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The elastic strain energy of idealized structures related to the homologous series of chemically twinned 
phases xPbS . Bi2S3, which includes the naturally occurring sulphides lillianite, Pb3Bi2S6, and hey- 
rovskyite, Pb6Bi2S9, have been calculated using the Fourier transform method and an ionic model to 
represent the bonding. The elastic strain energy depends critically upon the distribution of the Pb and 
Bi atoms over the sites in the twin planes and the PbS-like matrix between the twin planes. The elastic 
strain energy terms so calculated do not explain why lillianite and heyrovskyite are the only stable 
compounds but do account for the fact that doping with other atoms can stabilize members of the 
homologous series not found in the pseudo-binary PbS-B& system. 

Introduction terial is determined by the width of the 
slabs of parent structure and by the nature 

The increasing use of high resolution of the interfaces between them. Materials 
electron microscopy, combined with preci- of this general type have been the subject of 
sion X-ray diffraction studies, has revealed a recent review article (2). 
that many compounds which were once be- Since the discovery of such series of 
lieved to be nonstoichiometric phases with phases there has been considerable specu- 
extensive composition ranges instead con- lation on the forces responsible for ordering 
sist of a succession of discrete phases. in these materials as they must act over 
These phases are often members of homol- what are often appreciable distances in the 
ogous series and each compound has a solid. In addition, experiment has shown 
structure closely related to that of its neigh- that often some members of a particular ho- 
bors. A very commonly occurring crystal- mologous series seem to be more stable 
lographic pattern is one in which each than others although structural differences 
member of the series consists of slabs of a between stable and unstable phases are 
parent structure which are united along pla- slight. One factor which has been shown to 
nar boundaries. The composition of the ma- be important in controlling the microstruc- 
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tures of such phases and which seems to 
contribute appreciably to both the ordering 
of the phases and their relative stabilities is 
elastic strain energy. To date elastic strain 
energy calculations have almost entirely 
been restricted to crystallographic shear 
structures, but there is no doubt that the 
calculations seem to successfully explain 
some of the puzzling details of microstruc- 
ture mentioned above (2-8) for these com- 
pounds. It is important though, to extend 
the calculations to as many alternative sys- 
tems as possible to check on their general 
applicability. 

In this report we describe the calcula- 
tions of elastic strain energy in some chemi- 
cally twinned (CT) phases. We have made 
the calculations for idealized structures 
which are closely related to minerals which 
occur in the pseudo-binary PbS-B&S3 sys- 
tem, namely heyrovskyite, Pb6Bi&, and 
lillianite, Pb3BizS6. For compactness of ex- 
pression we will use the terms heyrovskyite 
and lillianite throughout this report to refer 
to these idealized structures, but it should 
be kept in mind that the real structures, as 
detailed in the following section, are con- 
siderably different in some ways. In addi- 
tion, we have chosen to use an ionic model 
to represent the bonding in our hypothetical 
compounds. This allows a clearer picture to 
be obtained of the effects of changing the 
structures themselves without the complex- 
ity of changes in bonding obscuring the 
results. The results are discussed in terms 
of the crystal chemistry of the phases and 
also compared to the situation found in the 
naturally occurring materials, which are 
best described in terms of nonionic bond- 
ing. 

Crystal Chemistry 

The phases occurring in the PbS-Bi& 
system have been investigated a number of 
times, in view of the economic importance 
of lead minerals. Although some aspects of 

the phase relations remain obscure, it is 
agreed that in the composition region near 
to PbS, two ternary phases occur, hey- 
rovskyite, Pb6Bi2S9, and lillianite, Pb3 
Bi&. The structures of these phases are 
known (9, 10) and we will first consider 
them in an idealized form. These are illus- 
trated in Fig. 1, together with the PbS struc- 
ture. It is seen that both heyrovskyite and 
lillianite consist of slabs of the PbS struc- 
ture joined along twin planes. These planes 
are on (010) referred to the unit cells of hey- 
rovskyite and lillianite, and on (311) with 
respect to the PbS structure. The cations in 
these two phases are difficult to locate with 
precision, because of their similar X-ray 
scattering factors. However, the investiga- 
tions made to date suggest that the Bi and 
Pb atoms are located at random in octahe- 
dral sites in the matrix between twin 
planes. The trigonal prismatic sites in the 
twin planes appear to be occupied only by 
Pb atoms. 

