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It is shown by considering a few examples that oxide structures are usefully described in terms of their 
cation packings and the coordination of the anions by these cations. This, together with a consideration 
of nonbonded repulsions between the atoms, leads simply to a rationalization of some crystal struc- 
tures and coordination numbers, and to an understanding of the volume changes in certain phase 
transitions. 

Introduction 

The traditional description of “ionic” 
crystals focuses almost exclusively on the 
coordination of the cation by anions and on 
the geometry of the anion packing. In the 
case of compounds of the lighter electro- 
negative elements (i.e., nitrides, oxides, 
and fluorides) it is our thesis that this leads 
to, at best, an incomplete understanding of 
their crystal chemistry. In this article, as 
indicated by its title, we attempt to show 
how the complementary viewpoint leads to 
many new insights. We wish to heed the 
admonition of Wells (1) to consider the 
purely geometrical constraints on crystal 
structure. These constraints require one to 
consider both anion coordination and cation 
coordination as equally important in deter- 

* Dedicated to Professor A. F. Wells on his 70th 
birthday. 

mining crystal structure. In Wells’ words, 
“Emphasis on the coordination group of 
the cation has led to a tendency to underes- 
timate the importance of coordination of 
the anion” (I). 

Geometrical constraints are conveniently 
divided into topological and metric aspects 
(although it is not always possible to sepa- 
rate them). Wells (1) has examined certain 
aspects of these, and we cannot do better 
than to quote him again: “ . . . geometrical 
and topological factors . . . have a direct 
bearing not only on the details of molecular 
and crystal structures but also on the stabil- 
ity and indeed existence of some com- 
pounds. In spite of their relevance to struc- 
tural problems, some of the factors . . . 
seem to have been completely ignored.” 

Our intention here is to attempt to reduce 
this area of ignorance and also to add a fac- 
tor (the consideration of the nonbonded 
sizes of atoms) that we feel is more useful in 
discussions of coordination numbers than 
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the ionic model (in which ionic radii are the 
only determinant) . 

Geometrical Constraints on Crystal 
Structures 

A familiar example of a topological con- 
straint is the famous Euler condition ap- 
plied to tesselations of the Euclidean plane 
(or a torus), 

P-E+V=O, (1) 

in which P is the number of polygons, E the 
number of edges, and V the number of ver- 
tices. This, and equations derived from it, 
provide an essential basis for a discussion 
of, among other things, plane nets (2, 2). 
On the infinitely more difficult problem of 
three-dimensional nets there is very little 
other than Wells’ pioneering work available 
(3). Two aspects of topological constraints 
deserve attention. The first is that they give 
rise to diophantine equations (ones in which 
only solutions in positive integers are ad- 
mitted) such as Eq. (1). The second is that 
they often provide necessary, but not suffi- 
cient, conditions for the existence of a struc- 
ture, a fact that contributes to making the 
subject at once so difficult and so fascinat- 
ing. A simple example (2) might illustrate 
the latter point. A plane net (or tesselation) 
with Schlatli symbol j2 * 10 satisfies Eq. 
(l), but in this case other simple topological 
arguments demonstrate that it cannot exist. 
These arguments do not however readily 
lend themselves to generalization to cover 
more complicated nets. 

Another example of a topological con- 
straint is provided by the celebrated elec- 
trostatic valence sum rule of Pauling. The 
Pauling bond strength of a cation of charge 
Zt and coordination number NI is s = Z,lN* . 
Pauling’s rule then states that for the cat- 
ions bonded to each anion of charge Z, 

W,lN) = Zz. (2) 

In practice of course, Nature is some- 

what tolerant and permits small deviations 
from Eq. (2), in which instance generaliza- 
tions of the concept of bond strengths prove 
useful, but, as written, Eq. (2) is another 
example of a diophantine equation. 

