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Within the elastic atomic interaction approximation, conditions which are specified under Vegard’s 
rule for the concentration dependence of the multisublattice solid solution lattice parameter is satis- 
fied. The problem was studied by considering the example of two sublattice solid solutions with a 
spine1 structure. The proposed theory and experimental factors are in good agreement. 

Introduction 

Existing static-thermodynamic solid so- 
lution theories as a rule employ phenome- 
nological values for the energy mixing 
term. The connection of such values with 
crystal chemical characteristics of atoms is 
not clear. In most approximations (Bragg- 
Williams, quasichemical, and others), the 
energy change solid solution caused by var- 
ious types of elastic effects is ignored. That 
is why the thermodynamic calculation of 
structural parameters of substances is quite 

structure. However, the author believes 
that such restriction does not influence the 
essence of the conclusions, the latter being 
general in character. The exact quantitative 
conditions under which Vegard’s rule is ful- 
filled (within the proposed approximation), 
and the conditions for deviation from it for 
solid solutions with some other crystal 
structures can be obtained provided the 
structural features of the lattice geometry in 
the quasielastic crystal energy equation are 
included. 

unsatisfactory. 
Quasielastic Model of Cation-Anion In the present paper a calculation of Bonds 

multisublattice solid solution lattice distor- 
tions is provided using an elastic model (l- We will consider a solid solution with a 
6). The results of the calculations are used spine1 structure. Let the isomorphic substi- 
to study deviation from the empirical VC- tution of atoms take place in the octahedral 
gard rule which specifies a linear concentra- sublattice A[B2C1-cjB$,]04 (square brackets 
tion dependence of the crystal lattice pa- designate the atoms in octahedral posi- 
rameter. The recognition of the conditions tions). Suppose c 4 1: in the solid solution 
under which this rule is satisfied is espe- there are 2Ns, impurity ions B’, N atoms of 
cially important for controlling the compo- type A, and 2(N - NB,) atoms of type B. 
sitions of compounds. The problem was The exact position of the anion in a spine1 
studied by considering the example of two structure is determined by the anion param- 
sublattice solid solutions with a spine1 eter. Upon substituting one of the atoms in 
0022-4596183 $3.00 86 
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O-A a- 0 
FIG. 1. Oxygen ion displacement in the spine1 struc- 

0-B 8-B O-A 

ture . FIG. 2. Oxygen ion displacement for the cation sub- 
stitution in B sublattice of a spinel. 

the lattice, the anion displacement along a 
special body diagonal in the [ Ill] direction 
takes place, thus resulting in a change in the 
anion parameter. Let & (i = 1,2, . . . , 2m 
- 2) be the value of the anionic displace- 
ment from its position in the lattice. We 
believe that the mth anion will remain in its 
position, being on the boundary of pertur- 
bation region. Any anion displacement in a 

distorted chain (Figs. 1,2) leads to the inte- 
rion distance change (6). Thus, e.g., the oc- 
tahedral “cation-anion” distance reduc- 
tion by 6i is connected simultaneously, with 
a corresponding tetrahedral increase by V? 
6;. When allowing for all these lattice geom- 
etry characteristic features, the elastic 
crystal energy can be written 

E = [N - (2m - l)NBt][ki ($ + X - &)’ + 2k$ (z - J$ B - P,)‘] + ~ZVB, [G(z 

- 9X - pSv + 8,)’ + kg (; - $zf - 1”8 - a1 + &)* + . . . + kg (; - $T? 

- 1; + &m-1- &,m,))* + ;kt, [($ + 8 - & - tiS,)’ + ($ + l!? 

- 1’A + v%, - tiq. . . + ($ + x - & + ti6*(,-j) - ti8*m-,)‘]) 

where a is the cubic elementary cell param- 
eter, kj4pB,B’ is the “rigidity” of the A,B,B’ 
cation bonds with the anion in tetrahedral d= 

2tikg (; - l;) - 3kj4 (+ - p”) 

(t) and octahedral positions (o), fip~,~, are 
3kj, + 2k; 

the corresponding distances of unstrained After some transformations the quasielastic 
bonds, and x for a normal spine1 is defined energy of solid solution cation-anion bonds 
by (3 related to one formula unit is 
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C’---, 

NB 

Solving the equation system aHa& = 0 (i = 1, 2, 3, . . . , 2m-2) we define the local 
displacement from parametric positions as 

& = 

[2m - (i + I)] [(: - T J?) (ki - ki,) + k$& - kg& 

4(m - l)(kj$ + kg + 3kj4) - (2m - 3)(2& + 3kX) * 

Substituting 6i at m + m in (I) we have 

v3- 2 
E = E,, + (2/t:, + 3kjs)-’ ((k”B. - k;)(2k; + 3k$ - +‘) - 2(2k$ + 3k;)(k$& 

- kg&) (; - $s?) + 2k;l$(2k;&, - k:l; - k:&) + 3ki(k;& - k;@)C. (2) 

