The Phase Relations in the In_2O_3 - A_2O_3 -BO Systems at Elevated Temperatures [A: Fe or Ga, B: Cu or Co]

NOBORU KIMIZUKA* AND EIJI TAKAYAMA

National Institute for Research in Inorganic Materials 1-1, Namiki, Sakuramura, Niiharigun, Ibaraki-ken, Japan 305

Received September 14, 1983; in revised form January 20, 1984

The phase relations in the In_2O_3 -Fe₂O₃-CuO system at 1000°C, the In_2O_3 -Ga₂O₃-CuO system at 1000°C, the In_2O_3 -Fe₂O₃-CoO system at 1300°C, and the In_2O_3 -Ga₂O₃-CoO system at 1300°C were determined by means of a classical quenching method. InFeCuO₄ (a = 3.3743(4) Å, c = 24.841(5) Å), InGaCuO₄ (a = 3.3497(2) Å, c = 24.822(3) Å), and InGaCoO₄ (a = 3.3091(2) Å, c = 25.859(4) Å) having the YbFe₂O₄ crystal structure, $In_2Fe_2CuO_7$ (a = 3.3515(2) Å, c = 28.871(3) Å), $In_2Ga_2CuO_7$ (a = 3.3319(1) Å, c = 28.697(2) Å), and $In_2FeGaCuO_7$ (a = 3.3421(2) Å, c = 28.817(3) Å) having the Yb₂Fe₃O₇ crystal structure, and $In_3Fe_3CuO_{10}$ (a = 3.3423(3) Å, c = 61.806(6) Å) having the Yb₃Fe₄O₁₀ crystal structure were found as the stable ternary phases. There is a continuous series of solid solutions between InFeCoO₄ and Fe₂CoO₄ which have the spinel structure at 1300°C. The crystal chemical roles of Fe³⁺ and Ga³⁺ in the present ternary systems were qualitatively compared.

Introduction

Recently we have established the phase diagrams of the Ln₂O₃-FeO-Fe₂O₃ systems (Ln: lanthanide elements and Y) at elevated temperatures under controlled oxygen partial pressures and reported a series of new homologous compounds $(LnFeO_3)_nFeO$ (n = 1, 2, 3 . . .) with layered structures (1). The single crystal structural analyses for $YbFe_2O_4$ and $Yb_2Fe_3O_7$ were performed by Kato *et al.* (2, 3). Yb₃Fe₄O₁₀, Yb₄Fe₅O₁₃, and the higher order compounds were analyzed by means of both electron diffraction and powder X-ray diffraction methods (4, 5). The crystal structural models for Yb Fe₂O₄ and Yb₂Fe₃O₇ are shown in Figs. 1 and 2, respectively.

Tanaka *et al.* (6) measured the electrical conductivities, specific heat, and Mössbauer spectra of YFe₂O_{4+x} (x = $-0.05 \sim$ 0.00) and observed the conductivity gap (about 10^5 ohm⁻¹ cm⁻¹) and specific heat anomaly at about 250 K. Nakagawa et al. (7) also found crystallographic transformations in YFe_2O_{4+x} at the lower temperatures. Tanaka et al. (6) concluded that the transition in YFe₂O_{4.00} belongs to the Verway type observed in Fe₃O₄ (8) and Ti₄O₇ (9). Both the Fe^{2+} and the Fe^{3+} occupy the same crystallographic site formed by a trigonal bipyramid of the oxygen ions; however, the nonstoichiometry in YFe_2O_{4+x} causes the complicated properties observed in the electrical transport phenomena, the magnetic behavior and the Mössbauer spectra. The details in the mechanism of the transitions are still open to question.

^{*} To whom all correspondence should be addressed.

FIG. 1. The crystal structure of YbFe₂O₄ (space group: $R\overline{3}m$). (R) Yb ion, (M) Fe ion, (O) O ion, (U) Yb₂O₃ layer, (W) Fe₄O₅ layer. A, B, and C indicate the positions of the ions.

In order to stop the electron transfer between Fe^{2+} and Fe^{3+} in the $LnFe_2O_4$ compounds (Ln: Er, Ho, Tm, Yb, Lu, and Y), we replaced the Fe²⁺ ion with another divalent cation such as Cu²⁺, Zn²⁺, Mg²⁺, Co²⁺, or Mn^{2+} . The compounds obtained were $LnFeCuO_4$, $LnFeCoO_4$ (Ln: Lu, Yb, or Tm), LnFeMnO₄ (Ln: Lu, Yb, Tm, Ho, or Y), and $LnFeMgO_4$ (*Ln*: Lu, Yb, Tm, or Ho) which are isostructural with $YbFe_2O_4$ (11). The phase relations in the Yb_2O_3 -Fe₂O₃-CuO system at 1000°C, the Yb₂O₃-Ga₂O₃-CuO system at 1000°C, the Yb₂O₃-Fe₂O₃-CoO System at 1300 and 1200°C, the Yb₂O₃-Fe₂O₃-ZnO system at 1300°C, and the Yb₂O₃-Ga₂O₃-ZnO system at 1350 and 1200°C were also determined by a classical quenching method (10) and the thermochemical stability conditions of each Ln $FeMO_4$ and $LnGaMO_4$ phase were reported by Kimizuka and Takayama (11). Each Ln $FeMO_4$ and $LnGaMO_4$ phase is stable above a certain temperature and decomposes to $LnFeO_3$ and MO phases or

 $Ln_3Ga_5O_{12}$, Ln_2O_3 , and *MO* phases below that temperature, respectively.