A third topological constraint is one that 
is so obvious as to be almost trivial, yet it 
has some profound consequences. Consider 
a crystal A(0,1A(2)~ . . . Whd(2)m~ 
. . .) in which the cations A(i) have coordi- 
nation numbers NAca and the anions X(i) 
have coordination numbers Nxci,. Then 

GNAW = %Ntio. (3) 

The topological origin of this equation is 
simply that each bond has a cation at one 
end and an anion at the other. Clearly then 
it is not applicable to polycompounds. 

We note in passing that the electrical neu- 
trality condition 

%54~i~ = ~&Gci~ (4) 
is not independent of, but follows directly 
from, Eqs. (2) and (3). 

Metric constraints refer to distances and 
angles. Even simple examples have far- 
reaching consequences. One is that for 3- 
coordinated AX, the X-A-X bond angles 
cannot exceed 120” (see below). Wells (I ) 
cites the example of Cconnected nets in 
which rings of four atoms occur (such as in 
the @Be0 structure). It is impossible in 
such a structure for more than half the at- 
oms to have regular tetrahedral coordina- 
tion, as at most two of the angles of each 
ring of four bonds can be 109”28’. 

A constraint with far-reaching conse- 
quences and that leads quickly to difficult 
and unsolved problems is the requirement 
that cation * . * cation and anion * . * anion 
distances exceed bonded cation-anion dis- 
tances. There is no a priori reason for this 
to be true, and indeed it is not in substances 
such as peroxides with O-O bonds, but in 
the absence of metal-metal or anion-anion 
bonding it is a very good working hypothe- 
sis. This constraint provides an upper limit 
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of 12 to coordination numbers. An example 
is provided by the structure of WA&,. In 
practice the maximum coordination num: 
bet-s for different compositions are less. For 
compounds AX, the limit appears to be 8 
and we know of no example of an oxide in 
which the average cation (or oxygen) coor- 
dination number exceeds 9. If the last num- 
ber is accepted as an upper limit then it 
follows at once that for an oxide M,O (e.g., 
Rb,O) at least half the cations must have a 
coordination number 54, despite anything 
“radius-ratio rules” might have to say to 
the contrary. Closely related is the observa- 
tion (1) that no more than two coordination 
octahedra or four coordination tetrahedra 
can share only a common vertex. As we 
show below this has interesting conse- 
quences. 

One further point deserves mention un- 
der this heading. Nature has been far more 
generous in providing us with cations than 
with anions and, until recently anyway, we 
have further biased the situation by study- 
ing almost exclusively crystals with several 
cations but only one anion. In such in- 
stances cation-centered coordination poly- 
hedra are often fairly regular but anion-cen- 
tered coordination polyhedra quite irregu- 
lar. As a consequence anion arrays are 
sometimes related to simple packings but in 
ternary, etc., oxides the cation arrays are 
those of more complex packings often such 
as occur in alloy structures. 

Anion Coordination and “Close Packing” 

In the description of atomic arrays we 
prefer nor to use the term “close-packing” 
which conjures up a mental image of 
spheres in contact, but use instead the term 
eutaxy (4) for arrays which are (approxi- 
mately) the same arrangement as the cen- 
ters of closest-packed spheres. When ar- 
rangements of connected tetrahedra and 
octahedra are considered we also use the 
term topological eutaxy. The reason for this 

is that eutactic arrays can arise purely from 
the geometrical constraints on crystal struc- 
ture. The fact that oxygen arrays are often 
eutactic in certain classes of oxide crystals 
has lead to the idea (in our opinion, com- 
pletely mistaken) that the crystal is com- 
posed of large anions “in contact” with 
small cations in the interstices. 

A little reflection would show that the 
very frequent occurrence of anti-structures 
(fluorite and anti-fluorite are familiar exam- 
ples) indicates that the occurrence of a par- 
ticular atomic arrangement cannot lead di- 
rectly to any inference about relative 
atomic sizes. Therefore it is worth inquiring 
why oxides have eutactic anion arrays so 
frequently (though not nearly as frequently 
as the text books would have one believe!). 
To do this we start with cation-centered co- 
ordination polyhedra that are octahedra 
and/or tetrahedra and connect them to 
make a crystal structure. 

