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The energy band structure of niobium monoxide was calculated by Augmented Plane Wave tech- 
niques, including detailed calculations of the potential between APW spheres in the lattice. Predictions 
of isotropic electronic transport parameters were made from the band structure. The results yielded a 
density of states which was compatible with the X-ray photoelectron spectrum of the material. The 
band structure was consistent with a material with highly metallic properties. The work function was 
calculated as 9.4 eV, larger than observed. This difference may be due to an assumed one-electron 
charge transfer between the Nb and 0 APW spheres. Hall coefficients calculated from the band 
structure fell within observed ranges, but transverse magnetoresistances were larger than observed. A 
variety of possible phenomena were advanced to account for this discrepancy. 

Introduction 

Niobium monoxide, NbO, exhibits sev- 
eral properties which set it apart from other 
transition metal oxides and other oxides of 
niobium. These include high electrical con- 
ductivity, a positive temperature coefficient 
of electrical resistivity (I), plasma reso- 
nance effects (2), large magnetoresistance 
(3), low Peltier coefficient values (4, and a 
silvery luster. These properties (with the 
exception of large magnetoresistance) are 
usually associated with metals, not ceramic 
oxides. 

Other calculations of the NbO band 
structure were carried out by Honig et al. 
(3) using the Harrison (5) technique, and 
recently by Wimmer et al. (6) using the self- 
consistent Augmented Plane Wave (7) tech- 
nique. Honig and colleagues’ largely quali- 
tative results indicated that electrons and 

r Supported in part by NSF Grants GH34314 and 
DMR 79-06886. 

holes in several bands were involved in 
transport phenomena. In this paper a band 
structure calculation is presented, based 
primarily on the Augmented Plane Wave 
technique. This computation has led to a 
set of dispersion curves along the principal 
symmetry directions in reciprocal space, 
and to a density-of-states curve which can 
be directly compared with spectra obtained 
from X-ray photoelectron spectroscopy. 
The dispersion curves serve as a basis for 
calculating a variety of electronic transport 
coefficients which can, in some cases, be 
compared with published experimental 
results. 

Although NbO was first synthesized over 
100 years ago (a), extensive studies of its 
physical properties are limited. Work has 
been reported by Meissner et al. (9), Pol- 
lard (IO), Pollard and Reed (II), Robertson 
and Rapp (4), Honig et al. (Z), and Honig et 
al. (3). NbO is stable over a moderately 
wide stoichiometry range (NbOx, x = 0.98 
to 1.03). Many of these studies were based 
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FIG. 1. Crystal structure of NbO. 

on nonstoichiometric material. If one ex- 
cludes nonstoichiometric samples, the re- 
maining data are insufficient to provide a 
reliable comparison with calculation (which 
is limited to stoichiometric material by 
computational constraints). Therefore, 
comparisons will be made with nonstoi- 
chiometric experimental data. Certain of 
the comparisons seem to suffer from stoi- 
chiometric mismatches. These will be 
noted where they are believed to have oc- 
curred. 

Calculational Technique 

The computational technique described 
below has been discussed elsewhere in de- 
tail (12). Readers interested in the computa- 
tional details of the computer programs 
used in this work are referred to that source 
for further information. The overall proce- 
dure may be briefly summarized as follows. 

The crystal structure of stoichiometric 
NbO is depicted in Fig. 1. This structure is 
related to the rocksalt (NaCl) structure by 
ordered omission of one-third of the anions 
and cations. The cube edge a in this struc- 
ture has a length of 4.21 A. From this 
known structure, an electronic band struc- 
ture was derived for noncorrelated elec- 
trons using the Augmented Plane Wave 
(APW) pseudopotential technique (7). 

The APW matrix elements M’j are given 
by 

-4~ 2 S’, eXp(ikij * r,) Ga 
Y 

in which ki and kj are the wavevectors of 
two basis functions considered by this ma- 
trix element, E is the eigenstate energy, f10 
is the volume of the crystal unit cell of the 
material under consideration, S, is the ra- 
dius of the vth APW sphere, kij = ki - kj, ru 
is the position vector of the center of the 
uth APW sphere, and Gi,’ is given by 

Gy = (ki . kj - E)ji(lkijlS,)llkijl 
lmax 

- 2 (21 + 1) P/(/ii * kj) 

I=0 

in which the Pi’s are associated Legendre 
polynomials, the jl’s are spherical Bessel 
functions of order 1, and Ri and RI are, re- 
spectively, the derivative (with respect to 
radius) and the value of the solution to the 
radial Schrodinger equation inside the vth 
APW sphere, evaluated at the sphere ra- 
dius. The sum over v above is evaluated for 
each translationally inequivalent APW 
sphere. 