The major difference between hey- 
rovskyite and lillianite is in the width of the 
PbS-like slabs of structure between the twin 
planes. It is easy to see that if these widths 
are varied in a regular fashion we can gen- 
erate a homologous series of phases, of 
general formula i&S,+, . The crystal 
chemistry of these phases was first de- 
scribed by Takeuchi and Takagi (21) and in 
more detail by Makovicky and Karup- 
Moller (12-24). Although a multiplicity of 
phases is readily constructed theoretically, 
a recent study has shown that only the two 
phases, lillianite and heyrovskyite, seem to 
form in the PbS-Bi& system (15) although 
other members of the series may occur in 
the Ag$S-PbS-Bi& system (12-14). For 
the purposes of the calculations it is useful 
to relate the overall composition of the 
phases to the separation between the twin 
planes. This is easily done, and it found that 
each member of the series has a composi- 
tion given by xPbS + Bi&, where x takes 
on integral values 1, 2, 3, . . . , etc. The 
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FIG. 1. The structures of (a) PbS projected onto (1 lo), (b) heyrovskyite projected onto (OOl), and (c) 
lillianite projected onto (001). The structures are shown as packings of metal-sulfur octahedra; those 
at a lower level are light and those at a higher level are dark. The structures (b) and (c) can be regarded 
as made up of slabs of PbS structures joined along twin planes, marked T, which contain cations in 
trigonal prismatic coordination. The separation between the twin planes can be expressed in terms of 
the number of octahedra separating them, n, counted in the direction of the arrows. For heyrovskyite, 
n = 7 and for lillianite, n = 4. 
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formula of these phases is then given by the 
expression Pb,B&+, = M,S,+i , where m 
= x + 2. The separation between the twin 
planes, in terms of octahedra, in the direc- 
tions indicated by the arrows in Fig. 1, is IZ, 
where n = m - 1. For example, heyrovsky- 
ite has a formulas A&S9 = Pb&i& and the 
number of octahedra in the PbS-like slabs 
between each twin plane is seven. 

When we come to consider the real struc- 
tures, it is found that they are somewhat dis- 
torted compared to the idealized forms. 
This is because Bi, and to a lesser extent 
Pb, are both lone-pair ions, and, as is typi- 
cal with such elements, coordination poly- 
hedra are often irregular so as to accommo- 
date the lone-pair electron cloud with a 
minimum of unfavorable interactions. 
Hence the octahedra tend towards square 
pyramidal form and the PbS-like layers are 
no longer cubic. 

The compounds are covalent and to a 
large extent their structures are dominated 
by lone-pair interactions. Particularly the 
distortion of the metal sulphur coordination 
polyhedra and the aggregation of the Bi co- 
ordination polyhedra into larger groups de- 
pends critically on the Pb to Bi ratio and the 
ability of the lone-pair electrons to occupy 
“empty” regions of structure (23). We 
should recall that in fact the structures of 
these compounds are very complex and 
even the PbS-like slabs are not cubic, but 
distorted variants of this structure. The 
models must therefore be taken to be con- 
siderably simplified. 

The elastic strain energy in the structures 
that we are discussing will arise at the twin 
boundaries, where a certain amount of mis- 
fit between atoms is found. In addition, the 
interactions between the Bi and S atoms, 
and Pb and S atoms in the triangular tunnels 
of the twin planes will be different than the 
same interactions in the PbS-like matrix be- 

tween the twin planes. The result of these 
factors can be described in terms of a force, 
which we call the defect force, arising in the 
twin planes. The effect of these defect 
forces will be to strain the matrix between 
the twin planes. In addition, the forces in 
each twin plane will interact with all the 
other defect forces in the crystal. The first 
of these results in a strain energy, denoted 
by ES, and the second term is regarded as a 
relaxation energy ER. The total strain en- 
ergy ET is regarded as the summation of ES 
and ER, i.e., ET = ES - ER. 