In the Ln_2 Fe₃O₇ compounds (Ln: Lu, Yb, or Tm), there are Fe_2O_3 and Fe_4O_5 layers which are separated by a Ln_2O_3 layer (3). The Mössbauer study and neutron diffraction analysis for Lu₂Fe₃O₇ and Yb₂Fe₃O₇ indicate that there may be an interaction of spins in the Fe_2O_3 and Fe_4O_5 layers (12). To study that interactions in more simple cases, we tried to replace the Fe^{2+} ion in Yb₂Fe₃O₇ with another divalent cation such as Cu²⁺ to stop the electron transfer in the Fe_4O_5 layer. In the present paper, we report the phase relations in the In₂O₃-Fe₂O₃-CuO system at 1000°C, the In₂O₃-Ga₂O₃-CuO system at 1000°C, the In₂O₃-Fe₂O₃-CoO system at 1300°C, and the In₂O₃-Ga₂O₃-CoO system at 1300°C which were determined by means of a classical quenching method. In these systems $(InFeO_3)_nCuO(n)$ = 1, 2, and 3), (InGaO₃)_nCuO (n = 1 and 2), $(InGaO_3)_nCoO$ (n = 1) which are isostructural with $(YbFeO_3)_nFeO (n = 1, 2, and 3)$

FIG. 2. The crystal structure of $Yb_2Fe_3O_7$ (space group: $P6_3/mmc$). (R) Yb ion, (M) Fe ion, (O) O ion. (U) Yb_2O_3 layer, (V) Fe_2O_3 layer, (W) Fe_4O_5 layer. A, B, and C indicate the positions of the ions.

and $InFeCoO_4$ with the spinel structure were obtained as the ternary stable phases.

Experimental

The experimental methods and apparatus used in the present study have been described in Refs. (10, 11). In₂O₃ (99.99%) was used as a starting compound. Prior to mixing, we heated it at 800°C in air for 1 day. Other starting compounds are the same as in Refs. (10, 11). Calculated amounts of each end member: In_2O_3 , A_2O_3 (A: Fe or Ga), BO(B: Cu or Co) was weighed to the nearest milligram. Each batch was thoroughly mixed under ethyl alcohol in an agate mortar and sealed in a Pt tube, and fired at successively higher temperatures until equilibrium was obtained. After each heat treatment, the specimen was rapidly cooled in water. Equilibrium was considered to be attained when the Xray powder diffraction pattern of a specimen showed no change with successive heat treatment of the specimen. Identification of phases and determination of lattice constants were performed by means of powder X-ray method on a scintillation counter diffractometer, using silicon as a standard material. Mn-filtered FeK α radiation was used for identification of all specimens and for measurement of *d*-values of compounds which contained iron. Measurement of *d*-values of other compounds was done using Ni-filtered CuK α radiation. Lattice constants were calculated by means of least squares.

Results and Discussion

[I] The Phase Relations in the In_2O_3 -Fe₂O₃-CuO System at 1000°C

In₂O₃ ("C" type rare earth sesquioxide structure, a = 10.118(Å) (13)), Fe₂O₃ (α -form, corundum) (14), and CuO (PtS structure) (15) were stable. In the In₂O₃-CuO

system, there was one stable phase of In_2 Cu₂O₅ as previously reported (15, 16). In the CuO-Fe₂O₃ system, there was a stable phase of Fe₂CuO₄ with a spinel structure which had been reported in the Cu₂O-CuO-Fe₃O₄-Fe₂O₃ system at elevated temperatures under various oxygen partial pressures (15, 17). The solid solution range of Fe₂CuO₄ in Fig. 3 was cited from the Refs. (15, 17).

In the Fe_2O_3 -In₂O₃ system, no binary compounds were detected during a heating period of 6 months.

A sample with In_2O_3 : Fe_2O_3 : CuO = 0.15: 0.75: 0.10 (all ratios given in this paper are mole ratios) which was heated for 27 days was identified as a mixture of $In_2Fe_2CuO_7$, $In_3Fe_3CuO_{10}$, and "Fe₂O₃" phases, and a sample of In_2O_3 : Fe_2O_3 : CuO = 0.20: 0.70: 0.10 was identified as a mixture of $In_3Fe_3CuO_{10}$, " In_2O_3 ," and "Fe₂O₃." The *d*-spacings of "Fe₂O₃" and "In₂O₃" showed these compounds to be solid solutions. After heating a mixture of In_2O_3 : Fe₂O₃ = 0.05: 0.95 for 30 days, a single phase having a corundum structure was obtained.

Since solid state reactions among three components were faster than those between two components of In_2O_3 and Fe_2O_3

FIG. 3. The phase diagram of the $In_2O_3-Fe_2O_3-CuO$ system at 1000°C. (A) $InFeCuO_4$, (B) $In_2Fe_2CuO_7$, (C) $In_3Fe_3CuO_{10}$, (D) $In_2Cu_2O_5$, (E) Fe_2CuO_4 , (b) In_2 $O_3: Fe_2O_3 = 0.05: 0.95$ (in moles), (c) $In_2O_3: Fe_2O_3 =$ 0.925: 0.075 (in moles).

