The Phase Relations in the In_2O_3 -A₂O₃-BO Systems at Elevated Temperatures [A: Fe or Ga, B: Cu or Co]

NOBORU KIMIZUKA* AND EIJI TAKAYAMA

National Institute for Research in Inorganic Materials 1-1, Namiki, Sakuramura, Niiharigun, Ibaraki-ken, Japan 305

Received September 14. 1983; in revised form January 20. 1984

The phase relations in the In_2O_3 -Fe₂O₁-CuO system at 1000°C, the In_2O_3 -Ga₂O₁-CuO system at 1000° C, the In₂O_t-Fe₂O_t-CoO system at 1300 $^{\circ}$ C, and the In₂O_t-Ga₂O_t-CoO system at 1300 $^{\circ}$ C were determined by means of a classical quenching method. InFeCuO₄ ($a = 3.3743(4)$ Å, $c = 24.841(5)$ Å), InGaCuO₄ (a = 3.3497(2) Å, c = 24.822(3) Å), and InGaCoO₄ (a = 3.3091(2) Å, c = 25.859(4) Å) having the YbFe₂O₄ crystal structure, In₂Fe₂CuO₇ (a = 3.3515(2) Å, c = 28.871(3) Å), In₂Ga₂CuO₇ (a = 3.3319(1) Å, $c = 28.697(2)$ Å), and $\ln_2FeGaCuO_7$ ($a = 3.3421(2)$ Å, $c = 28.817(3)$ Å) having the Yb₂Fe₃O₇ crystal structure, and In₃Fe₃CuO₁₀ ($a = 3.3432(3)$) A, $c = 61.806(6)$ A) having the Yb₃Fe₄O₁₀ crystal structure were found as the stable ternary phases. There is a continuous series of solid solutions between InFeCoO₄ and Fe₂CoO₄ which have the spinel structure at 1300°C. The crystal chemical roles of $Fe³⁺$ and $Ga³⁺$ in the present ternary systems were qualitatively compared.

Introduction

Recently we have established the phase diagrams of the Ln_2O_3 -FeO-Fe₂O₃ systems (Ln) : lanthanide elements and Y) at elevated temperatures under controlled oxygen partial pressures and reported a series of new homologous compounds $(LnFeO₃)_nFeO$ (*n* $= 1, 2, 3...$ with layered structures (1). The single crystal structural analyses for $YbFe₂O₄$ and $Yb₂Fe₃O₇$ were performed by Kato *et al.* (2, 3). $Yb_3Fe_4O_{10}$, $Yb_4Fe_5O_{13}$, and the higher order compounds were analyzed by means of both electron diffraction and powder X-ray diffraction methods (4, 5). The crystal structural models for Yb $Fe₂O₄$ and $Yb₂Fe₃O₇$ are shown in Figs. 1 and 2. respectively.

Tanaka et $al.$ (6) measured the electrical conductivities, specific heat, and Mössbauer spectra of YFe₂O_{4+x} ($x = -0.05$ ~ 0.00) and observed the conductivity gap (about 10^5 ohm⁻¹ cm⁻¹) and specific heat anomaly at about 250 K. Nakagawa et al. (7) also found crystallographic transformations in $YFe₂O_{4+x}$ at the lower temperatures. Tanaka et $al.$ (6) concluded that the transition in $YFe₂O_{4.00}$ belongs to the Verway type observed in Fe₃O₄ (8) and Ti₄O₇ (9). Both the Fe²⁺ and the Fe³⁺ occupy the same crystallographic site formed by a trigonal bipyramid of the oxygen ions: however, the nonstoichiometry in $YFe₂O_{4+x}$ causes the complicated properties observed in the electrical transport phenomena, the magnetic behavior and the Mossbauer spectra. The details in the mechanism of the

^{*} To whom all correspondence should be addressed. transitions are still open to question.

FIG. 1. The crystal structure of $YbFe₂O₄$ (space group: $R\overline{3}m$). (R) Yb ion, (M) Fe ion, (O) O ion, (U) Yb_2O , layer, (W) Fe₄O₅ layer. A, B, and C indicate the positions of the ions.

In order to stop the electron transfer between Fe^{2+} and Fe^{3+} in the $LnFe_2O_4$ compounds $(Ln: Er, Ho, Tm, Yb, Lu, and Y),$ we replaced the $Fe²⁺$ ion with another divalent cation such as Cu^{2+} , Zn^{2+} , Mg^{2+} , Co^{2+} , or Mn^{2+} . The compounds obtained were $LnFeCuO₄, LnFeCoO₄ (Ln: Lu, Yb, or$ Tm), $LnFeMnO₄$ ($Ln:$ Lu, Yb, Tm, Ho, or Y), and $LnFeMgO₄$ (*Ln*: Lu, Yb, Tm, or Ho) which are isostructural with $YbFe₂O₄$ (11). The phase relations in the Yb_2O_3 -Fe₂O₃-CuO system at 1000°C, the Yb₂O₃-Ga₂O₃-CuO system at 1000°C, the Yb₂O₃- $Fe₂O₃ - CoO$ System at 1300 and 1200 °C, the $Yb_2O_3-Fe_2O_3-ZnO$ system at 1300°C, and the $Yb_2O_3-Ga_2O_3-ZnO$ system at 1350 and 1200°C were also determined by a classical quenching method (10) and the thermochemical stability conditions of each Ln $FeMO₄$ and $LnGaMO₄$ phase were reported by Kimizuka and Takayama (11). Each Ln FeMO₄ and $LnGaMO₄$ phase is stable above a certain temperature and decomposes to $LnFeO₃$ and MO phases or

 $Ln_3Ga_5O_{12}$, Ln_2O_3 , and MO phases below that temperature, respectively.

