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The use of europium as a local structure probe allowed the authors to determine the various phases 
appearing at room temperature in the NaPOFNasEu(PO& and NaSrPOrNarEu(P04)2 systems. The 
broadening of the europium emission lines in going from the calcium to the strontium phases illustrates 
the ease of movement of the [PO,] groups. 

Two structural features characterize the this rotational mobility of the [X0,] groups 
B-K#Od type structure: produces a variety of complex structures, 

(1) a central [KOJ octahedron sharing in which the rare-earth ion may occupy sev- 
corners with six tetrahedral [SO,] groups; eral different crystallographic sites (9). 

(2) Along the pseudo-three-fold axis of The analysis of the fluorescence spectra 
the octahedron, strings of potassium atoms of Eu3+ in Na3Eu(PO& has shown the exis- 
and ES0.J units (A), alternating with strings tence of two low temperature varieties 6 
of potassium atoms only (B) (I, 2). and E having europium in 8 and 3 indepen- 

At rising temperature the low tempera- dent sites, respectively. However, their X- 
ture (L.T.) B form transforms into a high ray diffraction spectra showed no percepti- 
temperature (H.T.) hexagonal a form. This ble difference. In addition, in each of these 
transformation results from the alignment phases, the position of the fluorescence 
of the potassium along the B strings and a lines 5D0 --, 7F0 indicates that the europium 
reorientation of the tetrahedra (3-5) sites have a quite similar anionic environ- 
(Fig. 1). ment and the passage from one to other 

A great number of compounds are known (6 + E) can result from a slight rotation of 
to have a structure related to B-K2S04- the [PO,] tetrahedra without changing in 
type, such as NaMP04 (M = Ca, Sr, Ba) or any way the cationic sublattice (20) (Fig. 
NaLn(PO& (Ln = rare earth). Most of 2). 
them have a H.T. hexagonal form, which Therefore, it was worthwhile to consider 
transforms into a L.T. one by appearance materials in which the energy difference be- 
of a cationic ordering in the B sublattice and tween the various [PO,] positions would be 
by rotation of the [X0,] groups around the so small that, in terms of anionic environ- 
common comers with the central octahe- ment, a continuum of crystallographic sites 
dron. This rotation leads to the various an- could exist for the B chain cations. 
ionic environments required by the B cat- Such a situation was found in the low 
ions (6-8). In the Na&z(PO& L.T. phases temperature phases of the systems Na 
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FIG. 1. Main features of the a-K*SO,-type structure. 
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FIG. 2. 5Do + ‘F. emission of Eu3+ in Na3Eu(PO& FIG. 2. 5Do + ‘F. emission of Eu3+ in Na3Eu(PO& 

under 380 nm excitation (T = 80 K): (1) B-type; (2) 6- under 380 nm excitation (T = 80 K): (1) B-type; (2) 6- 
type + e-type. 

CaPOrNa3Eu(P0& and NaSrPOd-Na3 
Eu(PO& by comparison of their struc- 
tural and optical properties. 

Crystallographic Study of the 
NaCaPOrNa3Eu(PO& and 
NaSrPO,Na3Eu(PO& systems 

Although the NaCaPO, L.T. phase is 
known, its symmetry and lattice parame- 
ters are still much debated (6, 11, 12). Sin- 

TABLE I 

5D0 + ‘Fj (j = 0, 1, 2) EMISSION OF Eu3+ IN 

NA~.,CA,.~EU,,,,(PO~), (a TYPE) UNDER 380-nm 
EXCITATION (T = 80 K) 

a Type T=80K 

A (nm) E (cm-‘) 

519.9 17,244 

588.7 16,986 
593.3 16,855 
594.8 16,812 

611.9 16,342 
613.7 16,295 
615.7 16,242 

619.6 16,139 
622.4 16,067 
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FIG. 3. Composition ranges of the different structural types obtained with rising Eu3+ content. 

gle crystals were prepared from a Na2M004 
flux. The orthorhombic lattice constants of 
the crystals are related to those of 13-K2S04 
in the following way: 

aNaCaP04 = 3ap-K2S04 

b NaCaPO4 - -b @K2SO4 

CNaCaPO4 e Cp-K2SO4* 

A more detailed structural determination is 
in progress. 