Because of the large volume in the NbO 
crystal structure which is not occupied by 
ionic cores (the “vacancies” relative to the 
NaCl structure), the correction discussed 
by Loucks (7) for varying potential in the 
“flat potential” APW region outside the 
spheres was added to the matrix elements 
above. This correction takes the form 

I unitce,, exP(-lki * r) V*(r) eXp(ikj * r) d3r 

in which VA is the deviation of the potential 
from its average in the “flat potential” re- 
gion. It was found that this correction was 
significant. 

Charge densities inside the APW spheres 
were determined according to a self-consis- 
tent Dirac equation solution technique of 
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Liberman et al. (13). Ionic tailing was 
treated by Latter’s approximation (14). A 
charge transfer of one electronic charge 
(i.e., Nb+O-) was assumed between the an- 
ions and cations. This was arrived at by 
comparison of the electronegativities of Nb 
and Ti and the self-consistent calculation of 
Em and Switendick (15) of the APW band 
structure of TiO. APW lattice potentials 
were determined according to the tech- 
nique of Loucks (7) for the volume inside 
the APW spheres. This method evaluates 

cph(r - r,) = VAT@ - r,) + 

c Vf$ (r, - rp, r - r,> 
p. all neighbors 

for the vth sphere, in which VAT is the 
(spherically symmetric) potential for the 
vth sphere determined according to Liber- 
man et al., and Vt$ is the spherically sym- 
metric component of the potential of the 
pth sphere, calculated by 

in which a = /r - rfi and Y = (r - rV(. A 
similar spherical averaging was carried out 
to arrive at a spherically symmetric charge 
distribution inside each APW sphere. This 
charge distribution was then used to com- 
pute the exchange potential, using Slater’s 
free-electron approximation (16), 

VX(r - r,) = -6 c $ &, (r - r,) 1 ’ 

and the two potentials were added to form 
the total potential inside the sphere. 

Outside the spheres the potentials from 
each site were directly summed to arrive at 
the VA function above. The sphere radii 
were chosen so that the potentials were 
equal at the sphere tangent points (within 
the constraints imposed by the radial mesh 
used in the numerical approximation). In 
the calculation of lattice potentials, neigh- 
bors up to the 14th nearest were treated 
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FIG. 2. APW band structure of NbO. 

directly; neighbors further away were 
treated with the Madelung approximation 
m. 

The Loucks procedure, modified by the 
addition of “vacancy” terms described 
above, was used to obtain APW eigen- 
values along the A, Z, and A directions in 
reciprocal space. The results for all bands 
above the 0-2~ are depicted in Fig. 2. 
The connections shown in the figure were 
arrived at using the compatibility relations 
(28) and the noncrossing rule (19). 

These eigenvalues were used to con- 
struct density-of-states histograms for NbO 
by dividing the energy range into “panels” 
and counting the number of eigenstates fall- 
ing within each panel. Each eigenstate was 
assumed to carry with it enough eigenstates 
to fill $r of the reciprocal unit cell (a total of 
64 eigenvalues for each band was generated 
in the calculations, counting degeneracies). 
The panel width chosen was the smallest 
which could be used without introducing 
large variations in the histogram due to the 
coarseness of the eigenvalue mesh. The 
corresponding density-of-states histogram 
is shown in Fig. 3, smoothed by application 
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FIG. 3. Calculated density of states of NbO. 

of a Gaussian slit function of half-width 2 
eV, to simulate instrument resolution. 
Shifting the panels without changing their 
width had little effect on the histogram. The 
Fermi level shown in Fig. 3 (-0.69 Ryd- 
bergs relative to free particles) was arrived 
at by filling eigenstates starting at the bot- 
tom of the Nb 4d band (above which nine 
electrons per unit cell must be accommo- 
dated). 

