method at several high-sym- 
metry points in the Brillouin zone. In this 
paper we examine symmetry aspects of 
these results. 

The Black Phosphorus to A7 (Arsenic) 
Transformation 

We recently showed (3, 4) how the black 
phosphorus, arsenic, and other related ar- 
rangements were readily derived, both 
geometrically and electronically, from that 
of the rocksalt (or the primitive cubic) 
structure by the selective fission of three 
mutually orthogonal linkages at each 
atomic center. The result was the replace- 
ment of octahedral six-coordination by a 
universal trigonal pyramidal geometry. 
Some of the arsenic-like structures appear 
to be interconvertible under pressure. Ja- 
mieson demonstrated the pressure-induced 
black phosphorus to A7 transition (5) and 
three different arrangements related by 
temperature and pressure have been identi- 
fied (6) for BaSi,, a species isoelectronic 
with phosphorus itself. We shall study in 
this paper the former process via the geo- 
metrical transformation shown in the ideal- 
ization of Fig. 2, where half of the linkages 
broken in the rock salt + black phos- 
phorus, arsenic process were remade in the 
intermediate. Figure 3 shows a set of calcu- 
lated level correlation diagrams E(k,q) for 
several high-symmetry points in the Bril- 
louin zone. Note the HOMO- LUMO 
crossings at (&O,O) and (&),3) and the 
HOMO-LUMO touching at the A7 struc- 
ture at B,S,O). 

The unit cells used in our study are 
shown in Fig. 4 along with the symmetry 
elements present. With this choice of cell it 
is perhaps difficult to see the threefold rota- 
tion axis in the arsenic structure. (It ap- 
pears along one of the body diagonals of the 
large cube in Fig. 2). There are some fea- 
tures of interest. The arsenic structure re- 
quires only two atoms per cell for its defini- 
tion. We have twice that number since we 
wish to correlate the levels of this cell with 
those of the four-atom black phosphorus 
cell via the intermediate geometry. Also the 
space group for the black phosphorus struc- 
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FIG. 2. One route for the interconversion of black phosphorus and arsenic. Idealization, showing 
relationahip to rock salt. 

ture is nonsymmorphic since it contains 
coupled translation-rotation elements. 
This implies that the group of k is expanded 
at the zone edges and this makes derivation 
and handling of its representations a little 
more complex. Both the arsenic and inter- 
mediate space groups are symmorphic. 

Symmetry Properties and Level Structure 

(a) The Arsenic Structure 

A feature of the level pattern at the right- 
hand side of each of the six panels of Fig. 3 

is the presence of universal doublings at the 
k points W40), KG,O), W4i), ad (!d,G 
and occasional doublings at (O,O,O) and 
(l&O). The former are entirely due to the 
use of a four-, rather than two-, atom cell, 
and the latter to the presence of the three- 

Figure 5 shows the relationship between 
the four-atom cell shown in Fig. 4 and a 
simpler primitive two-atom cell which is 
just as good in defining the structure. We 
want to know how the levels of the two 
cells are related. For the four-atom cell the 
direct and reciprocal lattice vectors are 
simply 
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fold rotation axis, as we will now show. 
Such doublings are removed for 0 < q < 1. 

a1 = a(21'2,0,0), Pl = ~(~,o,o), 

a2 = a(O,u% 82 = f (O,LO), (1) 

q3 = 40,0,1), & = 5 (O,O,l). 

For the two-atom cell the corresponding re- 
lationships are 

A, = a(- +f), B, = I, 

& = a( &-49 B, = f (&,O,l), 

A3 = a B3=f 110 ( 21,2’ , ). 