(10), we determined the solid solution ranges, not from experiments of a binary system but from those of a ternary one. We concluded that the solid solution range of "In₂O₃" extended to a composition of In₂ O₃: Fe₂O₃ = 0.925:0.075 and that of "Fe₂O₃" was to In₂O₃: Fe₂O₃ = 0.05:0.95.

In the In_2O_3 -Fe₂O₃-CuO system, there were three stable phases, namely, InFe CuO₄, $In_2Fe_2CuO_7$, and $In_3Fe_3CuO_{10}$.

 $(InFeO_3)_n$ CuO (n = 1, 2, or 3) was isostructural with the corresponding compound (YbFeO₃)_nFeO (n = 1, 2, or 3).

The above conclusions were obtained from the X-ray powder diffraction patterns shown in Table I. The corresponding lattice constants are shown in Table II. From these results we can conclude that the Cu^{2+} ion in $(InFeO_3)_n$ CuO (n = 1, 2, and 3) occupies the position of Fe²⁺ in YbFe₂O₄, Yb₂ Fe₃O₇, and Yb₃Fe₄O₁₀, respectively.

We heated $In_3Fe_3CuO_{10}$ at 1100°C for 1 week; however, no decomposition was detected. A mixture of In_2O_3 : Fe_2O_3 : CuO = 0.40: 0.40: 0.20 was heated at 1100°C for 1 week; however, no $In_4Fe_4CuO_{13}$ was obtained, but "In₂O₃," "Fe₂O₃," and In₃ Fe₃CuO₁₀ phases were observed. (InFe O₃)_nCuO (n = 1, 2, and 3) were heated at 700°C for 21 days; but no decompositions were detected and X-ray diffraction peaks of each compound became sharper with increasing heating period. Schneider *et al.* (*18*) reported the phase diagrams of the In₂O₃-Fe₂O₃ system at elevated temperatures. They indicated that the "Fe₂O₃"

	InFeCuO ₄			InGaCuO₄			InGaCoO ₄		
h k l	d_0 (Å)	$d_{\rm c}$ (Å)	I(%)	d_0 (Å)	<i>d</i> _c (Å)	I (%)	d_0 (Å)	<i>d</i> _c (Å)	I(%)
003	8.297	8.280	21	8.276	8.274	12	8.622	8.620	15
006	4.143	4.140	33	4.137	4.137	29	4.311	4.310	23
101	2.903	2.902	100	2.881	2.881	100	2.847	2.848	95
$1 \ 0 \ \overline{2}$	2.844	2.845	5	2.827	2.825	6	2.797	2.798	5
009	2.762	2.760	56	2.759	2.758	61	2.874	2.873	72
104	2.644	2.644	92	2.627	2.628	98	2.619	2.620	100
105	2.519	2.519	85	2.504	2.505	88	2.506	2.507	73
107	2.256	2.256	10	2.246	2.245	5	2.265	2.264	5
$1 \ 0 \ \overline{8}$	2.128	2.128	21	2.119	2.119	19	2.144	2.144	25
0 0 12	2.071	2.070	2	2.069	2.069	3	_	_	_
1 0 10	1.8928	1.8927	58	1.8868	1.8860	53	1.9202	1.9199	43
110	1.6863	1.6871	70	1.6746	1.6749	68	1.6546	1.6545	57
0015	1.6540	1.6561] 13	1.6551	1.6548	6	_	_	
113	1.6549	1.6532	12	1.6415	1.6416	3	_	—	_
1 0 13	1.5997	1.5993	11	1.5949	1.5949	14	1.6343	1.6341	23
116	1.5624	1.5624	13	1.5521	1.5525	10	_	_	_
1014	1.5168	1.5167	40	1.5124	1.5128	38	1.5524	1.5526	38
$2 0 \overline{1}$	1.4585	1.4586	15	1.4483	1.4480	10	—	—	—
119	1.4396	1.4395	50	1.4314	1.4316	41	1.4340	1.4338	60
$20\overline{4}$	1.4219	1.4223	15	1.4126	1.4124	13	1.3993	1.3989	12
205	1.4015	1.4017	14	1.3925	1.3923	14	1.3807	1.3809	10
$2 \ 0 \ \overline{10}$	_			1.2522	1.2523	11	1.2531	1.2533	9

TABLE la Powder X-Ray Data for InFeCuO4, InGaCuO4, and InGaCoO4

Note. The hkl are given as a hexagonal crystal system.