Electronic transport parameters for NbO 
were then arrived at using a multiband gen- 
eralization of the technique presented by 
Harman and Honig (20). This approach 
evaluates the transport parameters by im- 
posing appropriate experimental con- 
straints on the general transport equation, 
in matrix form, 

J” e*Kl Ze3GIHz F (K,PB - K2) 

JY -Ze3GIHz 

irr 

e2K1 
e*H, 

= 
- T (GPB - G2) 

Jh” ZeK2 e*GzH, K~PB - K3) 

T 

Jb” - e2G2Hz ZeK2 7 (G2/.43 - G,) 

in which Jx and P are the electron flux in netic field (assumed to lie along the z axis). 
the x and y directions, respectively, J$ and T is the temperature, e the electronic 
and J;i are the heat flux in the x and y direc- charge, Ze the charge of the mobile carri- 
tions, and Hz is the magnitude of the mag- ers, and pa the carrier band edge energy. 5 
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is the Fermi level of the carriers (relative to 
free particles) and Ki is given by 

Ki = $ /kz: 
Ei-1?k2(d&ldk)2(afOlaE)dk 

(1 + hJd2> 

where E is the carrier energy, r the relaxa- 
tion time, f0 the Fermi-Dirac distribution 
and w is given by 

ZeH, d& 
W=nckdk 

where c is the speed of light. The Gi are 
given by 

-4 Gj = - 
I 

krnax &172k(d&ldk)3(af,&)dk 
3h2h2c k mm (1 + bY) 

where kmin and k,,, are the minimum and 
maximum wavevectors for which E is de- 
fined for the band being considered. 

The method used to arrive at electronic 
transport parameters utilized an isotropic 
band structure due to computational limita- 
tions. However, spherical averaging of the 
band structure removed all crossings of the 
Fermi level. This result is postulated to be 
due to an unfortunate selection of locations 
in the reciprocal unit cell for the calcula- 
tions and to the large number of very local- 
ized crossings of the Fermi level which are 
lost in the averaging process. 

To provide a more faithful representation 
of the electronic behavior, the averaging 
process carried out on the band structure 
itself was replaced by averaging of the 
transport integrals for each direction after 
the integration process. This procedure 
permits the integrals to treat more properly 
the most critical energy regions, namely the 
areas near the Fermi level. Since the zero- 
magnetic field electrical conductivity was 
used as a parameter in the calculation to 
determine the relaxation time, some correc- 
tion of inaccuracies in the averaging proce- 

dure is afforded by constraining the electri- 
cal conductivity to match experiment. 

The procedure of Ref. (20) was carried 
out on all bands in which any eigenvalue 
was within 10 kT (for T = 300 K) of the 
Fermi level. Six of these bands cross the 
Fermi level, three do not. Numerical inte- 
gration of the transport integrals was car- 
ried out by fourth-order Gaussian quadra- 
ture with the integration panel width equal 
to 0.16 kT. The results were found to be 
insensitive to decreasing the panel width 
and to increasing the order of the quadra- 
ture. The band edges were taken as the ei- 
genvalues at the I point (zero wavevector) 
unless an extremum was present in the s(k) 
curve, in which case the extremum was 
used. 

As mentioned above, the experimental 
zero-field electrical conductivity was used 
to determine the relaxation time constant Q-~ 
in the expression 

in which Q- is the relaxation time, E the elec- 
tron energy, and r takes integral values be- 
tween 0 and 2 depending on the scattering 
mechanism investigated. Results for the 
three mechanisms are quoted below, based 
on conductivity values of Pollard and Reed 
(II). Electrons in lower shells were ac- 
counted for by an appropriate addition to 
the wavevector (extended zone scheme). 
The lattice thermal conductivity was arbi- 
trarily assigned a value of 0.1 of the elec- 
tronic thermal conductivity at 300 K. No 
experimental value for the lattice thermal 
conductivity is available in the literature. 

Transport parameters determined by this 
procedure are given in Table I. In these ta- 
bles, 7 is the relaxation time, u the trans- 
verse electrical conductivity, P the trans- 
verse Seebeck coefficient, K the transverse 
thermal conductivity, R the isothermal Hall 
coefficient, 7 the transverse Nernst coeffi- 
cient, m the Righi-Leduc coefficient, and J 
the Ettingshausen coefficient. L is the 



TABLE IA 

NbO TRANSPORT PARAMETERS AT 100 Ka 

Magnetic 
field (G) Parameter 

Gaussian units 

r=O r= 1 r=2 

100,ooO 

6.327303E 18 8.355675E 1 l.l02327E-I5 
5.3OOOOOE 17 5.3000OOE 17 5.3OOOOOE 17 
7.170307E -9 7.352868E -9 7.538359E -9 
1.476487E 7 1.523745E 7 1.567037E 7 
2.786E- 13 2.875E- 13 2.957E- 13 