Making an analogous calculation, we find that for substitution in the A sublattice the 
concentration term in the quasielastic energy equation can be written 

[2(2l& + 3k$)]-' ((k$ - k;)(2k; + 3kj4) ($ + X)’ - 2(2k; + 3kj4)(kj4& 

- k:&)($ + Ti+) + 3kj4&(2ki&, - k;l,!, - kj4&) + 2k;(kj4& - khlf)). (3) 

When an atomic displacement occurs si- 
multaneously in both solid solution sublat- 
tices, it becomes necessary to add compo- 
nent (3) to Eq. (2) (for small concentrations 
the chain distortion regions caused by dis- 
placements in the A and B sublattices are 
considered independent). The equilibrium 
lattice parameter value is determined from 
the condition aE/da = 0. To within a linear 
concentration term for A displacements, 
a(c) takes on the form 

8%‘%&(2k; + 3k;)(& - &) 
a=ao- 

3k;(2G + 3kjs,) 
C 

(4) 

For B displacements the concentration lat- 
tice parameter dependence assumes the 
form 

8k”B*(3k: f 2k;)(G - &) 
a=uo- c. (5) 

where tan (I! = Q(& - B) + 8V?/9(&, - &). 
3k$(2k$ + 3ki) Then A, is found to be 

In Eqs. (4) and (5) 

a0 = 3(3& + lb&). 

Results and Discussion 

Let us define the deviation of u(c) from 
the straight line, corresponding to Vegard’s 
rule for solid solutions AI-~A&(I-~&O~ 
forc+Oandc-+ 1: 

Ai = gICzO - tan (Y 

A2 = tan a - 2 
I c =,, 
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A, = At + A0 = 
_ 162/5k$(kj4 - k$)(& - r,) 

9k;(2% + 3kj4,) 

- 8kj,(k; - k%)G - 8). (,) 
k;(2k$ + 3kj4) 

The equation for A2 has an analogous form. 
The analysis of the equations for A, and A2 
allows one to establish some characteristic 
features of the concentration parameter de- 
pendence of the solid solution lattice in a 
multisublattice crystal. 

(1) If cation displacements occur only in 
the A sublattice or only in the B sublattice, 
the VCgard rule is satisfied when one of two 
independent conditions is used: 

(a) k!&, = k$‘Bl (b) I’ApB = fi&. 

Supposing, as in earlier work (d-6), that 
bond rigidity is directly proportional to the 
formal cation charge and inversely propor- 
tional to its coordination number, condition 
(a) can be written as zA,& = ZA’g’. Thus, for 
isovalent displacements in one of the sub- 
lattices, the concentration dependence of 
the crystal lattice parameter always satis- 
fies VCgard’s rule. The bond distance can be 
represented as the summation of cation and 
anion radii. Hence, the sufficiency condi- 
tion (b) can be specified as follows: VC- 
gard’s rule holds if the radii of the substitut- 
ing and substituted cations are equal: r>yips = 
rj&. The available experimental informa- 
tion on oxygen and chalcogenide spinels is 
in good agreement with our results. In ac- 
cordance with condition (a) in solid 
solutions Zn&(l-c@-& and Zn 
A12(1-c@f04 VCgard’s rule is fulfilled 
(7). The following fact is also of interest: In 
the ZnA12(l-,jCr2,S4 system, on substitu- 
tion of Cr3+ for AP+ a linear decrease of 
lattice period is observed, while in 
ZnAl2(1-&& a linear increase is ob- 
served. Apparently there is a substantial 
difference in the nature of the cation-anion 
chemical bond in oxygen as opposed to sul- 

fide spinels, which is expressed in the fact 
that E&-o > I%~_o, while l&-s c pAl~ (4, 5). 
It is worth noting that in an isovalent dis- 
placement the deviation of a(c) from a 
straight line, corresponding to VCgard’s 
rule, may be associated either with a 
change in the cation valency state (Cal-, 
CuJhS4 (8), CuCr2(1-cjV2cS4 (9, 10)) or 
with ordering of ions in the tetrahedral or 
octahedral sublattice of a solid solution 
(e.g., in the CoRh2(1-cjCo&4 system a 
positive deviation from VCgard’s rule, con- 
nected with ions ordering in the B sublattice 
(8) is observed). 

The conditions under which (a) and (b) 
fulfill VCgard’s rule are also confirmed by 
experimental data for multisublattice solid 
solutions with perovskite (3), garnet (II, 
22), and other structures. 