	lı	n ₂ Ga ₂ CuO ₇		I	$n_2 Fe_2 CuO_7$	7	In	₂ FeGaCuC) ₇
h k l	d_0 (Å)	$d_{\rm c}$ (Å)	I(%)	d_0 (Å)	$d_{\rm c}$ (Å)	I (%)	d_0 (Å)	$d_{\rm c}$ (Å)	I (%)
004	7.184	7.174	8	7.248	7.218	32	7.225	7.204	14
006	4.780	4.783	9	4.813	4.812	18	4.809	4.803	12
0 0 8	3.589	3.587	7	3.612	3.609	12	3.605	3.602	8
100)	2.886)	2.905	2.902	22		_	_
0 0 10	2.868	2.870	} 90		2.887]] 2 001	2.882] 02
101		2.871		2.888	2.888	100	2.881	2.880	93
102	2.828	2.829	37	2.847	2.846	30	2.839	2.838	30
103	2.762	2.763	3	2.782	2.779	2	2.772	2.771	4
104	2.676	2.677	26	2.693	2.693	24	2.686	2.686	25
105	2.577	2.578	100	2.593	2.593	96	2.587	2.586	100
106	2.470	2.471	18	2.486	2.485	13	2.479	2.479	13
107	2.361	2.360	2	2.375	2.374	2		_	
109	2.139	2.140	19	2.152	2.152	24	2.148	2.147	20
1 0 10	2.035	2.035	8	2.047	2.047	9	2.042	2.042	11
1011	1.9349	1.9352	15	1.9467	1.9467	21	1.9423	1.9423	16
1 0 12	1.8417	1.8413	12	1.8523	1.8523	13	1.8481	1.8481	12
1 0 13	1.7539	1.7533	2	1.7638	1.7638	3			_
1 0 14			_	1.6810	1.6811	6			_
110	1.6659	1.6660	48	1.6759	1.6757	45	1.6709	1.6710	52
114	_			1.6327	1.6323	5		_	_
1 0 15 0 0 18	1.5946	1.5945 1.5943	20	1.6040	1.6041 1.6040	23	1.6005	1.6006 1.6008	27
116	1.5735	1.5733	2	1.5822	1.5825	5			
1 0 16	1.5230	1.5233	9	1.5324	1.5325	9	1.5290	1.5292	10
118	1.5109	1.5110	2	1.5200	1.5199	6	1.5160	1.5159	4
1017	1.4570	1.4570	4	. —		. —		_	、—
1 1 10 2 0 1	1.4407	1.4408 1.4410	35	1.4492	1.4493 1.4494	39	1.4450	1.4457 1.4453	} 50
204	1.4143	1.4145	3						
205	1.3993	1.3992	13	1.4075	1.4075	16	1.4038	1.4036	14
1 0 19	—	_		1.3459	1.3462	3			
206	1.3815	1.3813	2		_	_			
2 0 9	1.3144	1.3145	3	1.3223	1.3222	4		manante	—
2 0 11	1.2626	1.2626	3	1.2698	1.2700	5		—	
1 0 21 2 0 12	1.2351	1.2350 1.2354	3	—	—				

 TABLE Ib

 POWDER X-RAY DATA FOR In:2Ga2CuO7, In:2Fe2CuO7, AND In:2FeGaCuO7

phase could reach a molar composition of In_2O_3 : $Fe_2O_3 = 0.4: 0.6$ and " In_2O_3 " phase could reach a composition of In_2O_3 : $Fe_2O_3 = 0.7: 0.3$ above 1000°C. In the present work, the solid solution range of each compound was narrower of that presented by Schneider *et al.* The phase relations in the In_2O_3 -Fe₂O₃-CuO system at 1000°C are shown in Fig. 3

[II] The Phase Relations in the In_2O_3 -Ga₂O₃-CuO System at 1000°C

 β -Ga₂O₃ was stable (19). There was one Ga₂CuO₄ phase with a spinel structure in the CuO-Ga₂O₃ system. The solid solution range of Ga₂CuO₄ was narrower than that of Fe₂CuO₄. The phase diagram of the Ga₂O₃-In₂O₃ system was first reported by

TABLE IcPowder X-Ray Data for In3Fe3CuO10

hkl	d_0 (Å)	d _c (Å)	1 (%)
003	20.72	20.60	13
006	10.37	10.30	9
009	6.887	6.867	24
0 0 12	5.155	5.150	14
0 0 15	4.124	4.120	6
0 0 18	3.435	3.434	4
0 0 21	2.943	2.943	62
101	2.892	2.892	100
104	2.845	2.846	40
105	2.820	2.819	21
107	2.752	2.751	6
108	2.712	2.711	11
1 0 10	2.621	2.622	78
1011	2.574	2.574	62
ī 0 14	2.421	2.421	4
1 0 19	2.162	2.163	21
ī 0 20	2.113	2.113	25
1 0 22	2.016	2.016	17
1 0 25	1.8799	1.8801	18
ī 0 29	1.7163	1.7164	7
110	1.6713	1.6716	81
1 0 31	1.6419	1.6421	19
<u>1</u> 0 32	1.6068	1.6067	25
1 1 21	1.4538	1.4535	55

Schneider *et al.* in the temperature range of 1000 to 1500°C (18). They reported an X-phase which is similar to κ -alumina. Mac-Donald *et al.* (20) confirmed the X-phase which was obtained at 1580°C for a heating period of 16 hr. On the other hand, Shan-