If the structure has only corner-con- 
nected octahedra, and as only two octahe- 
dra can share a common vertex, the compo- 
sition is MOs. The simplest possible 
arrangement is the familiar cubic Re03 
structure. This can be described as “cubic- 
closest packed with one-quarter of the at- 
oms removed” but we note that in the topo- 
logical sense there is hexagonal eutaxy. 
This is because (5) the structure can be de- 
formed without breaking any bonds, or de- 
stroying the regularity of the octahedra, 
into metrically perfect hexagonal eutaxy. 

Other MO3 structures are of course possi- 
ble: the common pyrochlore framework 
(such as occurs for example in (Ag)SbO,) is 
not eutactic and is also rigid, in the sense 
that it cannot be deformed without deform- 
ing the octahedra. 

When one considers comer-connected 
tetrahedral arrays with composition M09, 
the very many aluminosilicate frameworks 
(such as in feldspar) come to mind. With 
reasonably regular tetrahedra, the anion ar- 
rays are very far from eutactic and, with 
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one interesting exception, are not eutactic 
in the topological sense. The exception is 
the cristobalite framework which is topo- 
logically equivalent to both hexagonal and 
cubic eutaxy (6). In its least dense arrange- 
ment the anion array is that of “cubic close 
packing with one-half the atoms removed.” 
It can be deformed without breaking bonds 
or deforming the tetrahedra into hexagonal 
eutaxy, such as occurs in orthorhombic 
Z&l2 (7), or into cubic eutaxy as in 
(Cu)FeS, or (approximately) in cr-ZnClz (8). 
A very large number of intermediate struc- 
tures are known (6). 

In contrast to the noneutactic arrays usu- 
ally found when the anion/cation stoi- 
chiometric ratio is large (as in the examples 
cited above), when the anion/cation ratio is 
lower one finds that with octahedral and/or 
tetrahedral coordination of the cations, 
topologically eutactic arrays almost always 
occur in binary crystals. The reason for this 
is found by examining the coordination of 
the anions by the cations. This must be as 
regular as possible to maximize M * . * M 
distances (i.e., the cation arrangement must 
be isonomous (9)). 

We consider just one example, that of oc- 
tahedral coordination and composition 
MOz . Octahedron edge sharing is necessary 
so that with regular octahedra, a M-O-M 
bond angle of 90” and a short M * . . M 
distance occur. With anion coordination 
0 M3 a third octahedron must be connected 
to each oxygen, and with M * * . M dis- 
tances made as large as possible one imme- 
diately arrives at the configuration shown in 
Fig. 1. As can be seen from the figure this is 
already (approximately) an element of hex- 
agonal anion packing. Units as drawn in 
Fig. 1 can only be put together in one way; 
the rutile structure is the result. In the real 
rutile structure of course the polyhedra dis- 
tort to make 0 M3 more nearly an equilat- 
eral triangle. With the unit of Fig. 1 dis- 
torted to exactly an element of hexagonal 
packing, they can be joined together so that 

(4 lb) (cl 

FIG. 1. (a) A third regular octahedron sharing a cor- 
ner with two octahedra sharing a common edge in such 
a way as to maximize the distance between the atoms 
at the center of the octahedra. (b) The same viewed at 
an angle of 90” from that in (a). (c) Showing how an 
element of hexagonal eutaxy (“close-packed” layers 
indicated by dashed lines) is obtained from the figure 
in (b). 

instead of opposite edges, other pairs of 
nonadjacent edges of a given octahedron 
are shared. The a-PbO, structure results. 
With regular octahedra the anion arrange- 
ment is not constrained to be exactly in 
hexagonal eutaxy, and the anion coordina- 
tion is less isonomous. 

With 0 M3 coordination and MO4 tetrahe- 
dra, the very open phenacite or P-S&N4 
structure results (with almost equilateral 
OM3). This structure is also topologically 
eutactic in the same way as the cristobalite 
structure is. 