5.3OOOOOE 17 
7.170307E -9 
1.476487E 7 
5.273750E-26 

-6.782951E-16 
1.159289E -7 

-1.406196E-17 

5.3000OOE 17 5.30OOOOE 17 
7.352868E -9 7.538359E -9 
I .523745E 7 1.567037E 7 
5.650115E-26 6.026424E-26 

-7.203023E- 16 -7.620243E-16 
1.144682E -7 1.132251E -7 
1.337659E- 17 -1.275363E-17 

- 

5.299921E 17 5.299921E 17 5.299921E 17 
7.169715E -9 7.352245E -9 7.537705E -9 
1.476382E 7 1.523636E 7 1.566923E 7 
5.273734E-26 5.650097E-26 6.026404E - 26 

-6.782603E- 16 -7.202646E- 16 -7.619837E- 16 
1.159328E -7 3.144719E -7 1.132287E -7 

-1.406291E--17 -1.337751E- 17 -l..275452E-17 

o Exponential notation is used, in which E indicates that the following number is an 
exponent of IO which multiplies the preceeding mantissa. 

TABLE IB 

NbO TRANSPORTPARAMETERS AT 200 K 

Magnetic 
field (G) Parameter r=O 

0 

1,000 

TO 

UO 

PO 

KO 

L 

; 

;I 

100.000 

2.622245E 18 3.462305E 1 4.566876E-16 
2.2OOOOOE 17 2.20OOOOE 17 2.20OOOOE 17 
1.313088E -8 1.337384E -8 1.361209E -8 
1.331651E 7 1.167032E 7 1.199262E 7 
2.572E- 13 2.652E- 13 2.726E- 13 

2.2OOOOOE 17 
1.313088E -8 
1.1316518 7 
5.30579lE-26 

-5.727683E- 16 
5.383914E -8 

-7.5765398- 18 

2.20OOOOE 17 
1.337384E -8 
1.167032E 7 
5.679447E-26 

-6.096489E-16 
5.328983E -8 

-7.209516E-18 

2.20OOOOE 17 
1.361209E -8 
1.199262E 7 
6.052751E-26 

-6.465539E- 16 
5.284375E -8 

-6.876129E-18 

2.199994E 17 
1.313067E -8 
1.131636E 7 
5.305788E-26 

-.5.727632E- 16 
5.38395lE -8 

-7.576637E- 18 

2.199994E 17 
1.337362E -8 
1.167016E 7 
5.679443E-26 

-6.096434E-16 
5.329019E -8 

-7.209609E-18 

2.199994E 17 
1.361186E -8 
1.199246E 7 
6.052747E-26 

-6.465480E-16 
5.28443OE -8 

-6.876219E- 18 

r= 1 r=2 

200 
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TABLE IC 

NbO TRANSPORT PARAMETERS AT 300 K 

Magnetic 
field 
(G) 

0 

l,ooo 

100,000 

Parameter 

70 

co 
PO 
KO 

L 

; 
ii 

r) 
m 
J 

; 

x 

7) 
m 
J 

r=O 

5.348133E 17 
4.5OOOOOE 16 
1.752312E -8 
3.498786E 6 
2.592E- 13 

4.500000E 16 
1.752312E -8 
3.498786E 6 
5.354544E-26 

- 1.785275E- 16 
1.135412E -8 

-4.969063E-18 

4.50OOOOE 1.7523llE -8 16 

3.498784E 6 
5.354543E-26 

- 1.785274E- 16 
1.135412E -8 

-4.969965E- 18 

r=l 

7.059123E 0 
4SOOOOOE 16 
1.762629E -8 
3.612786E 6 
2.676E- 13 

4.5OOOOOE 16 
1.762629E -8 
3.612786E 6 
5.722936E-26 

-1.905803E-16 
1.124959E -8 

-4.719809E-18 

4.5OOOOOE 1.762627E - 16 8 

3.612784E 6 
5.722936E-26 

-1.905803E-16 
1.124959E -8 

-4.719812E- 18 

r=2 

9.307873E- 17 
4.5OOOOOE 16 
1.769663E -8 
3.719729E 6 
2.755E-13 

4.500000E 16 
1.769663E -8 
3.719729E 6 
6.090314E-26 

-2.027487E- 16 
1.116062E -8 

-4.489523E-18 

4.50OOOOE 1.76966lE -8 16 

3.719726E 6 
6.090314E-26 

-2.027487E-16 
1.116062E -8 

-4.489526E- 18 

Lorentz number, defined as 

L = 5T 

which, for a free electron gas, has a value of 
2.72 x lo-t3 in Gaussian units. Experimen- 
tal data against which these results can be 
compared are very limited, but a compari- 
son with what is available is the subject of 
the following section. 