LATTICE CONSTANTS OF THE NEW COMPOUNDS AS A HEXAGONAL CRYSTAL SYSTEM

	InFeCuO₄	InGa	aCuO₄	InGaCoO ₄	In ₂ Ga ₂ CuO ₇	
a (Å)	3.3743(4)	3.34	197(2)	3.3091(2)	3.3319(1)	
c (Å)	24.841(5)	24.82	22(3)	25.859(4)	28.697(2)	
	In ₂ Fe ₂ Cu	1 O 7	In ₂ F	eGaCuO7	In ₃ Fe ₃ CuO ₁₀	
a (Å)	3.3515(2)		3.3421(2)		3.3432(3)	
c (Å)	28.871(3)		28.	817(3)	61.806(6)	

non and Prewitt (21) studied the Ga_2O_3 -In₂O₃ system both under normal and high pressures above 1000°C and reported that there was no binary compound but a solid solution of $In_xGa_{2-x}O_3$ (x = 0 ~ 1) with the β -Ga₂O₃ structure under a normal pressure. In the present work, we could not obtain any binary compounds but we did find a continuous series of solid solutions with the β -Ga₂O₃ structure ranging to InGaO₃, which is in good agreement with the result reported by Shannon and Prewitt. A solid solution range of In₂O₃ was considered to be negligibly narrow. In the In₂O₃-Ga₂O₃-CuO system, InGaCuO₄ and In₂Ga₂CuO₇ were found. It was concluded through Xray powder diffraction data that (In O_3)_nCuO (n = 1 and 2) were isostructural with $(YbFeO_3)_nFeO_1(n = 1 \text{ and } 2)$. Their indexing, d-spacings, and relative intensities are listed in Table I and the lattice constants are shown in Table II. From the results above, we can conclude that the Cu^{2+} ion in (InGaO₃), CuO occupies the position of Fe²⁺ in YbFe₂O₄ and Yb₂Fe₃O₇ compounds, respectively.

We heated the $In_2Ga_2CuO_7$ at 1100°C for 1 week and no decomposition was detected. Both the mixtures of In_2 $O_3: Ga_2O_3: CuO = 0.375: 0.375: 0.25$ and $In_2O_3: Ga_2O_3: CuO = 0.40: 0.40: 0.20$ were

FIG. 4. The phase diagram of the $In_2O_3-Ga_2O_3-CuO$ system at 1000°C. (A) $InGaCuO_4$, (B) $In_2Ga_2CuO_7$, (D) $In_2Cu_2O_5$, (E) Ga_2CuO_4 , (b) $In_2O_3:Ga_2O_3 = 1:1$ (in moles).

FIG. 5. The phase diagram of the In_2O_3 -Fe₂O₃-CoO system at 1300°C. (A) InFeCoO₄ (spinel), (E) Fe₂CoO₄, (b) In_2O_3 : Fe₂O₃ = 0.25:0.75 (in moles). (c) In_2O_3 : Fe₂O₃ = 0.60:0.40 (in moles).

heated at 1100°C for 1 week; however, neither In₃Ga₃CuO₁₀ nor In₄Ga₄CuO₁₃ was observed. (InGaO₃)_nCuO (n = 1 and 2) were heated at 700°C in air for 27 days and no decompositions of either phase was detected and the powder pattern of each compound became sharper as the heating period became longer. The phase relations of the In₂O₃-Ga₂O₃-CuO system at 1000°C is shown in Fig. 4. Substituting one of the Ga atoms in the In₂Ga₂CuO₇ by an Fe atom gave In₂GaFeCuO₇, having Yb₂Fe₃O₇ structure. Powder X-ray data and lattice constants for it are shown in Tables I and II, respectively.

[III] The Phase Relations in the In_2O_3 -Fe₂O₃-CoO System at 1300°C

In the In_2O_3 -CoO system, no binary compound was detected. The In_2CoO_4 phase with an inverse spinel structure (22) could not be detected as a stable compound. In the CoO-Fe₂O₃ system, there was a wide solid solution range of a spinel phase, "Fe₂CoO₄." Masse and Muan (23) carefully studied the Fe₃O₄-Fe₂O₃-CoO system at elevated temperatures in air and reported the range of the compositional change in the spinel phase. According to them, the spinel structure exists at 1300°C in compositions Fe₂O₃: CoO = 0.88:0.120.44:0.56. The compositional range in the phase relations shown in Fig. 5 is taken from Masse and Muan. In the $Fe_2O_3-In_2O_3$ system, no binary compound was observed, and we concluded that the solid solution range of Fe_2O_3 attained to In_2O_3 : $Fe_2O_3 = 0.25:0.75$ and that of In_2O_3 attained to In_2O_3 : $Fe_2O_3 = 0.60:0.40$.

In the In_2O_3 -Fe₂O₃-CoO system, there was a ternary compound, InFeCoO₄ with a spinel structure and a continuous series of spinel solid solutions between InFeCoO₄ and Fe₂CoO₄. The lattice constants of the solid solutions are shown in Fig. 6. These solid solutions follow Vegard's law as shown in the figure. The compositions were not determined analytically but were assumed to have the original composition since no second phases were detected. A spinel phase region in the In₂O₃-Fe₂O₃-CoO system is shown together with stable phases in Fig. 5.

[IV] The Phase Relations in the In_2O_3 -Ga₂O₃-CoO System at 1300°C

In the CoO–Ga₂O₃ system, there was a Ga₂CoO₄ phase with a spinel structure. The solid solution range of the spinel was much narrower than that of Fe₂CoO₄ phase. In the Ga₂O₃–In₂O₃ system, no binary compound was detected, but a solid solution

FIG. 6. Lattice constants of the spinel solid solutions $In_{*}Fe_{2-x}CoO_{4}$.