In the $Ln_2Fe_3O_7$ compounds (*Ln*: Lu, Yb, or Tm), there are $Fe₂O₃$ and $Fe₄O₅$ layers which are separated by a $Ln₂O₃$ layer (3). The Mössbauer study and neutron diffraction analysis for $Lu_2Fe_3O_7$ and $Yb_2Fe_3O_7$ indicate that there may be an interaction of spins in the Fe₂O₃ and Fe₄O₅ layers (12). To study that interactions in more simple cases, we tried to replace the $Fe²⁺$ ion in $Yb_2Fe_3O_7$ with another divalent cation such as $Cu²⁺$ to stop the electron transfer in the $Fe₄O₅$ layer. In the present paper, we report the phase relations in the $In_2O_3-Fe_2O_3-CuO$ system at 1000° C, the $In_2O_3-Ga_2O_3-CuO$ system at 1000° C, the $In_2O_3-Fe_2O_3-C_0O$ system at 1300°C, and the $In_2O_3-Ga_2O_3$ -Co0 system at 1300°C which were determined by means of a classical quenching method. In these systems $(InFeO₃)_nCuO$ (*n* $= 1, 2, \text{ and } 3$, (InGaO_3) _nCuO ($n = 1$ and 2), $(IndaO₃)_nCoO$ ($n = 1$) which are isostructural with $(YbFeO₃)_nFeO$ ($n = 1, 2,$ and 3)

FIG. 2. The crystal structure of $Yb_2Fe_3O_7$ (space group: $P6\sqrt{mmc}$). (R) Yb ion, (M) Fe ion, (O) O ion. (U) Yb_2O_3 layer, (V) Fe₂O₃ layer, (W) Fe₄O₅ layer. A. B, and C indicate the positions of the ions.

and InFe $CoO₄$ with the spinel structure were obtained as the ternary stable phases.

Experimental

The experimental methods and apparatus used in the present study have been described in Refs. (10, 11). In_2O_3 (99.99%) was used as a starting compound. Prior to mixing, we heated it at 800°C in air for I day. Other starting compounds are the same as in Refs. (10, 11). Calculated amounts of each end member: $In₂O₃$, $A₂O₃$ $(A: \nightharpoonup$ Fe or Ga), $BO(B: \nightharpoonup Cu)$ or Co) was weighed to the nearest milligram. Each batch was thoroughly mixed under ethyl alcohol in an agate mortar and sealed in a Pt tube, and fired at successively higher temperatures until equilibrium was obtained. After each heat treatment, the specimen was rapidly cooled in water. Equilibrium was considered to be attained when the Xray powder diffraction pattern of a specimen showed no change with successive heat treatment of the specimen. Identification of phases and determination of lattice constants were performed by means of powder X-ray method on a scintillation counter diffractometer, using silicon as a standard material. Mn-filtered Fe $K\alpha$ radiation was used for identification of all specimens and for measurement of d-values of compounds which contained iron. Measurement of *d*-values of other compounds was done using Ni-filtered $CuK\alpha$ radiation. Lattice constants were calculated by means of least squares.

Results and Discussion

[I] The Phase Relations in the $In₂O₃$ - $Fe₂O₃$ -CuO System at 1000°C

 In_2O_3 ("C" type rare earth sesquioxide structure, $a = 10.118(\text{\AA})$ (13)), Fe₂O₃ (α form, corundum) (14), and CuO (PtS structure) (15) were stable. In the In_2O_3-CuO system, there was one stable phase of $In₂$ Cu₂O₅ as previously reported $(15, 16)$. In the CuO–Fe₂O₃ system, there was a stable phase of $Fe₂CuO₄$ with a spinel structure which had been reported in the $Cu₂O CuO-Fe₃O₄-Fe₂O₃$ system at elevated temperatures under various oxygen partial pressures (15, 17). The solid solution range of $Fe₂CuO₄$ in Fig. 3 was cited from the Refs. (15, 17).

In the $Fe₂O₃$ -In₂O₃ system, no binary compounds were detected during a heating period of 6 months.

A sample with In_2O_3 : Fe₂O₃: CuO = $0.15:0.75:0.10$ (all ratios given in this paper are mole ratios) which was heated for 27 days was identified as a mixture of $In₂Fe₂CuO₇, In₃Fe₃CuO₁₀, and "Fe₂O₃"$ phases, and a sample of In_2O_3 : Fe₂O₃: CuO $= 0.20:0.70:0.10$ was identified as a mixture of $In_3Fe_3CuO_{10}$, " In_2O_3 ," and "Fe₂O₃." The *d*-spacings of "Fe₂O₃" and \lq 'In₂O₃'' showed these compounds to be solid solutions. After heating a mixture of In_2O_3 : Fe₂O₃ = 0.05 : 0.95 for 30 days, a single phase having a corundum structure was obtained.