To calculate ES and ER we can use classi- 
cal elasticity theory. When a unit-volume 
element deforms reversibly by a strain in- 
crement d&ii, the strain energy density 
function is obtained by the integration of 
the work that the stress does on the ele- 
ment, i.e., 

W = JUijd&ij = (B)Cijk/Eij&k) (1) 

where C&l is the elastic constant in tensor 
form. Thus the strain energy density for a 
cubic elastic continuum has the form 

w  = (W,l(& + 42 + 43) 
+ C12k22E33 + &33&l] + &II&221 

= ~C&E$~ + E& + EL). (2) 

The displacement in the ath direction of the 
ion at r, u,(r), caused by the Pth component 
of the force at r’, Fa(r’) is given, by using 
the elastic Green’s function G&r - r’), as 

&Jr) = T T G&r - r’F’&‘). (3) 

If the defect forces repeat periodically in 
an infinite matrix, we can employ the 
Fourier transform treatment in calculating 
the strain energy. The transformed defect 
forces PO(q) and Green’s function Gap(q) 
can be written 

F&‘) = (l/N) 2 Fp(q)e+@ 
P 
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G&r - r’) = (l/N) c &p(q)e-iq(r-r’) (4) 
9 

where N is the number of primitive unit 
cells in the periodic unit cell. We can obtain 
u,(r) by substituting Eq. (4) into Eq. (3), 
thus 

u,(r) = (l/N) C em+ 2 &dq)P,(q>. (5) 
9 P 

The hkth component of the strain &hk is re- 
lated to the component of the displacement 
by 

1 aUh 
O( 

auk 
&hk = j z + z (6) 

so &hk at r in the matrix is given by 

Ehk = -6/2N) z emin’ 7 (qkGhp(q) 
9 

+ qh~k&))&3(q)- (7) 

We can now assess the ES and ER terms 
in the following way. We assume that the 
total strain energy ES in one periodic unit 
cell is given as 

Es = c (4&/3)W(r) 
I 

(8) 

where z indicates the summation of the 

strain od all atoms in a periodic unit cell, 
W(r) denotes the strain energy density of an 
iron at r, the atomic radius of which is writ- 
ten as r,. 

(al 

When the defect force FJr’) does work 
on an atom at r’, on the other hand, the 
displacement of this atom u,(r’) induced by 
another force F&“) at r” can be expressed 
in a form similar to Eq. (5), viz., 

u,(r)) = 2 2 G&r’ - r”)F@(r”) 
r” B 

= (l/N) C emi@ C G,p(q)lT;p(q). (9) 
q P 

The total relaxation energy ER in a periodic 
unit cell then has the form 

where 2 has the same meaning as in 

Eq. (8). ” 

Calculations 

Periodic Unit Cells 

To make use of the Fourier transform 
method, it is necessary to construct peri- 
odic unit cells for each phase investigated. 
In the main these unit cells will correspond 
to the idealized crystallographic unit cells. 
Two examples are shown in Fig. 2, which 
represents the projection of the unit cells 
onto the (001) plane. The unit cells of the 

(b) 

FIG. 2. The periodic unit cells of two phases in the xPbS . B&S, homologous series, (a) 5PbS . Bi2S3, 
and (b) 6PbS . Bi2S3, heyrovskyite. Large circles represent S2- ions and small ones cations (BP+ or 
Pb*+). Two (001) planes, the ions on one of them being represented as open circles and the ions on 
another one closed circles, are stacked in turn along the direction parallel to the vector C. 



LEAD-BISMUTH SULPHIDE STRAIN ENERGY AND STABILITY 289 

other hypothetical phases are similar, dif- 
fering from the two shown only in the sepa- 
ration of the twin planes and the width of 
the PbS-like slabs. 

Each periodic unit cell is defined by vec- 
tors A, B, and C which can be constructed 
from a linear combination of primitive 
translation vectors a, b, and c which we can 
relate to the lattice constant of PbS by geo- 
metrical methods, If we write the vectors a, 
b, and c as the product of unit vectors i, j, 
and k along the three orthogonal axes and 
the absolute values a, b, and c, so that 

a = ai b = bj c=ck (11) 

and take the lattice parameter of PbS to be 
0.59362 nm (16) we find that a = 0.37782 
nm, b = 0.091438 nm, and c = 0.20988 nm. 
In terms of the primitive translation vectors 
a, b, and c we can also write 

A = 36a 

B = (8 + 4n)b 

C = 18a + c 

(12) 

where IZ represents the number of octahe- 
dra in the PbS-like slab between the twin 
planes, as specified in Fig. 1. 