(2) 

Clearly the phase factor on any center will 
be such that any property will be indepen- 
dent of the unit cell choice. If r is a member 
of the direct lattice then we need to seek the 
conditions on the ki such that 

VU, + K2P2 + &&) *I- 

= (klB1 + k2& + k3&). r + 2mr. (3) 
The two possible solutions are 

kl = HK2 + KS - KJ, 

k2 = itK, + KS - K,), 

ks = +W, + K2 - &I, 

HK2 + & - KJ + 3, 

JOG + KS - K2) + 4, 

HKl + K2 - KJ + !t. 

(44 

On substitution of the values for the sym- 
metry points used in Fig. 3, Table I is imme- 
diately generated. Note that for the points 
W&, Uh+,O~~, OW&, and Gddd, the 
two k vectors generated by this decomposi- 
tion belong to the same star and are there- 
fore degenerate. So all the levels for the 
arsenic structure at these k points in Fig. 3 
are doubled. The doublings sometimes seen 
at (O,O,O), and (JL,+,O)~ are readily under- 
stood since these decompose into (O,O,O), 
and (O,O& vectors in the two-atom unit 
cell. Both of these have full L& holohedral 
symmetry (they both lie on the threefold 
rotation axis) which can support doubly de- 
generate representations. Thus some of the 
levels at these points will be degenerate and 
others will not. 

(b) The Intermediate Structure 

This presents no problems at all. The 
symmetry operations shown in Fig. 4 lead 
to a symmorphic space group. The group of 
k is simply C,,, at all the k points we used in 

TABLE I 

RELATIONSHIPBETWEEN THE k POINTSINTHE 
FOUR-ATOM (B LABELS)AND TWO-ATOM@ 

LABELS)UNIT CELLS (FIG. ~)FORTHE A7 
ARRANGEMENT 

Four-atom Two-atom 
cell cell LabeP 

Group 
ofk 

r 
H 

Degenerate 

Degenerate 

Degenerate 

Degenerate 

X 
Z 

hi 
c 2* 

C, 

C, 

C2 

& 
C Zh 

a It will be useful later on to label the energy levels 
of the four-atom cell using a complete notation which 
includes the origin of the levels in terms of the k points 
of the two-atom cell. 
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FIG. 3. Calculated E(k,q) diagrams for the real process of Fig. 2 (adapted from Ref. (2)). (The 
symmetry labels for the intermediate levels are different from those used earlier (2). The difference lies 
in the choice of the location of the symmetry elements. In this paper the set shown in Fig. 4 has 
been used). 

Fig. 3. None of the levels are then degener- 
ate by reasons of symmetry (except at the 
special case of q = 0.5). 

(c) The Black Phosphorus Structure 

The space group of this structure is non- 
symmorphic. Herring’s theorem (7) leads 
to an immediate indication of the doublings 
of levels seen at the left-hand side of some 
of the panels of Fig. 3. “If a boundary plane 
of the Brillouin zone is perpendicular to a 
twofold screw axis, no element of whose 
coset is a pure twofold rotation, then the 
energy bands must stick together in pairs.” 
In our case the screw axis is shown in Fig. 
4. Thus all levels will be doubly degenerate 
at Wd>, WdO, and (3,3,0) as observed. 
The doublings at (O,O,t) are then due to an- 
other effect. 

For points inside the Brillouin zone the 
space group may be treated as if it were 
symmorphic. Thus at (O,O,O) the group of k 
is simply & and no doublings are seen. At 

(&,O,O) the 16-element group very simply de- 
composes into a direct product group 
D,,~{{e~OOO},{e~100}}. This means we 
can use the Dzh point group at this point 
too. No doubly degenerate representations 
are supported by this point group and in- 
deed no doublings are observed in Fig. 3. 

For the other k points at the boundaries 
of the Brillouin zone we have to employ 
larger groups which contain translational- 
rotational symmetry elements. One way to 
tackle this expanded problem is to use the 

TABLE II 

SYMMETRY ELEMENTSAND~RBITAL 
REPRESENTATIONSFORTHEABSTRACTGROUPG& 

k point C, 

Oh,0 
t,t,t 
t,*,o 
o,o,t 

a Tao = naJ + n,,,R,,for the set of fours- and twelvep-type 
orbit& in the four-atom cell. 
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b. 