Since solid state reactions among three components were faster than those between two components of In_2O_3 and Fe_2O_3

FIG. 3. The phase diagram of the $In_2O_3-Fe_2O_3-CuO$ system at 1000° C. (A) InFeCuO₄, (B) In₂Fe₂CuO₇, (C) $In₃Fe₃CuO₁₀$, (D) $In₂Cu₂O₅$, (E) $Fe₂CuO₄$, (b) $In₂$ O_3 : Fe₂ O_3 = 0.05:0.95 (in moles), (c) In_2O_3 : Fe₂ O_3 = 0.925 : 0.075 (in moles).

(10), we determined the solid solution ranges, not from experiments of a binary system but from those of a ternary one. We concluded that the solid solution range of " In_2O_3 " extended to a composition of In_2 O_3 : Fe₂ O_3 = 0.925: 0.075 and that of "Fe₂O₃" was to In_2O_3 : Fe₂O₃ = 0.05:0.95."

In the $In_2O_3-Fe_2O_3-CuO$ system, there were three stable phases, namely, InFe CuO₄, In₂Fe₂CuO₇, and In₃Fe₃CuO₁₀.

 $(InFeO₃)_nCuO$ ($n = 1, 2,$ or 3) was isostructural with the corresponding compound (YbFeO₃)_nFeO ($n = 1, 2$, or 3).

The above conclusions were obtained from the X-ray powder diffraction patterns shown in Table I. The corresponding lattice constants are shown in Table II. From these results we can conclude that the Cu^{2+}

ion in $(InFeO₃)_nCuO$ ($n = 1, 2,$ and 3) occupies the position of Fe^{2+} in YbFe₂O₄, Yb₂ $Fe₃O₇$, and $Yb₃Fe₄O₁₀$, respectively.

We heated $In₃Fe₃CuO₁₀$ at 1100°C for 1 week; however, no decomposition was detected. A mixture of In_2O_3 : Fe₂O₃: CuO = 0.40: 0.40 : 0.20 was heated at 1100°C for 1 week; however, no $In_4Fe_4CuO_{13}$ was obtained, but Tr_2O_3 ," " Fe_2O_3 ," and In_3 $Fe₃CuO₁₀$ phases were observed. (InFe O_3 _nCuO (n = 1, 2, and 3) were heated at 700°C for 21 days; but no decompositions were detected and X-ray diffraction peaks of each compound became sharper with increasing heating period. Schneider et al. (18) reported the phase diagrams of the $In_2O_3-Fe_2O_3$ system at elevated temperatures. They indicated that the "Fe₂O₃"

	In $FeCuO4$			In $GaCuO4$			In $GaCoO4$		
h k l	$d_0(\mathbf{A})$	$d_c(\text{\AA})$	$I(\%)$	$d_0(\AA)$	$d_c(\text{\AA})$	$I(\%)$	$d_0(A)$	$d_c(A)$	$I(\%)$
003	8.297	8.280	21	8.276	8.274	12	8.622	8.620	15
006	4.143	4.140	33	4.137	4.137	29	4.311	4.310	23
101	2.903	2.902	100	2.881	2.881	100	2.847	2.848	95
$10\overline{2}$	2.844	2.845	5	2.827	2.825	6	2.797	2.798	5
009	2.762	2.760	56	2.759	2.758	61	2.874	2.873	72
104	2.644	2.644	92	2.627	2.628	98	2.619	2.620	100
$10\bar{5}$	2.519	2.519	85	2.504	2.505	88	2.506	2.507	73
107	2.256	2.256	10	2.246	2.245	5	2.265	2.264	5
$10\overline{8}$	2.128	2.128	21	2.119	2.119	19	2.144	2.144	25
0012	2.071	2.070	2	2.069	2.069	3			
1 0 10	1.8928	1.8927	58	1.8868	1.8860	53	1.9202	1.9199	43
110	1.6863	1.6871	70	1.6746	1.6749	68	1.6546	1.6545	57
0015		1.6561		1.6551	1.6548	6			
113	1.6549	1.6532	12	1.6415	1.6416	3			
1013	1.5997	1.5993	$\mathbf{11}$	1.5949	1.5949	14	1.6343	1.6341	23
116	1.5624	1.5624	13	1.5521	1.5525	10			
1014	1.5168	1.5167	40	1.5124	1.5128	38	1.5524	1.5526	38
$20\bar{1}$	1.4585	1.4586	15	1.4483	1.4480	10			
119	1.4396	1.4395	50	1.4314	1.4316	41	1.4340	1.4338	60
204	1.4219	1.4223	15	1.4126	1.4124	13	1.3993	1.3989	12
205	1.4015	1.4017	14	1.3925	1.3923	14	1.3807	1.3809	10
2010				1.2522	1.2523	11	1.2531	1.2533	9

TABLE la POWDER X-RAY DATA FOR InFeCuO₄, InGaCuO₄, AND InGaCoO₄

Note. The hkl are given as a hexagonal crystal system.