Similar arguments applied to composition 
Mz03 and MO3 octahedra lead directly to 
the corundum structure as the most favor- 
able (the one with most isonomous 0 M4 
tetrahedra). With “large” cations, Nature 
prefers to have a regular OM, tetrahedron, 
but very irregular MO6 figures as in the bix- 
byite structure. 

The Nonhonded “Sizes” of Atoms 

It is clear that the bonding in crystals 
such as silicates is very similar to that in 
small molecules such as, for example, dis- 
ilyl ether, (SiH&O. As emphasized particu- 
larly by Gibbs and his co-workers (IO), 
structural details such as Si-0 bond lengths 
and Si-0-Si bond angles are essentially 
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the same in both molecules and crystals. 
Less well known, but equally true, is the 
fact that bond energies in such crystals and 
molecules are virtually identical. In fact 
even force constants are transferable from 
molecules to crystals (11). These facts sug- 
gest that a unified, covalent, description of 
bonding in both molecules and crystal 
should be adopted. From this point of view 
one is lead naturally to consider that atoms 
such as Si are larger than lighter atoms such 
as 0. 

It has long been recognized (12) that 
bond angles A-X-B (where X = C, N, or 
0) in molecules can be rationalized by a 
consideration ofA . . . B nonbonded repul- 
sions, and that indeed to a first (good) ap- 
proximationA * * * B distances are given by 
a sum of nonbonded radii (R) assigned to A 
and B (22, 13). We (5) have applied these 
radii to crystal structures such as the cristo- 
balite forms of SiO, , AlPOd, etc., which 
consist of flexible frameworks of corner- 
connected tetrahedra. We showed that, to- 
gether with the known expected bond 
lengths, these radii predicted very well the 
A-O-B bond angles (which vary over a 
wide range) in these oxides. 

Nonbonded radii, are of course, just a 
first approximation to a nonbonded poten- 
tial V(d), where d is the atom * . * atom 
distance. We have reviewed elsewhere (14) 
what is known about V(d) and its relation- 
ship to nonbonded radii R. It is sufficient to 
note here that (excluding hydrogen) the 
smallest atoms in this nonbonded sense are, 
in order of increasing size, F, 0, and N, and 
that they are significantly smaller than at- 
oms such as Al, Si, P, Si, etc. Thus in the 
hard-sphere approximation of nonbonded 
radii, R(0) = 1.12 A, R(Si) = 1.53 A. 

Once it is conceded that cations may be, 
in this sense, larger than anions, one is let 
naturally to consider the role of cation * * * 
cation repulsions in defining the coordina- 
tion of anions by cations and in determining 
the cation packing in crystals. (For conven- 

ience only, we continue to use the terms 
cation and anion for the more electroposi- 
tive and the more electronegative elements, 
respectively.) 

Coordination Numbers 

Coordination numbers in crystals are de- 
termined by the delicate balance between 
bonded and nonbonded forces, and the con- 
straints of stoichiometry. The “radius-ra- 
tio” criterion sometimes applied does not 
work as it employs inappropriate ionic radii 
rather than nonbonded radii. When the lat- 
ter are used it is the coordination of the 
(smaller) anion by the (larger) cations that is 
usually significant. The hard-sphere model 
implied by radius-ratio rules is much too 
naive for quantitative predictions; never- 
theless, it does provide useful insights. 

Consider for example the coordination of 
oxygen by silicon. With normal bond 
lengths and threefold coordination silicon 
atoms would be forced to be much closer 
than twice the nonbonded radius so that 
normally (i.e., in low-pressure structures) 
oxygen is expected to be coordinated by no 
more than two silicon atoms. (Stated differ- 
ently a preferred Si-0-Si bond angle of 
= 145” precludes 3 coordination.) Stoichi- 
ometry of SiOZ then dictates a maximum 
coordination number of 4 for silicon. Note 
that octahedral coordination of Si in SiOZ is 
precluded because Si is too “big” for OS&, 
not because 0 is too “big” for SiOs! Indeed 
if the constraint of stoichiometry is relaxed, 
SiOs coordination is observed in normal- 
pressure structures such as SiPZO, (in 
which all oxygen atoms are a-coordinated) 
and in structures with Si(OH)6 groups (15). 