From these unit cell data we can con- 
struct the macroscopic structure of each of 
the hypothetical idealised xPbS * Bi& 
phases by using the formal geometrical 
transformation T given by 

T = n,A + n2B + n&. (13) 

As the defect forces must repeat under the 
translation T, all transforms P(q) of the 
forces in Eq. (4) vanish unless q reflects this 
translation. That is, 

F(r + T) = (l/N) c E(q)e-iq(r+” = F(r). 
9 

(14) 

Therefore 

exp(-iqT) = 1 (13 

and 

qT = 2rx(integer) 

Each component of the wave vector q can 
be written 

q = Lql + Mq2 + Nq3 
(16) 

= q,i + q,j + q,k 

where 

= (&8a)i - (dc)k 

= {7r/(4 + 2n)b}j (17) 

and L, M, and N are integers and i, j, and k 
are unit vectors along the x, y, and z axes, 
respectively. From these relations, qx = 
Ldl8a, qy = MA(4 + 2n)b, and qz = (2N - 
L)T/c. The elastic strain energy is then ob- 
tained by a summation over the first Bril- 
louin zone of the lattice, i.e., 

-?rla 5 qx < ?rla -rib I qy < db 

-dc 5 qz < 

and the number of primitive unit cells 
periodic unit cell is 

dC 

per 

N = A@ x Cl 

a(b x c) 
= 36(8 + 4n) (18) 

Use of an Ionic Model 

As outlined in the introduction, we are 
exploring the effects of elastic strain energy 
on the stability of various members of a ho- 
mologous series of CT phases. Because of 
this, it seems reasonable to begin with a 
model which allows the elastic strain en- 
ergy to be easily calculated. There is no 
doubt that an ionic model fits this role well. 
The interactions are easily visualized and 
because ionic radii in oxides are fairly pre- 
cisely defined and are partly defined for sul- 
phides (21, 22) they can be quantified. It is 
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FIG. 3. The two models chosen for cation distribution around the twin plane trigonal prismatic sites 
in the xPbS . B& phases: (a) model 1, (b) model 2. 

important, though, to remember that the 
results so calculated will, as they stand, be 
more relevant to hypothetical “ionic” type 
phases similar to oxides or fluorides than to 
covalent or metallic sulfides. 

It is useful, however, to draw attention to 
one feature of the calculations which does 
not depend upon the bonding model used. 
This is that the elastic strain energy does 
not depend upon the dirzcfion of the defect 
forces, only on their magnitude. Clearly the 
tension in a lattice, to a first approximation, 
does not depend upon whether the lattice is 
slightly dilated or slightly compressed. In 
terms of the calculations this is taken care 
of by using IF21 terms in the equations 
rather than F terms for the force involve- 
ment. Because of this, the ionic model is 
rather more applicable to other bonding sit- 
uations than may appear at first sight. 

Ionic Distribution 

In the real structures of heyrovskyite and 
lillianite the Pb and Bi atoms in the PbS-like 
regions are distributed at random or par- 
tially at random over the available posi- 
tions. It is impossible to calculate the elas- 
tic strain energy using the Fourier 
transform method with random atom distri- 
butions. Because of this we have had to 
distribute the ions around the trigonal py- 
ramidal twin plane sites in a regular fash- 
ion, and have chosen two models for this 
distribution. The first distribution, model 1, 
is illustrated in Fig. 3(a) and the second dis- 

tribution, model 2, is illustrated in Fig. 3(b). 
We should also note that in the phase 2PbS 
* Bi2S3 the distribution model 2 is not possi- 
ble, and we are only able to calculate the 
elastic strain energy for the distribution 
model 1. For all the other phases, both dis- 
tributions are possible. 

Defect Forces and Strain Energies 

To calculate the elastic strain energy in 
these phases we have employed the same 
Green’s function used by Stoneham and 
Durham (17) for a cubic elastic continuum, 
as PbS is cubic itself. In the Green’s func- 
tion we have employed the elastic con- 
stants for PbS reported by Ramachandran 
and Wooster (18), that is,’ 

Cl1 = 63.66 eV * nmm2 

Cl2 = 23.72 eV * nmd2 

CM = 15.60 eV * nmp2. 