	$In2Ga2CuO7$			$In_2Fe_2CuO_7$			$In-FeGaCuO7$		
h k l	$d_0(\AA)$	$d_c(\AA)$	$I(\%)$	$d_0(\AA)$	$d_c(\AA)$	$I(\%)$	$d_0(\AA)$	$d_c(\AA)$	$I(\%)$
004	7.184	7.174	8	7.248	7.218	32	7.225	7.204	14
006	4.780	4.783	9	4.813	4.812	18	4.809	4.803	12
008	3.589	3.587	$\overline{7}$	3.612	3.609	12	3.605	3.602	8
100		2.886		2.905	2.902	22			
0010 101	2.868	2.870 2.871	90	2.888	2.887 2.888	100	2.881	2.882 2.880	93
102	2.828	2.829	37	2.847	2.846	30	2.839	2.838	30
103	2.762	2.763	3	2.782	2.779	$\overline{2}$	2.772	2.771	$\overline{4}$
104	2.676	2.677	26	2.693	2.693	24	2.686	2.686	25
105	2.577	2.578	100	2.593	2.593	96	2.587	2.586	100
106	2.470	2.471	18	2.486	2.485	13	2.479	2.479	13
107	2.361	2.360	$\overline{2}$	2.375	2.374	2			
109	2.139	2.140	19	2.152	2.152	$24\,$	2.148	2.147	20
1010	2.035	2.035	8	2.047	2.047	9	2.042	2.042	\mathbf{H}
1011	1.9349	1.9352	15	1.9467	1.9467	21	1.9423	1.9423	16
1012	1.8417	1.8413	12	1.8523	1.8523	13	1.8481	1.8481	12
1013	1.7539	1.7533	\overline{c}	1.7638	1.7638	3	$-\!$		
1014				1.6810	1.6811	6			
110	1.6659	1.6660	48	1.6759	1.6757	45	1.6709	1.6710	52
114		\overline{a}		1.6327	1.6323	5			
1015 0018	1.5946	1.5945 1.5943	20	1.6040	1.6041 1.6040	23	1.6005	1.6006 1.6008	27
116	1.5735	1.5733	\overline{c}	1.5822	1.5825	5			
1016	1.5230	1.5233	9	1.5324	1.5325	9	1.5290	1.5292	10
118	1.5109	1.5110	\overline{c}	1.5200	1.5199	6	1.5160	1.5159	$\overline{4}$
1017	1.4570	1.4570	$\overline{\mathbf{4}}$						
1110 201	1.4407	1.4408 1.4410	35	1.4492	1.4493 1.4494	39	1.4450	1.4457 1.4453	50
204	1.4143	1.4145	3						
205	1.3993	1.3992	13	1.4075	1.4075	16	1.4038	1.4036	14
1019				1.3459	1.3462	3			
206	1.3815	1.3813	\overline{c}						
209	1.3144	1.3145	$\overline{\mathbf{3}}$	1.3223	1.3222	4			
2011	1.2626	1.2626	3	1.2698	1.2700	5			
1021 2012	1.2351	1.2350 1.2354	3						

TABLE Ib POWDER X-RAY DATA FOR $In_2Ga_2CuO_7$, $In_2Fe_2CuO_7$, AND $In_2FeGaCuO_7$

phase could reach a molar composition of In_2O_3 : Fe₂O₃ = 0.4 : 0.6 and "In₂O₃" phase could reach a composition of In_2O_3 : Fe₂O₃ $=0.7:0.3$ above 1000°C. In the present work, the solid solution range of each compound was narrower of that presented by Schneider et al. The phase relations in the In_2O_3 -Fe₂O₃-CuO system at 1000°C are shown in Fig. 3

[II] The Phase Relations in the $In_2O_3-Ga_2O_3-CuO$ System at 1000°C

 β -Ga₂O₃ was stable (19). There was one Ga_2CuO_4 phase with a spinel structure in the $CuO-Ga₂O₃$ system. The solid solution range of Ga_2CuO_4 was narrower than that of $Fe₂CuO₄$. The phase diagram of the Ga_2O_3 -In₂O₃ system was first reported by

 \mathbf{I}

13

 $\overline{9}$

24 14

6

 $\overline{4}$

62

100

40 21

6

 11

78

62

 $\overline{4}$ 21

25

17

18

 $\overline{7}$ 81

19

25

55

 $(\%)$

TABLE Ic

Schneider et al. in the temperature range of 1000 to 1500 \textdegree C (18). They reported an Xphase which is similar to κ -alumina. Mac-Donald et al. (20) confirmed the X-phase which was obtained at 1580°C for a heating period of 16 hr. On the other hand, Shan-