Discussion 

It is clear that the large electrical conduc- 
tivity of NbO is explained by the numerous 
Fermi level crossings observed in the APW 
band structure. Both hole and electron type 
conduction are present in the form of nearly 
full bands (A,, &) and nearly empty bands 
(A,, As, Ai, A,) and one half-full band (&). 
Most of the bands crossing the Fermi level 
do so monotonically, but one band (A,) ex- 

hibits an energy minimum just above the 
Fermi level. This will generate an “electron 
pocket” at finite temperature. All the par- 
tially filled bands can be decomposed into 
states of predominantly Nb 4d character; 
therefore, most of the electronic conduc- 
tion in NbO involves 4d electrons. 

The results of Wimmer et al. for the NbO 
band structure show several similarities to 
these calculations. The most striking differ- 
ence between their band structure and the 
current one is the mixing of the 0-2~ band 
with the conduction band in their case. The 
present calculations predict a very small 
gap between the top of the 0-2~ band and 
the conduction band. This difference may 
be due to the lack of self-consistency in the 
present APW calculation or to the inclusion 
of a detailed intersphere potential, whereas 
Wimmer et al. used APW spheres to model 
the potential around the Nb and 0 “vacan- 
cies,” thus forcing these potentials to be 
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FIG. 4. X-Ray photoelectron spectrum of NbO. 

spherically symmetric. Another difference 
between the two calculations is the use of 
the Slater free-electron exchange potential 
in the present work, and the use of the He- 
din and Lundqvist potential by Wimmer et 
al. 

The results in Table I present a generally 
metallic picture of the transport parameters 
of the material. A quantitative calculation 
of the electrical conductivity was not un- 
dertaken due to uncertainties in the degree 
of the carrier-lattice coupling. Calculation 
of Hall mobility and carrier density is not 
warranted because the Hall coefficient is an 
algebraic sum of the individual contribu- 
tions of each carrier, and these are of differ- 
ing sign. This explains the observation that 
the calculated Hall coefficients are less than 
those observed in copper. Similarly, the 
complex band structure makes a simple in- 
terpretation of the Seebeck coefficient im- 
possible. For a free electron gas, no change 
in electrical conductivity should be seen 
during application of a transverse magnetic 
field. Indeed, the magnetoresistances cal- 
culated are quite small. More will be said 
about this last point below. The Lorentz 

numbers calculated agree quite well with 
that for a free electron gas. The discrepan- 
cies are probably due to the complexities of 
the band structure and the use of a noncon- 
stant relaxation time. 

From a computational standpoint, the 
most basic result against which the results 
quoted above can be compared is the X-ray 
photoelectron spectroscopy (XPS) spec- 
trum obtained by Honig et al. (21). This 
spectrum is approximately proportional to 
the electronic density-of-states below the 
Fermi level. The XPS spectrum results are 
shown in Fig. 4. There is a striking similar- 
ity in the appearance of Figs. 3 and 4. Com- 
parison of the calculated density of states 
with the XPS spectra of Erbudak et al. (22), 
in which the 0-2~ structure is more well 
resolved, shows even better agreement. 
This lends considerable credence to the 
overall correctness of the procedure used in 
determining the density-of-states of NbO. 
It also confirms the assumption that various 
simplifications introduced in the calcula- 
tional schemes are physically reasonable. 
The results so far described should there- 
fore form an adequate basis for prediction 
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TABLE II 

COMPARISON OF NbO TRANSPORT PARAMETERS AT 
100 kG MAGNETIC FIELD 

Param- Temperature Experimental Calculated 
eter WI” rangeh range‘ 

AP/PO 78(100) 0.10-0.35 0.000015 
295(300) 0.01-0.09 10.000001 

RI 78(100) -6.8 -+3.0 +5.3-+6.0 
295(300) -1.6 -+12 +5.4-+6.1 

(1 Value in parentheses is the temperature at which 
calculated results apply. 

b For samples 3-10 of Ref. (3); RI values are to be 
multiplied by 1Om’5 for Gaussian units. 

c R, values are to be multiplied by 10Mz6. 

of transport coefficients, which is taken up 
below. Differences between the calculated 
density-of-states and experimental X-ray 
photoelectron spectra could be due to reso- 
lution limitations of the XPS instruments or 
to the tendency of XPS to reflect the prop- 
erties of predominantly surface electrons. 