FIG. 4. (a) Unit cells for the black phosphorus, inter- 
mediate, and A7 (arsenic) structures, (b) clinographic 
projection of reactant and product geometries, and (c) 
illustration of one of the twofold screw axes in the 
black phosphorus structure. The symmetry elements 
in the three structures are as follows: (a) black phos- 
phorus WW, M-W, tU-#t~, tLlW9 bzk"W, 
{@OOl, b,lOW, Iu,lOW; (b) &xmediate telOW, 
{2$00}, {u,~OO@, .liDOO~;. (c) arsenic {elMtO}, {iKW, 
~u,lml, ~u.lm~, Iu$Jq, cLl~~, ILl~I, Iww, 
{3#00}, {i6#00} (a = 2% +y + z,p = 21’*/~ + y, Y 
= Px + y - z). Here an n-fold rotation axis (i = 
improper rotation) parallel to j is labeled n, and in uk , k 
defines the direction of the plane normal. 

abstract groups tabulated by Bradley and 
Cracknall(8). At the point (O&O) the group 
ofkisG&withC, = {elOOO},C, = {elOlO}, 
C3 = {o#OO}, and C, = {az~OIO}. Using the 
four s-type and twelve p-type atomic orbit- 
als in the unit cell as a basis for a represen- 
tation it is simple to find that I, = 6R, + 

FIG. 5. The four- and two-atom arsenic unit cells. 

2R,, , where both R, and R,, are doubly de- 
generate representations. At (+,&,)) we can 
use the same abstract group but now with 
C, = {elOOO}, C2 = {ellOO}, C3 = {ilOOO}, 
and C, = { iI 100). At this point IA0 = 4R, + 
4R1,. Analogous reasoning for the other 
symmetry points leads to Table II and 
shows that every level is doubly degenerate 
at these points for the black phosphorus 
structure. Now this result has dropped out 
simply from a general group theoretical ap- 
proach, but Herring’s theorem only de- 
manded degeneracies for the first three 
points. The behavior at (O,O,$) is, however, 
readily understood. The class structure of 
G& at this k point is such that the two oper- 
ations {ilOOO} and {ilOOl} compose a single 
class, as can be checked by running through 
the usual group conjugacy relationships. 
This requires, then, that for all symmetry 
species they have the same character, i.e., 

xWW) = x(NW. (W 
However, we also know that 

{ilOOl} = {elOOl} X {i[OOO}. (5) 

This implies that the representations are re- 
lated in a similar fashion, 

o(ilOOl} = o(e[OOl} X D{ilOOO}. (6) 

But we can simply evaluate the representa- 
tions of the regular translation {e[OOl} as 
-1. Thus 

x((il000)) = - 1 * x({ilaOl}). (7) 

Equations (4b) and (7) together require 
~({@00}) = 0 for any representation and 
this then demands the absence of any one- 
dimensional representations for the group 
of k at this point. 

The Form of the Wavefunctions 

After having examined the broad symme- 
try aspects of the problem and understood 
the origins of the forced orbital degenera- 
ties, it remains to see how these require- 
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a b c 

FIG. 6. Generation of the level structure for black phosphorus at (O&O). (a) Atomic orbitals, (b) 
simplified p-only model, and (c) complete picture with all s and p orbitals included. (b) shows the 
orbital character using the simplest p-only orbital model. The A- and o-type R5 levels actually mix 
together somewhat. This is shown fully in (c) for the HOMO after s-orbital interaction has been 
included. Because of obvious space restriction it is only possible to show limited information concem- 
ing the wavefunction. For the R,, level we show the composition of one component in its entirety. For 
the R, level in (b) we show both components and for the R, level in (c) we show that part for the 
wavefunction for atoms 1,2 only for both components. 