1.6421

1.6067

1.4535

1.6419

1.6068

1.4538

TABLE II		

LATTICE CONSTANTS OF THE NEW COMPOUNDS AS A HEXAGONAL CRYSTAL SYSTEM

non and Prewitt (21) studied the Ga_2O_3 - In_2O_3 system both under normal and high pressures above 1000° C and reported that there was no binary compound but a solid solution of $In_xGa_{2-x}O_3$ ($x = 0 \sim 1$) with the β -Ga₂O₃ structure under a normal pressure. In the present work, we could not obtain any binary compounds but we did find a continuous series of solid solutions with the β -Ga₂O₃ structure ranging to InGaO₃, which is in good agreement with the result reported by Shannon and Prewitt. A solid solution range of In_2O_3 was considered to be negligibly narrow. In the $In_2O_3-Ga_2O_3$ -CuO system, InGaCuO₄ and In₂Ga₂CuO₇ were found. It was concluded through Xray powder diffraction data that (ln Q_3 . CuO (n = 1 and 2) were isostructural with $(YbFeO₃)_nFeO$ (n = 1 and 2). Their indexing, d-spacings, and relative intensities are listed in Table I and the lattice constants are shown in Table II. From the results above, we can conclude that the Cu^{2+} ion in $(InGaO₃)_nCuO$ occupies the position of Fe²⁺ in YbFe₂O₄ and Yb₂Fe₃O₇ compounds, respectively.

We heated the $In_2Ga_2CuO_7$ at 1100°C for 1 week and no decomposition was detected. Both the mixtures of In₂ Q_3 : Ga_2O_3 : CuO = 0.375: 0.375: 0.25 and In_2O_3 : Ga₂O₃: CuO = 0.40: 0.40: 0.20 were

1031

 1032

1 1 2 1

FIG. 5. The phase diagram of the In_2O_3 -Fe $_2O_3$ -CoO system at 1300° C. (A) InFeCoO₄ (spinel), (E) Fe₂CoO₄, (b) In_2O_3 : Fe_2O_3 = 0.25: 0.75 (in moles). (c) In_2 Q_3 : Fe₂O₃ = 0.60 : 0.40 (in moles).

heated at 1100°C for 1 week; however, neither $In_3Ga_3CuO_{10}$ nor $In_4Ga_4CuO_{13}$ was observed. (InGaO₃)_nCuO ($n = 1$ and 2) were heated at 700°C in air for 27 days and no decompositions of either phase was detected and the powder pattern of each compound became sharper as the heating period became longer. The phase relations of the $In_2O_3-Ga_2O_3-CuO$ system at 1000°C is shown in Fig. 4. Substituting one of the Ga atoms in the $In_2Ga_2CuO_7$ by an Fe atom gave In₂GaFeCuO₇, having Yb₂Fe₃O₇ structure. Powder X-ray data and lattice constants for it are shown in Tables I and II, respectively.

[III] The Phase Relations in the In_2O_3 -Fe₂O₃-CoO System at 1300°C

In the In_2O_3 -CoO system, no binary compound was detected. The $In₂CoO₄$ phase with an inverse spine1 structure (22) could not be detected as a stable compound. In the $CoO-Fe₂O₃$ system, there was a wide solid solution range of a spine1 phase, " $Fe₂CoO₄$." Masse and Muan (23) carefully studied the $Fe₃O₄ - Fe₂O₃ - CoO$ system at elevated temperatures in air and reported the range of the compositional change in the spine1 phase. According to them, the spine1 structure exists at 1300°C in compositions $Fe₂O₃$: CoO = 0.88 : 0.12– 0.44 : 0.56. The compositional range in the phase relations shown in Fig. 5 is taken from Masse and Muan. In the $Fe₂O₃$ -In₂O₃ system, no binary compound was observed, and we concluded that the solid solution range of $Fe₂O₃$ attained to $In₂$ Q_3 : Fe₂O₃ = 0.25 : 0.75 and that of In_2O_3 attained to In_2O_3 : $Fe_2O_3 = 0.60$: 0.40.

In the In_2O_3 -Fe₂O₃-CoO system, there was a ternary compound, In $FeCoO₄$ with a spine1 structure and a continuous series of spinel solid solutions between In $FeCoO₄$ and $Fe₂CoO₄$. The lattice constants of the solid solutions are shown in Fig. 6. These solid solutions follow Vegard's law as shown in the figure. The compositions were not determined analytically but were assumed to have the original composition since no second phases were detected. A spinel phase region in the $In_2O_3-Fe_2O_3-$ Co0 system is shown together with stable phases in Fig. 5.

[Iv] The Phase Relations in the $In_2O_3-Ga_2O_3-CoO$ System at 1300°C

In the $CoO-Ga₂O₃$ system, there was a $Ga₂CoO₄$ phase with a spinel structure. The solid solution range of the spinel was much narrower than that of $Fe₂CoO₄$ phase. In the $Ga_2O_3-In_2O_3$ system, no binary compound was detected, but a solid solution

FIG. 6. Lattice constants of the spinel solid solutions $In_xFe_{2-r}CoO₄$.