Single crystals of NaSrP04 were also 
grown in a NafMoO4 flux. They have a hex- 
agonal symmetry with parameters a = 

TABLE II 

5Do + ‘Fj (j = 0, 1) EMISSION OF Eu3+ IN 
NA,.&cA~.~EIJ,,~PO~~~ (b TYPE) UNDER 380-nm 

EXCITATION (T = 80 K) 

b Type 

Na2.&ao.&b.dPOd2 

T=80K 

A 0-n-n) E (cm-‘) 

VI,, + ‘F,, 579.4 17,259 
579.7 17,250 
580.0 17,241 

5Do + ‘F, 587.9 17,010 
588.3 16,998 
590.0 16,949 
592.0 16,892 
595.2 16,801 
596.2 16,773 
597.2 16,745 
597.9 16,725 
599.9 16,669 

27.23 A, c = 36.36 A. These large dimen- 
sions, confirmed by electron diffraction, 
make an X-ray structural study very diffi- 
cult. However, the reciprocal lattice shows 
a hexagonal sublattice whose parameters, 
a0 = a/5, co = c/5, are close to those of OL- 
&So.,. 

At low temperature the NaCaP04- 
Na3Eu(P04)2 phase diagram shows three 
main regions. 

The first domain (a) exists up to compo- 
sition Na2.25Cal.50Eu,,.25(P04)2 with the 
structure of NaCaP04 (L.T.). The super- 
structure lines disappear already for sam- 
ples with low europium content and then 
the spectrum can be indexed on the basis of 
the P-K2SO4 type structure. 

The second region (b) appears up to the 
composition Na2.WC~.20Euo.W(P04)2. Its 
structure is that of NaJNd(V04)z (L.T.), 
where the neodymium atoms occupy three 
different crystallographic sites (23). 

TABLE III 

SD0 + ‘F. EMISSION OF Eu3+ IN 

Na2.9sCao.,oEuo.a(P031 (c TYPE) UNDER 380-nm 
EXCITATION (7’ = 80 K) 

T=80K 

A (nm) E (cm-‘) 

579.1 17,268 
579.5 17,256 
579.8 17,250 
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FIG. 4. Emission spectrum of Eu3+ under 380 nm excitation (T = 80 K) in (1) Na2.&a,,&~,,(P0,), 
(a type); (2) Naz.45Srl,lEuo.45(P032 (d tW. 

500 -‘F,, 

T  q 80K A., ) 
578 580 582 A(nm) 

1 _ NaaO Caw Euaeo(PO&, ( b - type) 
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‘O,-, +‘Fo 
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2 _ Na2,,, Sro,o Eu~(PO& (e -type) 

FIG. 5. Emission spectrum of Eu3+ under 380 nm excitation (T = 80 K) in (1) Na2,&a,,40E~,80(P0,), 
(b type); (2) Na~.&h&h.dl’O~lz (e type). 
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The upper limit of the third domain (c) 
corresponds to Na,Eu(P04)2 composition. 
Its diffraction spectrum can be indexed 
with the Na3Eu(P04)2-type structure (6 or 
+ 

The NaSrP04-Na3Eu(P04)2 phase dia- 
gram shows only two existence regions at 
low temperature. The first domain (d) with 
the NaSrP04 (L.T.) structure exists up to 
composition Na2,4&i,ioEuo,45(P04)~. 

A single crystal diffraction study of this 
material pointed out the positions of the 
heavy atoms but did not allow us to localize 
the [PO41 positions. 

The second domain (e) extends up to 
Na3Eu(P04)* and is isotypic with Na, 
Eu(P04)~ (6 or E). Figure 3 summarizes 
these results. 

Optical Study of the 
NaCaPO,(L.T.)-Na3En(PO& @+E) and 
NaSrPOd(L.T.)-Na~Eu(POq)z (a+~) 
systems 

The 5D~ + ‘F’ (j = 0, 1, 2) europium 
emission has been studied under 380 nm ex- 
citation at 80 K for compositions represent- 
ing the five existence regions observed. 

The spectrum of the phase with composi- 
tion (a region) Na2.20CaI.aoEuo.20(P04)2 
shows one, three and five lines forj = 0, 1, 
2, respectively (Fig. 4-l). The europium 
atom occupies, therefore, only one type of 
noncentrosymmetric site and must be sta- 
tistically distributed in the B chain sublat- 
tice. This fact confirms the isotypy of this 
phase with P-K2SO4. 