To calculate the defect forces we have 
considered the Coulomb and Born-Mayer 
interactions between nearest neighbor ions, 
i.e., 

f = ZiZje*/t$ + AijBij eXp(-Bijrij) (19) 

where zie and zje denote the charges on 
neighboring ions i and j, and rij is the sepa- 
ration of these ions. The constants A, and 
Bij are estimated following Huntington (19) 
and, for the interaction between Pb and S 

’ eV = 1.602 x lo-l9 J. 
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Id) 

FIG. 4. The defect forces, shown as arrows, acting in two members of the xPbS . B&S3 phases. (a) 
represents the lillianite structure and refers to ions distributed as in model 1, and (c) the heyrovskyite 
structure in which ions are distributed as in model 1; (b) represents the lillianite structure and refers to 
ions distributed as in model 2, and (d) the heyrovskyite structure and model 2. 

atoms, are found to be A = 5.5977 x lo6 
eV, B = 55.7 nm-i. The Born-Mayer pa- 
rameter A, between Bi and S atoms, was 
obtained by a scaling procedure (20) and 
the parameter B for Bi-S interactions was 
assumed to be equal to that for Pb-S inter- 
actions. Thus, for Bi-S we have employed 
A = 2.9192 x lo6 eV and B = 55.7 nm-i. 

The ionic radii used in these and other 
calculations were Pb2+ = 0.118 nm, Bi3+ = 
0.102 nm, S2- = 0.184 nm (21). 

The defect forces generated in this way 
for heyrovskyite and lillianite, for the 
atomic distribution models 1 and 2, are 
shown in Fig. 4, and the numerical values 
of the forces are indicated in Table I. The 
defect forces for the other hypothetical 
phases are similar to those for heyrovskyite 
and lillianite. 

Results and Discussion 

The results of the calculations of the elas- 
tic strain energy ET = Es - ER are shown in 
Fig. 5, where models 1 and 2 (denoted by A 

and B) refer to the two different cation dis- 
tributions shown in Fig. 3. We can point out 
that the strain energy for both models of 
cation distribution is the same for the phase 
with n = 2, i.e., the hypothetical PbBi&. 
For the other phases, model 1 shows that 
the phase with n = 8, i.e., Pb7Bi2Si0, has 
the lowest strain energy. In terms of model 
2, as mentioned above, the strain energy of 
the phase at n = 3, i.e., Pb2Bi2Ss, cannot be 
calculated, but of the other phases, hey- 
rovskyite has the lowest strain energy, and 
lillianite has only a slightly lower strain en- 
ergy than the phase with the second lowest 
strain energy at n = 6, i.e., PbSBi2S8. 

An interesting result, and one which is 
immediately apparent, is that the rather 
small change in cation distribution de- 
scribed in Fig. 3 and used in this report 
makes a great deal of difference to the elas- 
tic strain energy of these phases. If we 
could therefore adjust the cation positions 
with complete flexibility, we could change 
the elastic strain energy almost at will be- 
tween the bounds set by the limiting cation 
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TABLE I 

THE DEFECT FORCES IN LILLIANITE AND HEYROVSKYITE 

Compound 

Lillianite 

Heyrovskyite 

Model 1 (eV . nm) Model 2 (eV . nm) 

fix f,  L f, 

0.121030 0.0 0.389791 0.0 
0.234351 0.0 0.234351 0.0 

-0.618908 0.363857 0.321985 0.197023 -0.218439 0.142542 0.955852 0.430401 

0.121030 0.0 0.389791 0.0 
0.234351 0.0 0.234351 0.0 

-0.618908 0.363857 0.321985 0.197023 -0.218439 0.276923 0.430401 0.630631 
-0.134381 0.325221 -0.447916 -0.216804 

0.134381 0.325221 

6 
40 

Lllllanlte , LHeyrovskylle I 

FIG. 5. The elastic strain energy in eV nmm3 for the homologous series of phases xPbS . Bi2S3, 
plotted against the number of octahedra separating the twin planes, n in these phases. The naturally 
occurring phases lillianite and heyrovskyite correspond to n = 4 and n = 7, respectively. The full line 
refers to cations distributed as in model 1, and the dotted line to cations distributed as in model 2. The 
vahte for n = 2 is the same in both models. 

FIG. 6. Stability of members of the homologous series of phases xPbS . Bi&, A&, plotted against 
the number of octahedra separating the twin planes, n in these phases. Only those phases with negative 
values of A& are stable with respect to disproportionation. The full line refers to cations distributed as 
in model 1, and the dotted line to cations distributed as in model 2. 
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distributions. A change in the cation distri- 
bution models will thus be expected to have 
equally large effects on the elastic strain en- 
ergy. We can note from Fig. 3 that in the 
two ionic distributions chosen we have con- 
strained Bi3+ to the octahedral sites. If we 
allow the Bi3+ to move into the trigonal 
sites in the twin planes separating the rock- 
saltlike slabs, then an even greater degree 
of flexibility would be anticipated. There 
seems little doubt, therefore, that a cation 
distribution could be found which would 
give almost any one of these structures 
minimum elastic strain energies. 