FIG. 7. The phase diagram of the $In_2O_3-Ga_2O_7-CoO$ system at 1300° C. (A) InGaCoO₄ (YbFe₂O₄ type), (E) Ga_2CoO_4 , (a) In_2O_3 : Ga_2O_3 : $CoO = 0.10$: 0.40: 0.50 (in moles). (b) In_2O_3 : $Ga_2O_3 = 1$: 1 (in moles).

range of the β -Ga₂O₃ phase reached In $GaO₃$, which is in good agreement with the data reported by Shannon and Prewitt (21), and the In_2O_3 phase reached the composition $In_2O_3: Ga_2O_3 = 0.90:0.10$. The Xphase which had been reported by Schneider et al. (18) was not detected even at

1300°C. In the $In_2O_3-Ga_2O_3-CoO$ system, there was a stable ternary compound, In $GaCoO₄$ with the YbFe₂O₄ structure. Powder X-ray diffraction data are shown in Table I; lattice constants, in Table II. Rather extensive solubility of $InGaCoO₄$ in the spinel phase, $Ga₂CoO₄$ is observed. The solid solution ranges from Ga_2CoO_4 to $In_{0.4}$ $Ga_{1.6}CoO₄$, and the lattice constant varies from $a = 8.3229(1)$ Å (Ga₂CoO₄) to $a =$ 8.4260(4) Å $(In_{0.4}Ga_{0.6}CoO₄)$. The phase relations in the $In_2O_3-Ga_2O_3-CoO$ system at 1300°C is shown in Fig. 7.

The experimental data which establish each of the phase relations in the $In_2O_3 A_2O_3$ -BO systems at elevated temperatures are shown in Table III.

When InGaCoO₄ with the YbFe₂O₄ structure was heated at 1500°C for 10 days, it changed to a spine1 type compound. It reversibly converted to a $YbFe₂O₄$ type compound at 1300°C. On the other hand, the $YbFe₂O₄$ type of InGaCoO₄ decomposed to

		$In2O3 - Fe2O3 - CuO$	$In_2O_3-Ga_2O_3-CuO$			
Composition (mole ratio)	Period (days)	Phases	Composition (mole ratio)	Period (days)	Phases	
1:0:2	10	$2 - 2 - 5$	0:1:1	6	Ga ₂ CuO ₄	
1:1:2	10	$1 - 1 - 1 - 4$	1:0:2	7	$In-Cu2O5$	
1:1:1	10	$2 - 2 - 1 - 7$	1:1:2	14	$1 - 1 - 1 - 4$	
3:3:2	10	$3 - 3 - 1 - 10$	1:1:1	14	$2 - 2 - 1 - 7$	
1:8:1	27	$2-2-1-7$, Fe ₂ CuO ₄ , Fe ₂ O ₃	25:35:40	24	$1-1-1-4$, $2-2-1-7$, Ga_2O_3	
15:75:10	27	$2-2-1-7$, $3-3-1-10$, $Fe2O3$	40:25:30	10	$1 - 1 - 1 - 4$, $2 - 2 - 1 - 7$, $In2O3$	
20:75:5	24	$3-3-1-10$, Fe ₂ O ₃ , In ₂ O ₃	75:75:50	24	$2-2-1-7$, Ga_2O_3	
20:70:10	24	$3-3-1-10$, In ₂ O ₃ , Fe ₂ O ₃	15:5:80	12	CuO, In ₂ Cu ₂ O ₅ , 1-1-1-4	
70:20:10	24	$3-3-1-10$. In ₂ O ₃	40:10:50	12	In-Cu-O ₅ , 1-1-1-4, In-O ₃	
20:55:25	32	$2-2-1-7$. Fe ₂ CuO ₄ . Fe ₂ O ₃	5:65:30	26	Ga_2O_3 , Ga_2CuO_4 , $1-1-1-4$	
25:35:40	20	$2-2-1-7$, 1-1-1-4, Fe ₂ CuO ₄	10:20:70	12	$1 - 1 - 1 - 4$, CuO, Ga ₂ CuO ₄	
40:25:35	6	In_2O_3 , 1-1-1-4, 2-2-1-7	95:95:10	113	$2-2-1-7$, $Ga2O3$	
40:10:50	10	In_2O_3 , 1-1-1-4, $In_2Cu_2O_5$	15:60:25	36	$1 - 1 - 1 - 4$, Ga_2O_3 , $2 - 2 - 1 - 7$	
15:5:80	18	$1 - 1 - 1 - 4$, CuO, In ₂ Cu ₂ O ₃	20:75:5	36	$2-2-1-7$, Ga_2O_3	
5:65:30	18	$2-2-1-7$, Fe ₂ O ₃ , Fe ₂ CuO ₄	1:1:0	111	Ga_2O_3	
1:1:0	180	In $-O_1$, Fe $-O_3$	35:60:5	36	$2-2-1-7$, $Ga2O3$	
95:95:10	60	$3-3-1-10$, In ₂ O ₃ , Fe ₂ O ₃				
1:2:7	10	$1 - 1 - 1 - 4$, CuO, Fe ₂ CuO ₄			$1 - 1 - 1 - 4$: InGaCuO ₄	
45:30:25	15	$3-3-1-10$, $2-2-1-7$, In_2O_3			$2-2-1-7$: In ₂ Ga ₂ CuO ₇	
		$2 - 2 - 5$: In ₂ Cu ₂ O ₅ $1 - 1 - 1 - 4$: In FeCuO ₄ $2 - 2 - 1 - 7$: In Fe CuO $3-3-1-10$: In ₃ Fe ₃ CuO ₁₀				