FIG. 7. The phase diagram of the $In_2O_3-Ga_2O_3-CoO$ system at 1300°C. (A) $InGaCoO_4$ (YbFe₂O₄ type), (E) Ga_2CoO_4 , (a) $In_2O_3: Ga_2O_3: CoO = 0.10: 0.40: 0.50$ (in moles). (b) $In_2O_3: Ga_2O_3 = 1:1$ (in moles).

range of the β -Ga₂O₃ phase reached In GaO₃, which is in good agreement with the data reported by Shannon and Prewitt (21), and the In₂O₃ phase reached the composition In₂O₃: Ga₂O₃ = 0.90:0.10. The X-phase which had been reported by Schneider *et al.* (18) was not detected even at

1300°C. In the In₂O₃-Ga₂O₃-CoO system, there was a stable ternary compound, In GaCoO₄ with the YbFe₂O₄ structure. Powder X-ray diffraction data are shown in Table I; lattice constants, in Table II. Rather extensive solubility of InGaCoO₄ in the spinel phase, Ga₂CoO₄ is observed. The solid solution ranges from Ga₂CoO₄ to In_{0.4} Ga_{1.6}CoO₄, and the lattice constant varies from a = 8.3229(1) Å (Ga₂CoO₄) to a =8.4260(4) Å (In_{0.4}Ga_{0.6}CoO₄). The phase relations in the In₂O₃-Ga₂O₃-CoO system at 1300°C is shown in Fig. 7.

The experimental data which establish each of the phase relations in the In_2O_3 - A_2O_3 -BO systems at elevated temperatures are shown in Table III.

When InGaCoO₄ with the YbFe₂O₄ structure was heated at 1500°C for 10 days, it changed to a spinel type compound. It reversibly converted to a YbFe₂O₄ type compound at 1300°C. On the other hand, the YbFe₂O₄ type of InGaCoO₄ decomposed to

	In ₂ O ₃ -	Fc ₂ O ₃ -CuO	In ₂ O ₃ -Ga ₂ O ₃ -CuO			
Composition (mole ratio)	Period (days)	Phases	Composition (mole ratio)	Period (days)	Phases	
1:0:2	10	2-2-5	0:1:1	6	Ga₂CuO₄	
1:1:2	10	1-1-1-4	1:0:2	7	In ₂ Cu ₂ O ₅	
1:1:1	10	2-2-1-7	1:1:2	14	1-1-1-4	
3:3:2	10	3-3-1-10	1:1:1	14	2-2-1-7	
1:8:1	27	2-2-1-7, Fe ₂ CuO ₄ , Fe ₂ O ₃	25:35:40	24	1-1-1-4, 2-2-1-7, Ga ₂ O ₃	
15:75:10	27	2-2-1-7, 3-3-1-10, Fe ₂ O ₃	40:25:30	10	1-1-1-4, $2-2-1-7$, In ₂ O ₃	
20:75:5	24	3-3-1-10, Fe ₂ O ₃ , In ₂ O ₃	75:75:50	24	$2-2-1-7$, Ga_2O_3	
20:70:10	24	3-3-1-10, In ₂ O ₃ , Fe ₂ O ₃	15:5:80	12	CuO, $In_2Cu_2O_5$, $1-1-1-4$	
70:20:10	24	3-3-1-10, In ₂ O ₃	40:10:50	12	$In_2Cu_2O_5$, $1-1-1-4$, In_2O_3	
20:55:25	32	2-2-1-7, Fe ₂ CuO ₄ , Fe ₂ O ₃	5:65:30	26	$Ga_2O_3, Ga_2CuO_4, 1-1-1-4$	
25:35:40	20	2-2-1-7, 1-1-1-4, Fe ₂ CuO ₄	10:20:70	12	1-1-1-4, CuO, Ga ₂ CuO ₄	
40:25:35	6	In_2O_3 , 1-1-1-4, 2-2-1-7	95:95:10	113	$2-2-1-7$, Ga_2O_3	
40:10:50	10	In_2O_3 , 1–1–1–4, $In_2Cu_2O_5$	15:60:25	36	1-1-1-4, Ga ₂ O ₃ , 2-2-1-7	
15:5:80	18	1-1-1-4, CuO, In ₂ Cu ₂ O ₃	20:75:5	36	$2-2-1-7$, Ga_2O_3	
5:65:30	18	2-2-1-7, Fe ₂ O ₃ , Fe ₂ CuO ₄	1:1:0	111	Ga_2O_3	
1:1:0	180	In_2O_3 , Fe_2O_3	35:60:5	36	$2-2-1-7$, Ga_2O_3	
95:95:10	60	3-3-1-10, In ₂ O ₃ , Fe ₂ O ₃				
1:2:7	10	1–1–1–4, CuO, Fe ₂ CuO ₄			1–1–1–4: InGaCuO4	
45:30:25	15	3-3-1-10, 2-2-1-7, In ₂ O ₃			2-2-1-7: In ₂ Ga ₂ CuO ₇	
		2-2-5: In ₂ Cu ₂ O ₅				
		1–1–1–4: InFeCuO₄				
		2-2-1-7: In ₂ Fe ₂ CuO ₇				
		3-3-1-10: In ₃ Fe ₃ CuO ₁₀				