Cation Packing 

From the foregoing it should be clear that 
it would be useful to consider oxide struc- 
tures in terms of cation packings. This is a 
very large undertaking, but one that we 
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have under way. We are helped immensely 
in this by the fact that in very many in- 
stances the cation packings are known alloy 
structures-with hindsight, this is not sur- 
prising. Some examples have long been 
known (e.g., spinel) but many do not ap- 
pear to have been recognized. We discuss a 
few simple, but important, examples be- 
low. 

Garnet 

Garnets, typified by grossular Ca3A12 
S&O,,, have a structure that is very com- 
plex when considered in terms of cation- 
centered polyhedra. Three coordinates (x, 
y, z) are required to specify the anion posi- 
tions, but the cations are all in special posi- 
tions at the intersections of symmetry ele- 
ments. The cation array is simply related to 
the Cr,Si(A 15) structure type with Al in the 
Si position and Ca and Si ordered on the Cr 
positions (16). Space is thus divided into 
irregular tetrahedra whose vertices are, 
however, fixed. Oxygen atoms center all 
the C+AISi tetrahedra. By requiring that 
the bond lengths be the normal ones for var- 
ious bonds, it is easy to calculate the oxy- 
gen coordinates x, y, z and the unit cell pa- 
rameter, a. (One tends to forget that in the 
early days of X-ray crystallography, light 
atom positions were often thus deter- 
mined-and that this was the original and 
only intended use of atomic radii.) The de- 
scription of the anion packing is much more 
difficult. It has been described as a packing 
of rods of alternating octahedra and trigonal 
prisms, but variations of anion parameters 
from one composition to another are diffi- 
cult to understand on this basis (17). 

Spine1 and Olivine 

It has long been recognized that the cat- 
ion positions in a normal spine1 (e.g., 
MgAl,O,) are those of the cubic Friauf- 
Laves phases (MgCuJ. Again space is di- 
vided into tetrahedra with vertices fixed by 
the symmetry. Oxygen atoms fill all the 

MgA13 tetrahedra, and again the unit cell 
parameter and oxygen coordinates are im- 
mediately obtained from the expected Mg- 
0 and Al-O bond lengths. Although the ox- 
ygen arrangement is topologically one of 
cubic eutaxy, in most spinels it is quite far 
from eutactic in the metric sense. The 
MgCuB structure has long been recognized 
as an efficient space filling with spheres of 
two different sizes, a consideration of some 
significance in discussions of pressure-in- 
duced phase transitions. 

The structure of a typical olivine (18) is 
shown in Fig. 2. On the right are shown the 
SiOr tetrahedra and the Mg atoms, and on 
the left just the cation array. The latter is 
that of N&In--a common structure type. It 
consists of Si-centered Mg, trigonal prisms 
connected in such a way that each prism 
has three caps. Note that in both olivine 
and N&In there are three crystallographi- 
tally different metal atoms. We just mention 
here that the cation packing description 
also provides a very elegant description of 

FIG. 2. The structure of olivine projected on (001) 
(setting Prima). The right-hand part of the drawing 
shows SiO, tetrahedra and Mg atoms (large circles). 
Numbers are heights (1002). On the left the SiMg, tri- 
gonal prisms are shown. These are connected into 
columns parallel to the projection axis by sharing tri- 
angular faces, and the columns are joined into corru- 
gated sheets by sharing prism edges. Alternate sheets 
are at heights differing by z = ). 
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the complex humite minerals nMg,SiO, , 
Mg(OH,Fh (19, 20 