TABLE IIIa THE PHASE RELATIONS IN THE $In_2O_3 - A_2O_3 - CuO$ SYSTEM AT $1000^{\circ}C$

	$In_2O_3-Fe_2O_3-CoO$		$In-O3-Ga2O3-CoO$			
Composition (mole ratio)	Period (days)	Phases	Composition (mole ratio)	Period (days)	Phases	
0:1:1	6	Spinel	0:1:1	6	Spinel	
1:1:2	4	Spinel	1:1:2	6	In $GaCoO4$	
15:35:55	6	Spinel	1:4:5	6	Spinel	
20:30:50	6	Spinel	5:1:4	6	$In2, InGaCoO4, CoO3$	
10:40:50	6	Spinel	2:1:7	10	In_2O_3 , InGaCoO ₄ , CoO	
5:45:50	6	Spinel	1:6:3	6	Spinel, $Ga-O3$	
40:25:35	6	Spinel, $In O3$	1:8:1	8	Spinel, Ga_2O_3	
60:30:10	6	In ₂ , spinel	1:2:7	8	$InGaCoO4$, CoO, spinel	
30:55:15	6	In ₂ O ₃ , Fe ₂ O ₃ , spinel	1:1:1	8	$In2O3$, spinel	
1:1:1	6	In ₂ , spiral	5:2:3	10	In ₂ O ₃ , InGaCoO ₄ , spinel	
4:1:5	13	$In2O3$, spinel, CoO	2:7:1	$\mathbf{10}$	Spinel, Ga_2O_3	
1:2:7	13	Spinel, CoO	50:35:15	10	In ₂ O ₃ , spinel, Ga_2O_3	
10:55:35	13	Spinel, In_2O_3 , Fe ₂ O ₃	7:3:0	13	In_2O_3	
1:0:2	13	In_2O_3 , CoO	1:1:0	19	Ga_2O_3	
25:50:25	7	In ₂ O ₃ , spinel, $Fe2O3$	1:2:0	19	Ga ₂ O ₃	
5:70:25	7	Spinel, $Fe-O3$				
50:35:15	16	Spinel, $\ln_2\Omega_3$				
1:1:0	35	In O_3 , Fe O_3				

TABLE IIIb

THE PHASE RELATIONS IN THE In₂O₃-A₂O₃-CoO SYSTEM AT 1300°C

 In_2O_3 , a spinel phase, and CoO after heat treatment at 1100°C for 3 days. The InFe $CoO₄$ having a spinel structure also decomposed to In_2O_3 , a spinel phase, and CoO after heat treatment at 1100°C for 3 days. In the $LnABO₄$ (*Ln*: lanthanoid elements and Y, A : trivalent metal, B: divalent metal) isostructural with $YbFe₂O₄$, the transition to spinel structure has never been observed (11) , while it is possible in InGaCoO₄. This may be due to the rather small ionic radius of $In³⁺$ compared with that of the lanthanide elements. Detailed study on this transition is in progress.

It is interesting to note the difference between Fe^{3+} and Ga^{3+} from the structural point of view. It is well known that Ga^{3+} has a slightly smaller ionic radius than $Fe³⁺$ and prefers a tetrahedral site to an octahedral one under a normal pressure (24) . However, in the $In_2O_3-A_2O_3-CuO$ systems, $Fe³⁺$ and $Ga³⁺$ seem to play similar roles in view of the formation of layered structures. $(InFeO₃)_nCuO$ ($n = 1, 2,$ and 3) were found

in the In_2O_3 -Fe₂O₃-CuO system as well as $($ InGaO₃ $)$ _nCuO (n = 1 and 2) in the In₂O₃- $Ga₂O₃$ -CuO system. In contrast, InFeCoO₄ never takes the $YbFe₂O₄$ structure but a spinel one, while the $InGaCoO₄$ takes the layered structure at 1300°C. Considering the large ionic radius of In^{3+} , it was postulated that the In $FeCoO₄$ takes a structure denoted as $Fe[InCo]O₄$ which is formed simple replacement of Fe^{3+} by In^{3+} in an inverse spinel, $Fe[FeCo]O₄(26)$. Similarly, it can be expected from tetrahedral site preferency of Ga^{3+} that spinel type of InGa $CoO₄$ takes a structure, $Ga[InCo]O₄$. Table IV shows the possible sites and ionic radii of the cations after Shannon and Prewitt (25) , when InGaCoO₄ and InFeCoO₄ take both spinel and $YbFe₂O₄$ structure (though In $FeCoO₄$ does not, really, take the Yb $Fe₂O₄$ structure). As shown in this table, the difference between ionic radii of fivecoordinated Fe^{3+} and Ga^{3+} is very small, as well as between four-coordinated ones. Based upon the simple spherical ionic

TABLE IV

THE IONIC RADII (Å) AND COORDINATION NUMBERS OF In^{3+} , Co^{2+} , Fe^{3+} , AND Ga^{3+} WHEN THE In $FeCoO₄$ or the In $GaCoO₄$ has the Spinel or THE YbFe₂O₄ STRUCTURE ACCORDING TO REF. (25)

model, we cannot, therefore, explain the reason why In $FeCoO₄$ prefers the spinel structure. It is, however, shown through the present work that the $YbFe₂O₄$ structure is not, thermochemically, widely different from the spine1 type, but in the case of In AC_0O_4 , the factors controlling the type of the structure may be very critical.