Before considering the implications of 
this result in more detail it is of interest to 
obtain an estimate of the relative stabilities 
of these phases with respect to elastic strain 
energy. To do this we have considered 
whether the total strain energy of a system 
would increase or decrease if the crystals 
were to disproportionate into the neighbor- 
ing phases. In the present case we would 
therefore consider a disproportionation of 
the type 

2xPbS + Bi2S3 + 
(x + l)PbS * B&S3 + (x - 1)PbS * Bi2S3. 

If the total strain energy falls during this 
change we consider that the xPbS * B&S3 
phase would decompose, while if the elastic 
strain energy increases the xPbS . B&S3 
phase would be stable. 

The results of this calculation are shown 
in Fig. 6, where it should be noted that only 
those phases with negative values of AET 
are stable. In terms of model 1 for the cat- 
ion distribution, the phases n = 4, 5, and 8 
are stable, while the II = 9 phase is only 
marginally unstable. In the case of model 2 
we have more restricted data which show 
only the phases IZ = 6 and 7 to be stable, 
which is almost the converse of the result 
for model 1. It is interesting that in neither 
model are both the naturally occurring 
phases heyrovskyite and lillianite stable. In 

model 1 lillianite, n = 4, is stable while in 
model 2, heyrovskyite, n = 7, is stable. 

The results show that the elastic strain 
energy of these phases, and their stability, 
in so far as this depends upon elastic strain 
energy, is very dependent upon cation dis- 
tribution. If we consider the elastic strain 
energy, we see that for one cation distribu- 
tion this term falls steadily as the size of the 
rocksalt slabs increase while in the other 
situation explored the elastic strain energy 
seems to increase. It is of interest to con- 
sider whether this would cause the cation 
distributions to change in the solid, so as to 
achieve a minimum strain energy. This 
seems reasonable, as another fairly small 
energy term, crystal field stabilization, does 
act in this way and does seem to control 
cation distribution in oxides such as 
spinels. In the same way, if we replace a 
cation by a dopant we will get a change in 
elastic strain energy and stability. Hence 
doping may well have a significant effect 
upon which phases may form in nature. 
Thus the results reported by Mackovicky 
and Karup-Mgller (22-14), in which the 
presence of silver in naturally occurring 
phases stabilizes some structures, are un- 
derstandable in these terms, although other 
explanations are also possible. 

The results obtained do not explain why 
the phases heyrovskyite and lillianite are 
the preferred phases found in nature. This 
fact underlines the shortcomings of the 
ionic model in such obviously covalent 
compounds. However, they do show that 
an ionic material with n equal to 2 should be 
fairly stable. This is found to be so, as the 
material is CaTi204, a well-known and rela- 
tively ionic phase. The model also suggests 
that for such fairly ionic materials, it values 
from 3 to 7 should be unfavorable, but com- 
pounds with n equal to 8 or above may 
form. If the degree of ionicity is decreased, 
and the compounds become more covalent 
in nature, the elastic strain energy as we 
have calculated it will decrease. This is be- 
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cause the defect forces which cause the 7. E. IGUCHI AND R. J. D. TILLEY, J. Solid State 

strain originate in the repulsion and attrac- Chem. 32, 221 (1980). 

tion of ionic species. Hence if elastic strain 8. E. IGIJCHI AND R. J. D. TILLEY, J. Solid State 

is important in stabilizing these materials, 
Chem. 37, 112 (1981). 

the effects will be more pronounced in 
9. Y. TAKEUCHI AND J. TAKAGI, Proc. Japan Acad. 

SO,76 (1974). 
more ionic materials. It would therefore be IO. J. TAKAGI AND Y. TAKEUCHI, Acta Cryrstallogr. 

of some interest to try to prepare these B28, 649 (1972). 

homologs in oxide or fluoride systems. Il. Y. TAKEUCHI AND J. TAKAGI, Proc. Japan Acad. 
50.843 (1974). 
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