 TABLE IIIa

 The Phase Relations in the In₂O₃-A₂O₃-CuO System at 1000°C

	$ln_2O_3-Fe_2O_3$	D ₃ -CoO	In ₂ O ₃ -Ga ₂ O ₃ -CoO			
Composition (mole ratio)	Period (days)	Phases	Composition (mole ratio)	Period (days)	Phases	
0:1:1	6	Spinel	0:1:1	6	Spinel	
1:1:2	4	Spinel	1:1:2	6	InGaCoO ₄	
15:35:55	6	Spinel	1:4:5	6	Spinel	
20:30:50	6	Spinel	5:1:4	6	In ₂ O ₃ , InGaCoO ₄ , CoO	
10:40:50	6	Spinel	2:1:7	10	In ₂ O ₃ , InGaCoO ₄ , CoO	
5:45:50	6	Spinel	1:6:3	6	Spinel, Ga ₂ O ₃	
40:25:35	6	Spinel, In ₂ O ₃	1:8:1	8	Spinel, Ga ₂ O ₃	
60:30:10	6	In ₂ O ₃ , spinel	1:2:7	8	InGaCoO ₄ , CoO, spinel	
30:55:15	6	In ₂ O ₃ , Fe ₂ O ₃ , spinel	1:1:1	8	In ₂ O ₃ , spinel	
1:1:1	6	In_2O_3 , spinel	5:2:3	10	In ₂ O ₃ , InGaCoO ₄ , spine	
4:1:5	13	In ₂ O ₃ , spinel, CoO	2:7:1	10	Spinel, Ga ₂ O ₃	
1:2:7	13	Spinel, CoO	50:35:15	10	In ₂ O ₃ , spinel, Ga ₂ O ₃	
10:55:35	13	Spinel, In ₂ O ₃ , Fe ₂ O ₃	7:3:0	13	In_2O_3	
1:0:2	13	In_2O_3 , CoO	1:1:0	19	Ga ₂ O ₃	
25:50:25	7	In ₂ O ₃ , spinel, Fe ₂ O ₃	1:2:0	19	Ga ₂ O ₃	
5:70:25	7	Spinel, Fe ₂ O ₃				
50:35:15	16	Spinel, In ₂ O ₃				
1:1:0	35	$In_{2}O_{3}, Fe_{2}O_{3}$				

TABLE IIIb

The Phase Relations in the $In_2O_3\text{--}A_2O_3\text{--}CoO$ System at 1300°C

In₂O₃, a spinel phase, and CoO after heat treatment at 1100°C for 3 days. The InFe CoO₄ having a spinel structure also decomposed to In₂O₃, a spinel phase, and CoO after heat treatment at 1100°C for 3 days. In the *LnABO*₄ (*Ln*: lanthanoid elements and Y, *A*: trivalent metal, *B*: divalent metal) isostructural with YbFe₂O₄, the transition to spinel structure has never been observed (*11*), while it is possible in InGaCoO₄. This may be due to the rather small ionic radius of In³⁺ compared with that of the lanthanide elements. Detailed study on this transition is in progress.

It is interesting to note the difference between Fe³⁺ and Ga³⁺ from the structural point of view. It is well known that Ga³⁺ has a slightly smaller ionic radius than Fe³⁺ and prefers a tetrahedral site to an octahedral one under a normal pressure (24). However, in the In₂O₃-A₂O₃-CuO systems, Fe³⁺ and Ga³⁺ seem to play similar roles in view of the formation of layered structures. (InFeO₃)_nCuO (n = 1, 2, and 3) were found

in the In₂O₃-Fe₂O₃-CuO system as well as $(InGaO_3)_nCuO$ (n = 1 and 2) in the In₂O₃-Ga₂O₃-CuO system. In contrast, InFeCoO₄ never takes the YbFe₂O₄ structure but a spinel one, while the InGaCoO₄ takes the layered structure at 1300°C. Considering the large ionic radius of In^{3+} , it was postulated that the InFeCoO₄ takes a structure denoted as Fe[InCo]O₄ which is formed simple replacement of Fe³⁺ by In³⁺ in an inverse spinel, Fe[FeCo]O₄ (26). Similarly, it can be expected from tetrahedral site preferency of Ga³⁺ that spinel type of InGa CoO_4 takes a structure, $Ga[InCo]O_4$. Table IV shows the possible sites and ionic radii of the cations after Shannon and Prewitt (25), when $InGaCoO_4$ and $InFeCoO_4$ take both spinel and YbFe₂O₄ structure (though InFeCoO₄ does not, really, take the Yb Fe_2O_4 structure). As shown in this table, the difference between ionic radii of fivecoordinated Fe³⁺ and Ga³⁺ is very small, as well as between four-coordinated ones. Based upon the simple spherical ionic

TABLE IV

The Ionic Radii (Å) and Coordination Numbers of In^{3+} , Co^{2+} , Fe^{3+} , and Ga^{3+} when the InFeCoO₄ or the InGaCoO₄ has the Spinel or the YbFe₃O₄ Structure According to Ref. (25)

Compound	InFeCoO ₄	InGaCoO ₄
	In ³⁺ (VI):0.80	In ³⁺ (VI):0.80
Spinel type	Co ²⁺ (VI):0.745	Co ²⁺ (VI):0.745
	$Fe^{3+}(IV):049$	Ga ³⁺ (IV):0.47
	In ³⁺ (VI):0.80	In ³⁺ (VI):0.80
YbFe ₂ O₄ type	Co ²⁺ (V):0.67	Co ²⁺ (V):0.67
2 1 91	Fe ³⁺ (V):0.58	Ga ³⁺ (V):0.55
	O ²⁻ :1.40	
	Fe ³⁺ and Co ²⁺ : h	igh spin state

model, we cannot, therefore, explain the reason why InFeCoO₄ prefers the spinel structure. It is, however, shown through the present work that the YbFe₂O₄ structure is not, thermochemically, widely different from the spinel type, but in the case of InACoO₄, the factors controlling the type of the structure may be very critical.