There is, however, one somewhat unsat- 
isfactory discrepancy between the current 
calculations and experimental findings. 
This pertains to the work function, which 
was estimated to be 6.5 eV. in the experi- 
mental work of Honig et al. (2Z), as com- 
pared to the calculated value of 9.4 eV. 
This disagreement may be due to assumed 
one-electron charge transfer between Nb 
and 0, which was not decreased due to the 
difficulty of handling nonintegral charge 
transfers. Also, the same comments about 
XPS made above apply to its determination 
of the work function. 

Finally, transport parameters predicted 
in magnetic field can be compared with 
measurements of Honig et al. (3). The cal- 
culated and observed ranges of transport 
parameters are shown in Table II, where 
Ap/pO represents the magnetoresistance and 
RI the isothermal Hall coefficient. The cal- 
culated Hall coefficients are within the ob- 
served ranges, but the magnetoresistances 

observed are larger than calculated by a 
factor of about 10,000. Several possible ef- 
fects observed in metals may be cited to 
explain this discrepancy. 

Several metals (potassium, indium, alu- 
minum, among others) have been observed 
to display nonsaturating magnetoresistance 
in large magnetic field which is much larger 
than the magnetoresistance predicted by 
traditional Boltzmann equation transport 
theory formulations (see Beers et al. (23), 
Lass (24)). The magnitude of the effect is 
very sensitive to sample preparation and 
handling and a detailed explanation has not 
yet been agreed upon. Lass (24) eliminated 
surface and connection effects as possible 
causes in potassium and found that the 
magnitude of the effect (as measured by the 
slope of the magnetic field dependence, 
called the Kohler slope) was influenced by 
time if the samples were kept at room tem- 
perature. Overhauser (25) has suggested 
that the effect in potassium is due to open 
orbits arising from the possible presence of 
charge-density waves. It is doubtful that 
this explanation applies to NbO. 

Alternative explanations, both classical 
and quantum-mechanical, have been ad- 
vanced to account for linear magnetoresis- 
tance effects in other metals. Herring (26) 
proposed an approach based on classical 
electrodynamic calculation of the effect of 
randomly placed inclusions and/or crystal 
defects, which are known to exist in all 
experimental samples. In NbO, the wide 
deviations from exact stoichiometry make 
presence of defects in off-stoichiometry 
material especially likely. Additionally, 
Herring observed that quantization into 
Landau levels or the effect of nonclosed 
Fermi surfaces could contribute to nonsa- 
turation in the magnetoresistance. It is diffi- 
cult to make a statement about the closed 
nature of the NbO Fermi surface based on 
the results quoted here. 

It was calculated that a 0.1 to 1% volume 
fraction of nonconducting voids would be 
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required to explain the observed Kohler 
slopes by Herring’s classical analysis 
(Stroud and Pan (27), Sampsell and Garland 
(28)). Beers (23) verified Herring’s proposal 
experimentally in indium, but observed 
slight discrepancies in some geometries. 
This observation, combined with the large 
calculated void fractions, prompted the ad- 
vancement of the quantum-mechanical the- 
ories mentioned below. 

Van Gelder (29) proposed that magneti- 
cally bound states on inclusion surfaces 
could magnify the effect of the inclusion. 
Hsu and Falicov (30) found that a linear 
magnetoresistance could be generated by 
the magnetic field magnitudes used by 
Honig et al. (3). Arora (31) predicted that 
replacement of the Boltzmann equation 
with a quantum-mechanical formulation 
could yield linear magnetoresistance even 
in a perfect lattice. 

Thus, a large number of candidate expla- 
nations exists for the anomalous magneto- 
resistance in NbO, mostly tied to imperfec- 
tions in composition, measurement, crystal 
structure, or sample preparation. Since no 
special precautions were taken by Honig et 
al. (3) to eliminate strain from the samples, 
ensure composition control, or avoid sur- 
face and crystal imperfections (in fact, the 
samples were known to be nonstoichiome- 
tric) is it likely that one or more of the 
mechanisms above was active. This could 
explain the observed factor of 10,000 dis- 
crepancy between the measured and calcu- 
lated magnetoresistances. It is hoped that 
future, more controlled work will clarify 
the causes of linear magnetoresistance and 
will provide additional data against which 
the predictions in this paper can be com- 
pared. 
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