ments influence the wavefunctions at vari- 
ous k and q points, and thus how the 
correlation diagrams of Fig. 3 arise. Since 
we identified the wavevector group for all 
the k points used for each geometry, it is 
now a relatively simple, but perhaps tedi- 
ous, matter to project out suitable symme- 
try-adapted linear combinations of valence 
s and p functions located on each center. 
Table III shows the results which will be 
very useful in tracing the orbital patterns of 
Fig. 3. Nomenclature in this area, haphaz- 
ard at best, varies from author to author. In 
this table we used standard labels from Ref. 
(8) when using the group G&. and conven- 
tional Mulliken symbols elsewhere. For 
some k points at the A7 geometry we used 
composite labels which describe both the 
level symmetry and their origin (r, 2, X, 
etc.) within the Brillouin zone of the two- 
atom unit cell from Table I. 

First we need to know something about 

the orbital description of the levels of Fig. 
3. Naturally this will depend crucially upon 
k. A sample analysis at one point (we 
choose (O&O)) will illustrate a general ap- 
proach which is useful. At this point the 
orbital transformation properties (Table III) 
are simple: s + 2R5, pz --* 2Rlo, andp,, pu 
+ 4R, for the black phosphorus structure. 
We will initially use a simple model and 
gradually build up in complexity. Let us ne- 
glect the s orbitals on the four atoms and 
focus separately on the R,, and R, mani- 
folds ofp orbitals. This leads to a very sim- 
ple picture. 

The pairs of pz orbitals on atoms 1,2 and 
on 3,4 are coupled within purely by P inter- 
actions, and linked to each other by 
stronger o interactions. (See Fig. 4 for the 
geometrical arrangement.) A largely bond- 
ing (between 1,2 and 3,4) pair of orbitals 
will result in low energy and a largely anti- 
bonding pair in higher energy (Fig. 6). 
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Within the R, manifold, if we neglect inter- 
actions between the pair of atom pairs 1,2 
and 3,4 then the problem reduces to two 
identical 4 x 4 determinants containing the 
interactions between the pz,pu orbit& of 
each pair. This simple diatomic-like prob- 
lem gives bonding and antibonding sets of 
orbitals of r and s type. Allowing interac- 
tion between the pairs 1,2 and 3,4 changes 
this description only slightly in that r- and 
m-type R, interactions may now mix to- 
gether. Inclusion of s orbitals to complete 
the picture results in a destabilization of all 
the hitherto purely p orbitals of R, symme- 
try. These orbitals, which were largely in- 
volved in n-type interactions, become 
largely lone pair orbitals and the m-type in- 
teractions are now made up of sip hybrid- 
type orbitals rather than pure p orbitals. 
The HOMO at this k point consists then of a 
large amount of lone pair character with 
some rather weaker bonding character be- 
tween the directly linked 1,2 or 3,4 atoms. 
It is bonding between the pairs of atoms 1,2 
and 3,4. Note how the transformation prop- 
erties of the s,p,,p, orbitals and the proper- 
ties of the wavevector group regulate the 
way these “molecular” orbitals on atoms 
1,2 (and on 3,4) are constructed. With refer- 
ence to Table III we can see how in one 
component of an R, level we find the combi- 
nations s1 + s2 and sg - sq and in the other s1 
- sZ and s3 + s4. Exactly analogous results 
hold for the other points in the Brillouin 
zone. 

We may repeat the above derivation for 
the arsenic structure at (0,&O). The reason- 
ing is very similar except that the role of the 
R, label is played by e, and that of R,, by 
eb. In general, of course, this will not be 
true and the orbital descriptions are some- 
times very different. This procedure may be 
repeated at other k points and the orbital 
diagram may be assembled, just as in mole- 
cules, from a symmetry viewpoint, using 
well-established techniques, and a compa- 
rable level of understanding of the orbital 

structure will be achieved. 
A final comment is in order concerning 

the symmetry species of the levels of the 
intermediate. These are also shown in Table 
III. Recalling that the group of the 
wavevector is D, for each k point we have 
used, the orbital symmetry combinations 
are readily generated. Just as in the arsenic 
and black phosphorus arrangements the 
contributions from atoms I,2 (or 3,4) are 
linked by + 1. We are now in a position to 
understand the correlation diagrams of 
Fig. 3. 