’ - N~,.g,C~o.~oE”ass(Po4)2 

2 - Na2.80Sr0.40 EU0,80(Po4)2 

3 - Na2.98 SroD4 Eu0.90 (PO41 2 

L_-.I....‘....l,,,,1....1 c 
579 580 Mnm) 

FIG. 6. Q, + 'F,, emission of Euf+ under 380 nm excitation ( T = 80 K) in (1) Na2.9JCao.,oEuo.a(P04)2 

Cc type); (2) Nadh&uo.8o(KU (e type); (3) Na~.db.~Euo.~(P~ (e type). 
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The spectrum of Nk&ao.db.dP04)2 
(b region) shows three 5Do - ‘Fo lines and 
nine 5D~ + ‘F1 lines which confirms the iso- 
typy with Na,Nd(VO& (L.T.) (Fig. 5-l). 

For the composition N%&ao.lo 
EI~&PO& (c region), the spectrum is 
quite similar to that of Na3Eu(P0& (6 type) 
(Fig. 6-l). 

For Na2.45Srl.loEuo.45(P04)2 Cd region) the 
emission spectrum shows the same number 
of lines as obtained in the a region. The 
width of these lines is, however, much 
liuger (Fig. 4-2). 

The SpeCtNm Of Na2.80Sro.4aEUo.so(P04)2 

(e region) is also characterized by lines 
which are very large for a crystalline com- 
pound (Fig. 5-2). 

A comparison between Fig. 2 and Fig. 6- 
2 shows clearly that the band observed for 
the QJo + ‘Fo emission in the e region can 
be considered as the envelope of all possi- 
ble 5Do --, ‘F. lines of the Na3Eu(P04)2 spec- 
trum (6 + E types). 

Tables I to V show the characteristic line 
positions of the Eu3+ emission spectra for 
the five regions under 380 nm excitation at 
T= 80K. 

This band develops into a group of nar- 
row lines as the composition comes 

TABLE IV 

‘DO + ‘Fj (j = 0, 1, 2) EMISSION OF Eu3+ IN 

Na~.4~Srl.&u&%P04)2 (d TYPE) UNDER 380-nm 
EXCITATION (T = 80 K) 

T=80K 

A (nd E (cm-l) 

579.6 17,253 

588.8 16,984 
592.5 16,878 
595.2 16,801 

611.4 16,356 
612.7 16,321 
617.4 16,197 
619.3 16,147 
622.3 16,069 

TABLE V 

5Do + ‘F. EMISSION OF Eu3+ IN 

Na2.&o.cuEuo.ss(P04~2 (e TYPE) UNDER 380-mn 
EXCITATION (T = 80 K) 

e Type T=80K 

Attri- 

Na2.&h&Uo.#O32 A (nm) E (cm-‘) bution 

sDo + ‘F. 578.6 17,283 8 
578.9 17,274 6 
579.0 17,271 8 
579.1 17,268 E 
579.5 17,256 
579.6 17,253 ii 
579.7 17,250 6 
579.8 17,247 
579.9 17,244 i 
580.0 17,241 8 
580.3 17,232 8 

closer to the limit Na3Eu(P04)2 (Fig. 6-3). It 
is worthwhile to note that the widening of 
the emission lines, which is observed as 
soon as the strontium content becomes sig- 
niflcant enough, takes place without chang- 
ing the cation positions. 

Discussion 

On the basis of these results one may 
conclude that the rare-earth ions occupy in 
the strontium phases a family of sites (d 
region) or several families of sites (e region) 
having an almost identical oxygen environ- 
ment. The large change observed in each 
case in going from the calcium to the stron- 
tium phases (Fig. 6) can be explained by the 
increasing unit cell volume and the weaken- 
ing of the M2+- 0 bonds. Both factors fa- 
cilitate the rotation of the [PO,] group. 

Such a broadening of the Eu3+ emission 
lines is normally encountered in glasses 
(14, 15). It may also be observed in crystal- 
line compounds such as fast ionic conduc- 
tors, e.g., stabilized yttrium-zirconia, in 
which the distribution of oxygen vacancies, 
due to the substitution of Y for Zr, is statis- 
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tical in the anionic sublattice. This sublat- 
tice deviates from cubic symmetry by a re- 
laxation effect with respect to these 
vacancies (16). 

In the phosphates the lack of definition at 
long range of the anionic sublattice results 
from the relative ability of [PO,] tetrahedra 
to rotate. 

In both cases, although we are dealing 
with crystalline compounds, the emission 
spectra reflect, as far as the oxygen envi- 
ronment is concerned, a situation similar to 
that observed in glasses. 
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