(2) When cation displacements occur si- 
multaneously both in A and B sublattices, 
VCgard’s rule applies in two cases. First, 
when either of the (a) or (b) conditions is 
satisfied. Secondly, when the elastic bond 
distances and bond rigidity are such that A, 
= 0 at k,!& # kjiosp and &$ # PA?,, , i.e., 
under the condition 

2tik$(2k;, + 3kj4)(k: - kj4,)(& - r,) 
= 9kf(2k; + 3k;r)(k; - k$)(l$ - 6). (8) 

(3) Analyzing empirical data, Verwey 
stated that in solid solutions made with 
components with a similar degree of inver- 
sion the crystal lattice parameter changes 
linearly as a function of composition. Devi- 
ations from linear dependence are observed 
when normal spinels are dissolved with in- 
verted ones (Verwey’s rule (1.3, 14)). In 
this case the a(c) nonlinearity is due to cat- 
ion redistribution along nonequivalent crys- 
tallographical lattice positions. This hy- 
pothesis is substantiated by the cluster 
component model (15). It is of interest that 
the deviation from the a(c) linear depen- 
dence, as the equation analysis for A1 and 
AZ shows, is possible even when cation re- 
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distribution along nonequivalent positions inverse spinel” solid solutions. We con- 
does not occur. Thus, for a(c) to become sider the FeCr2(1-,jFe2,04 system. Pro- 
convex, it is necessary that A1 > 0, A2 > 0, ceeding from the crystal field stabilization 
while for a(c) to be concave, it is necessary energy (16, I7), we suppose that with the 
that AI < 0 and A3 < 0. These conditions increase of solid solution concentration 
become suitable for a calculation criterion, Cr3+ ions will be substituted for Fe2+ ions in 
if in Eq. (8) the equality sign is replaced by octahedral positions, while Fe3+ ions (inde- 
an inequality. The result obtained supple- pendent of coordination) will be displaced 
ments the Verwey rule and needs to be into tetrahedral positions. Moreover, the 
checked experimentally (Fig. 3). degree of inversion of the solid solution 

Equations (4)-(7) permit one also to ex- should increase, while the crystal lattice pa- 
plain quantitatively the complex character rameter should decrease. Experimental 
of the a(c) dependence for some “normal- data (18) contradict such a conclusion. The 
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FIG. 3. Possible types of concentration dependence of a(c) crystal lattice parameter of spinels. 
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TABLE I 

SOLID SOLUTIONS FOR WHICH V~GARD’S RULE APPLIES 

Solid 
solutions 

Homogeneity 
regions References 

Solid 
solutions 

Homogeneity 
regions References 

Cd,-,Zn,Cr& 
Cdl-JWW~ 
Cd,-,Fe,Cr& 
Cu,-cNicCr2S4 
Znr-&Al& 
Co,-,Ni,Cr& 
Fe,Cu,-,Cr& 

(8) 
(8) 
(8) 
(8) 
(8) 
(8) 

(21) 

05c51 
05c51 
osc5 1.9 
0~~~ 1.72 
0 5 c 5 0.4 
0 5 c 5 1.3 
0 5 c 5 1.5 

(22) 
(23) 
(24) 
(24) 
(24) 
(24) 
(24) 

calculations show that A0 > 0, if Cr3+ ions 
are substituted for Fe3+ ions in octahedral 
positions (when c + 0). When c + 1 Fe3+ 
ions must be substituted for Cr3+ ions in 
octahedral positions and Fe2+ ions for Fe3+ 
ions in tetrahedral positions, AzO > 0, Azt < 
0, A2 < 0. Hence, a(c) should have a sig- 
moidal character. Rigidity bonds were cal- 
culated using formula 3 from ref. [2]. Fur- 
thermore, the calculations showed that the 
character of a(c) for solid solutions in 
which cation displacement occurs only in 
tetrahedral or only in octahedral positions 
of the spine1 lattice is evidently impossible. 
It should be noted that a nonlinear a(c) 
curve character was found on investigation 
of heterovalent substitutions in solid solu- 
tions with the perovskite structure (29, 20) 
and in solid solutions with the garnet struc- 
ture (II). These experimental data speak to 
the correctness of the theoretical conclu- 
sion made. 

Table I contains some examples of spine1 
structure solid solutions with isovalent dis- 
placement of cations in one crystallo- 
graphic site. Vegard’s law applies to solu- 
tions of this type. 

The model under consideration can be 
used only for low concentration at either 
end of the solid solution, when defect-de- 
fect interactions are of no importance. The 
formulae obtained for a(c) do not apply to 
intermediate concentration. 

The types of spine1 solid solutions con- 
sidered in this paper are relatively simple. 
Further development of a quasielastic 
model appears to require an analysis of 
more complicated cases, such as “in- 
verted-normal spinel” or “inverted-static 
spinel” solid solutions. Nevertheless, the 
results obtained are fairly general in charac- 
ter; they account for a large part of the ex- 
perimental material, substantiating and 
confirming some empirical rules in the crys- 
tal chemistry of multisublattice solids. 

Conclusions 

A consistent theoretical scheme to calcu- 
late the distortions occurring in a solid solu- 
tion crystal lattice with several nonequiva- 
lent positions is given. Within the elastic 
atomic interaction approximation, the ex- 
act conditions under which Vegard’s rule 
holds are obtained. The calculations are il- 
lustrated by an example of a two sublattice 
spine1 structure solution. 
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