The Correlation Diagrams 

At the point (O&O) which we examined in 
detail above, Table III indicates that each 
R, ore, representation splits into up + b, on 
moving to the intermediate structure. Anal- 
ogously, R,,(eb) ---, b, + a,. Thus the very 

TABLE III 

SYMMETRY PROPERTIES OF THE ORBITALS 

(a) Black phosphorus structure 

W,O) 

a#: Sl + SP + s, + s,. XI - x* - x, + x*, y, - Y, + y, - Y.7 
b,,: s,+s,-ss-s,,x,-x,+x,-x,,y,-Y,-Y,+Y, 
b,,: $1 - s, + s, - s,, x, + x, - x, + x,, y, + y, + y, + y, 
b,,: sl - s1 - s, + sa, x, + x2 + x3 + x,, y, + y2 - y, - y3 
b,#: ZI - L) - L, + za 
br: z,-z,+z,--zs 
a.: z,+z,-z,-2s 
bl.: r,+r,+z,+z, 

W,O) 

a,: $1 - J-2 - s, + SQ. x, + XL + x, + x3, y, + y, - y, - yJ 
b,,: SI - s, + s, - s.u x, + x, - x, - x3, y, + yn + y, + ys 
b,:s,+s,-s,-ss.x,-xe+x,-x~,y,-y,-y,+y, 
4: s,+s,+s,+s,,x,-x,-x,+x,,y,-y,+y,-y, 
b,: q+ze+z,+zs 
b,: z,+z,-z;--zs 
a.: z, - 1, + z, - ZQ 
b,,: z, - ~2 - z, + zQ 
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TABLE III-Continued 

UAO) 

(b) A7 structure 

W,O) 

r%T: 81 - I% + A - LL St + S¶ + % + s4 
r%u: 81 + P2 + A + 837 $1 - J-2 + s3 - s4 
I-e,: (Zl - z* + z, - ZQ, a1 - a* + a, - ad 
re,:{z,+z~+z,+z~,a,+a,+a,+a3 

where u = (2Liz/zX - y), b = (2*12/2x - V) 
Ha,: SI + sz - sa - s,, x, - x1 - x, + x3, y, - yn - y, + ys 
Hb.: s,-s,-s,ts,,x,tx,-x,-x3,y,+y2-y,-y3 
Hb,: zl-zz-z,+za 
Ha,,: z,+z2-z,-z3 

W,O) 

(0.m 

(GA) 

e.: ($1 + s2. s3 + 3, Ix1 - x2, x3 - XJ, (y1 - yz. y3 - y,] 
(3 + z23 z3 + z,) 

6: bl - sz, -cl - 4, {x, + x2, x3 + x,), (y, + y*, ys + y4} 
h - zz> z3 - 4 

&t,Q 

‘%.: $1 - $2 + s, - sg, YI + y* + y3 + y, 
X~,,:~l+~a+s~+s,,Yl-yn+y,-y, 
Xe.:{z*+z,tz,tz,,cr,+u,+a,tcr,) 
xe,: (Zl - z2 + z, - z3, a, - cl* + a, - a3) 

za,: s, + St - SQ - S,, x, - x, - x, + x3. y1 - y* - y, t ys 

Zb.:s,-s,-s,ts,,x,-x,-x3,y,+yz-y,-yJ 
Zb,: z, - z2 - z, + z3 
Za.: z, + z2 - z3 - z, 

where y = (21J2/2x t y) 
and a = (2”2/2x - y) 

uM,t) 