In view of the discrepancy between the present work and that of Schneider et al. (18) for the In₂O₃-Ga₂O₃ system at elevated temperatures, further investigations of the system are desirable, especially the Xphase.

References

- I. (i) N. KIMIZUKA AND T. KATSURA, Bull. Chem. Soc. Jpn. 47, 1801 (1974), (ii) N. KIMIZUKA, A. YAMAMOTO, H. OHASHI, T. SUGIHARA, AND T. SEKINE, J. Solid State Chem. 49, 65 (1983).
- 2. K. KATO, I. KAWADA, N. KIMIZUKA, AND T. KATSURA, Z. Krisrallogr. 141, 314 (1975).
- 3. K. KATO, I. KAWADA, N. KIMIZUKA, I. SHINDO, AND T. KATSURA, Z. Kristallogr. 143, 278 (1976).
- 4. Y. MATSUI, K. KATO, N. KIMIZUKA, AND S. Ho-RIUCHI, Acta Crystallogr. Sect. B 35, 561 (1976).
- 5. N. KIMIZUKA, K. KATO, I. KAWADA, I. SHINDO, AND T. KATSURA, Acta Crystallogr. Sect. B 32, 1721 (1976).
- 6. M. TANAKA, J. AKIMITSU, Y. INADA, N. KIMI-

ZUKA, I. SHINDO, AND K. SIRATORI, Solid State Commun. 44, 687 (1982).

- 7. (i) Y. Nakagawa, M. Inazumi, N. Kimizur AND K. SIRATORI, J. Phys. Soc. Jpn. 47, 1669 (1979). (ii) M. INAZUMI, Y. NAKAGAWA, M. TANAKA, N. KIMIZUKA, AND K. SIRATORI, J. Phys. Soc. Jpn. 50, 538 (1981).
- 8. E. J. Verway and P. W. Haayman, *Physica* 8, 979 (1941).
- 9. C. Schlenker and M. Marezio, *Philos. Mag* [*Part*] **B** 42, 453 (1980).
- *10*. (i) N. Kimizuka and E. Takayama, *J. Solig* State Chem. 42, 22 (1982), (ii) N. KIMIZUKA AND E. TAKAYAMA, J. Solid State Chem. 43, 278 (1982).
- $11.$ (i) N. Kimizuka and E. Takayama, J. Solia State Chem. 40, 109 (l981), (ii) N. KIMIZUKA AND E. TAKAYAMA, J. Solid State Chem. 41, 166 (1982).
- 12. M. TANAKA, N. KIMIZUKA, J. AKIMITSU, S. FUNAHASHI, AND K. SIRATORI, J. Magn. Magn. Mater. 31/34, 769 (1983).
- 13. J. H. W. DE WIT, J. Solid State Chem. 13, 192 (1975).
- 14. ASTM 13-534, Joint Committee of Powder Diffraction Data.
- 15. Yu. D. TRETYACOV, V. F. KOMOROV, N. A. PROS-VIRNINA, AND I. B. KUSENOK, J. Solid State Chem. 5, 157 (1972); Yu. D. TRETYACOV, A. R. KAUL, AND N. V. MAKUHIN, J. Solid State Chem. 17, 183 (1976).
- 16. G. Bergrhoff and H. Kasper, Acta Crystallog Sect. **B 24, 388** (1968).
- 17. A. M. M. GADALLA AND J. WHITE, Trans. Brit. Ceram. Soc. 63, 1 (1964); D. S. BURST, A. M. M. GADALLA AND J. WHITE, Trans. Brit. Ceram. Soc. 64, 731 (1965).
- 18. S. J. SCHNEIDER, R. S. ROTH, AND J. L. WARING, J. Res. Nat. Bur. Stand. A 65, 345 (1961).
- 19. S. GELLER, J. Chem. Phys. 33, 676 (1960).
- 20. J. MACDONALD, J. A. CARD, AND F. P. GLASSER, J. Inorg. Nucl. Chem. 29, 661 (1967).
- 21. R. D. Shannon and C. T. Prewitt, J. I*norg* Nucl. Chem. 30, 1389 (1968).
- 22. R. C. EVANS, "Introduction to Crystal Chemistry" 2nd. ed., p. 173, Univ. Press, Cambridge (1966).
- 23. D. P. MASSE AND A. MUAN, J. Amer. Ceram. Soc. 48, 466 (1965).
- 24. S. GELLER, Z. *Kristallogr*. **125,** S. 1 (1967).
- 25. R. D. Shannon and C. T. Prewitt, Acta Cry stallogr. Sect. B 25, 925 (1969); R. D. SHANNON AND C. T. PREWITT, Acta Crystallogr. Sect. B 26, 1046 (1970).
- 26. R. W. G. WYCKOFF, "Crystal Structure Data," Chap. VIII, Part B, 2nd. ed., Vol. 3, Interscience, New York/London/Sydney (1960).