In view of the discrepancy between the present work and that of Schneider *et al.* (18) for the In_2O_3 -Ga₂O₃ system at elevated temperatures, further investigations of the system are desirable, especially the X-phase.

References

- (i) N. KIMIZUKA AND T. KATSURA, Bull. Chem. Soc. Jpn. 47, 1801 (1974), (ii) N. KIMIZUKA, A. YAMAMOTO, H. OHASHI, T. SUGIHARA, AND T. SEKINE, J. Solid State Chem. 49, 65 (1983).
- K. KATO, I. KAWADA, N. KIMIZUKA, AND T. KATSURA, Z. Kristallogr. 141, 314 (1975).
- K. KATO, I. KAWADA, N. KIMIZUKA, I. SHINDO, AND T. KATSURA, Z. Kristallogr. 143, 278 (1976).
- Y. MATSUI, K. KATO, N. KIMIZUKA, AND S. HO-RIUCHI, Acta Crystallogr. Sect. B 35, 561 (1976).
- N. KIMIZUKA, K. KATO, I. KAWADA, I. SHINDO, AND T. KATSURA, Acta Crystallogr. Sect. B 32, 1721 (1976).
- 6. M. TANAKA, J. AKIMITSU, Y. INADA, N. KIMI-

ZUKA, I. SHINDO, AND K. SIRATORI, Solid State Commun. 44, 687 (1982).

- Y. NAKAGAWA, M. INAZUMI, N. KIMIZUKA, AND K. SIRATORI, J. Phys. Soc. Jpn. 47, 1669 (1979).
 M. INAZUMI, Y. NAKAGAWA, M. TANAKA, N. KIMIZUKA, AND K. SIRATORI, J. Phys. Soc. Jpn. 50, 538 (1981).
- 8. E. J. VERWAY AND P. W. HAAYMAN, *Physica* 8, 979 (1941).
- 9. C. SCHLENKER AND M. MAREZIO, *Philos. Mag.* [*Part*] *B* 42, 453 (1980).
- 10. (i) N. KIMIZUKA AND E. TAKAYAMA, J. Solid State Chem. 42, 22 (1982), (ii) N. KIMIZUKA AND E. TAKAYAMA, J. Solid State Chem. 43, 278 (1982).
- (i) N. KIMIZUKA AND E. TAKAYAMA, J. Solid State Chem. 40, 109 (1981), (ii) N. KIMIZUKA AND E. TAKAYAMA, J. Solid State Chem. 41, 166 (1982).
- 12. M. TANAKA, N. KIMIZUKA, J. AKIMITSU, S. FUNAHASHI, AND K. SIRATORI, J. Magn. Magn. Mater. 31/34, 769 (1983).
- 13. J. H. W. DE WIT, J. Solid State Chem. 13, 192 (1975).
- 14. ASTM 13-534, Joint Committee of Powder Diffraction Data.
- YU. D. TRETYACOV, V. F. KOMOROV, N. A. PROS-VIRNINA, AND I. B. KUSENOK, J. Solid State Chem. 5, 157 (1972); YU. D. TRETYACOV, A. R. KAUL, AND N. V. MAKUHIN, J. Solid State Chem. 17, 183 (1976).
- G. BERGRHOFF AND H. KASPER, Acta Crystallogr. Sect. B 24, 388 (1968).
- A. M. M. GADALLA AND J. WHITE, *Trans. Brit.* Ceram. Soc. 63, 1 (1964); D. S. BURST, A. M. M. GADALLA AND J. WHITE, *Trans. Brit. Ceram.* Soc. 64, 731 (1965).
- 18. S. J. SCHNEIDER, R. S. ROTH, AND J. L. WARING, J. Res. Nat. Bur. Stand. A 65, 345 (1961).
- 19. S. GELLER, J. Chem. Phys. 33, 676 (1960).
- 20. J. MACDONALD, J. A. CARD, AND F. P. GLASSER, J. Inorg. Nucl. Chem. 29, 661 (1967).
- 21. R. D. SHANNON AND C. T. PREWITT, J. Inorg. Nucl. Chem. 30, 1389 (1968).
- 22. R. C. EVANS, "Introduction to Crystal Chemistry" 2nd. ed., p. 173, Univ. Press, Cambridge (1966).
- 23. D. P. MASSE AND A. MUAN, J. Amer. Ceram. Soc. 48, 466 (1965).
- 24. S. GELLER, Z. Kristallogr. 125, S. 1 (1967).
- 25. R. D. SHANNON AND C. T. PREWITT, Acta Crystallogr. Sect. B 25, 925 (1969); R. D. SHANNON AND C. T. PREWITT, Acta Crystallogr. Sect. B 26, 1046 (1970).
- 26. R. W. G. WYCKOFF, "Crystal Structure Data," Chap. VIII, Part B, 2nd. ed., Vol. 3, Interscience, New York/London/Sydney (1960).