e.: Is, + s.2. s3 + SJ. {z, + z2, z3 + ZJ, (x1 - x2, x3 - x41 
(Y1 - Yz. Ys - YJ 

TABLE III-Continued 

tx,+x~,xs+x,J,{Y,+Yz,Ys +y.l 

(c) Intermediate structure 

a,: Sl f S2, sz3 + S.3 Xl - x2, Yl - Y2, x3 - x,, Y3 - Y, 
b,:s,-st,ss-s,,x,fxr,y,+yz,q+x,,y,+y, 
b,: z1 - z,, z3 - z, 
a.: z, t z2, ZQ + I, 

a,: s, - s*, sa - S,, x, t x,, y1 + y*, XL3 t x,, y3 t yI 
b,: s, + st, s3 t s,, x, - x2, y, - yz, x, - x,, y3 - y4 
b,: ZI + ~2, z3 f zd 
a.: II - z2, ZQ - z, 

@,t,o) 

same as at (&,O,O) 

(4,f.t) 

a,: s, + s*, x1 - X2, Yl - YP, 23 f z, 
b,: $3 - s,, xa + x,, yz. + Y,. z1 - zz 
a.: sa t S,, x, - x,, ys - y,, z, t z2 
b,,: s, - $2, x, t xp, y, + yg. z3 - ZI 

(tA,o) 

same as at (O,O,O) 

A note concerning symmetry labels. R,, R,, labels are those 
used in Ref. (8) for the group Gla. Labels for the A7 levels will 
sometimes include a reference to the k point of the two-atom 
cell (via r, H, X, 2) as noted in Table I combined with a 
standard Mulliken label. At the k points for the A7 structure, 
where all levels are doubled, the pseudolabels e,, eb are used, 
which distinguish the parity with respect to 2, or cr. 

simple correlation diagram shown in Fig. 3 
follows for this k point. A similar diagram 
holds for the point (O,O,+). At these two k 
points the levels very simply correlate in 
pairs depending on their R, or R,, origin as 
dictated by the symmetry requirements of 
Table III. At (+,3,+), however, the situation 
is different. Here pairs of R, ,Rlo levels cor- 
relate with pairs of arsenic levels and a 
crossing is forced between each pair of 
R,P,, levels. A similar crossing is seen at 
(+,O,O), where the levels originating from b,, 
and b,, at the black phosphorus structure 
repel each other in the intermediate as do 
the levels originating from b,, and a, lev- 
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q 

IHlUl 4MM4 *eb.l 

FIG. 7. HOMO-LUMO crossing for bond reorganization in the linear chain of diatomics. 

els. A striking feature, therefore, at these 
two points, which both contain k, = ), is 
the correlation of lone pair and antibonding 
orbitals along the reaction pathway. This is 
a result analogous to a similar crossing in- 
volved in the hypothetical bond reorganiza- 
tion process (in the x direction) of the linear 
chain of diatomic molecules at k, = S (Fig. 
7). The structural instability at the halfway 
point, where there are equal atomic separa- 
tions in the chain, is simply due to a Peierls 
type of distortion associated with the half- 
filled band. In the present case, we could 
imagine an identical situation for the primi- 
tive cubic structure for phosphorus (actu- 
ally identified at high pressures (5)). Here 
each of three perpendicular p orbitals is 
half-full and the distortion to either the 
black phosphorus or arsenic structures of 
Fig. 2 is then a natural way to relieve this 
Fermi surface instability in each direction. 
Remaking the broken linkages in one Carte- 
sian direction to get to the intermediate of 
Fig. 2 thus restores the instability along this 
direction and gives rise to a crossing of the 
type seen in Fig. 7. 

of the space groups and unit cell size of the 
three structures considered. The example 
we chose, however, does not have the sim- 
ple sort of level structure typical of small 
organic molecules, and thus the correlation 
diagrams are only understandable after a 
considerable amount of analysis. 
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