The Olivine-Spine1 Phase Transition 

One important indication of the relative 
sizes of atoms comes from examination of 
the effect of pressure on crystals that do not 
compress isotropically. In such experi- 
ments it would appear reasonable to sup- 
pose that of the short interatomic distances, 
those that decrease the least are those be- 
tween atoms repelling each other the most. 
In olivine (Mg,SiOr) the results (21) are re- 
vealing. There are four sets of short M . . . 
MandO ’ * * 0 distances (corresponding to 
rings of four atoms MOMO). As we have 
discussed elsewhere (14), the changes with 
pressure strongly suggest that repulsive the 
forces between 0 . * * 0 at approximately 
2.6 A are less than those between Mg . * * 
Mg at approximately 3.0 A or Si . * * Mg at 
approximately 2.7 A. An analysis of the oli- 
vine-spine1 phase transition reinforces this 
conclusion. 

This phase transition occurs with a large 
decrease in volume although there is no 
change in the primary coordination of the 
atoms. Until recently, this had not been 
very satisfactorily explained, but we have 
shown (22) that it becomes immediately un- 
derstandable when the cation packing is 
considered. Thus the fairly open packing in 
olivine with SiMg, coordination transforms 
to the more efficient packing of the Friauf- 
Laves phase structure with coordination 
SiMg,, . This permits the Si * * . Mg dis- 
tances to increase substantially (to 3.37 A) 
in the denser phase, suggesting very 
strongly that it is the increasing Si . * . Mg 
repulsion energy that provides the driving 
force for the phase transition. 

Zircon, Scheelite, and the 
Zircon-Scheelite Phase Transition 

These two structures are considered be- 
cause zircon (ZrSi04) transforms to the 
scheelite (CaWO,) structure under pressure 

(23) and, just as in the olivine-spine1 transi- 
tion there is a large (11%) decrease in vol- 
ume but no change in primary coordination 
which is OZr,Si (i.e., ZrOs and Si04). 

The zircon structure is very simply re- 
lated to that of rutile (TiO&. The cation ar- 
rays are almost identical as illustrated in 
Fig. 3, with Zr and Si ordered on the Ti sites 
of TiO, (which are body-centered tetrag- 
onal as in &Hg). Each Zr,Si triangle is 
centered by oxygen. 

The cation array of scheelite is a slightly 
distorted version of cubic eutaxy with, of 
course, ordered Ca and W. This is not a 
known alloy structure, but the same array 
also occurs in the pyrochlore structures of 
AgSbOs and La2Tiz0,. Just as zircon is sim- 
ply related to rutile, scheelite is simply re- 
lated to fluorite, the difference between the 

FIG. 3. Top: A (110) layer of TiOI (rutile). Large 
circles, Ti; small circles, 0. Bottom: A (100) layer of 
ZrSiO, (zircon) to the same scale. Large open circles, 
Zr; large filled circles, Si; small circles, 0. 
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last two structures simply being that oxy- 
gen moves from the center of the tetrahe- 
dral sites (C&W* in scheelite) into CazW 
triangles. 

It is surely significant that the volume 
change in the zircon-scheelite phase transi- 
tion is very similar to that in the well-known 
i-utile-fluorite phase transition. Again an 
examination of metal * * * metal distances is 
revealing. In the low-pressure (zircon) form 
of ZrSi04 the shortest of these is Zr . . . Si 
= 2.991 A; in the high-pressure form the 
shortest such distance is Zr . . * Si = 3.347 
A. 

Conclusion 

In this paper we have attempted to 
present the rationale of our approach to ox- 
ide structures. A central feature of it is the 
belief that cation . * . cation repulsions play 
a much larger role in determining structure 
than is usually admitted. We do not, of 
course, deny the existence of anion * * * an- 
ion repulsions or that in some instances 
they may be of importance. Rather, we re- 
alize that observed structures are a result of 
a balance between all forces, attractive and 
repulsive, between like and unlike atoms. 

We have shown with a few examples that 
a deeper insight into oxide structures may 
be obtained by considering the cation pack- 
ing (rather than the anion packing) and the 
anion coordination within these arrays. 
Many other examples could have been 
given; we plan to do this (19). 
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