Lumineszenz und sensibilisierte Emission der dreiwertigen Seltenen Erden in Sr₃La₂W₂O₁₂

R. BRAUN UND S. KEMMLER-SACK*

Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, D-7400 Tübingen, Federal Republic of Germany

Received January 16, 1984

By activation of the new host lattice $Sr_3La_2W_2O_{12}$ with the trivalent rare earth ions Nd, Eu, Ho, Er, Tm, Yb an intense emission in the visible and/or infrared region is obtained. Energy transfer from Er^{3+} to Tm^{3+} and Nd^{3+} to Yb^{3+} has been found to occur. The excitation, emission, and diffuse reflectance spectra are analyzed for $Sr_3La_2W_2O_{12}$: Ln^{3+} (Ln = Nd, Sm, Eu, Dy, Ho, Er, Tm, Yb).

1. Einführung

Im Rahmen von Untersuchungen über die Photolumineszenz von Selten Erd-aktivierten W⁶⁺-haltigen Oxiden (1-6) wurde für das im Sr₃Re₂O₁₂-Typ (7) kristallisierende Wirtsgitter Sr₃La₂W₂O₁₂ bei Aktivierung mit $Ln^{3+} = \text{Eu}$, Er, Tm eine intensive Emission im sichtbaren Gebiet beobachtet. Für die Kombinationen Eu/Tm und Er/Tm finden sich die Ergebnisse in (4). Mit $Ln^{3+} = \text{Nd}$, Ho, Er, Tm, Yb treten starke Emissionen im nahen IR auf, wobei sich die IR-Emission von Tm³⁺ durch Einbau von Er³⁺ sensibilisieren läßt und diejenige von Yb³⁺ durch Nd³⁺.

2. Experimenteller Teil

Zur Darstellung des reinen Wirtsgitters Sr₃La₂W₂O₁₂ und der aktivierten Verbindungen Sr₃La_{2-x}Ln_xW₂O₁₂ (im folgenden mit SW: Ln abgekürzt) wurde wie unter (4) verfahren, jedoch abweichend von dort $6 \times$ 50h bei 1150°C geglüht. Die Gitterkonstanten liegen nahe bei den Werten für Sr₃La₂W₂O₁₂ (a = 9,95(1); c = 56,72(2) Å (4)). Der flammenphotometrisch (Atomabsorptionsspektralphotometer 4000 von Perkin-Elmer) gemessene Sr-Gehalt (z.B. Sr₃La₂W₂O₁₂: 23,89 (ber); 23,8% (gef)) und die Pyknometerdichte (22,2°C; Sperrflüssigkeit:n-Oktan; z.B. Sr₃La_{1,98}Er_{0,02}W₂O₁₂: 6,77 (ber); 6,65(5) g cm⁻³ (gef)) stimmen mit den berechneten Größen überein.

Die Anregungs-, Emissions- und diffusen Reflexionsspektren wurden entsprechend (4) registriert. Zur Aufnahme der IR-Übergänge diente eine PbS-Zelle als Empfänger.

3. Ergebnisse und Diskussion

3.1 Lumineszenz im sichtbaren Gebiet

Das reine Wirtsgitter $Sr_3La_2W_2O_{12}$ zeigt im UV eine starke optische Absorption, die bei ~28500 cm⁻¹ einsetzt und einem charge

^{*} To whom correspondence should be addressed.

TABELLE I LUMINESZENZFARBEN UND INTENSIVSTER $4f \rightarrow 4f$ -Übergang

Ln ³⁺	Lumineszenz- farbe	4f → 4f-Übergang		
		Emission	Anregung	
Sm	Orange	${}^4G_{5/2} \rightarrow {}^6H_{7/2}$	${}^{6}H_{5/2} \rightarrow {}^{4}L_{13/2}$	
Eu	Rot	${}^{5}D_{0} \rightarrow {}^{7}F_{2}$	$\begin{cases} {}^7F_0 \to {}^5D_2 \\ {}^7F_0 \to {}^5L_6 \end{cases}$	
Dy	Gelb	${}^4F_{9/2} \rightarrow {}^6H_{13/2}$	${}^{6}H_{15/2} \rightarrow {}^{6}P_{7/2}$	
Ho	Grün	${}^5S_2, {}^5F_4 \rightarrow {}^5I_8$	${}^{5}I_{8} \rightarrow {}^{3}K_{8}, {}^{5}G$	
Er	Grün	${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$	${}^{4}I_{15/2} \rightarrow {}^{4}G_{11/2}$	
Tm	Blau	$^{1}G_{4} \rightarrow {}^{3}H_{6}$	${}^{3}H_{6} \rightarrow {}^{1}D_{2}$	

transfer vom Sauerstoff zum Wolfram innerhalb der WO₆-Gruppen entspricht. Bei Anregung in die Bandkante (~32000 cm⁻¹) wird bei 77 K eine blaue Emission (breite Bande bei ~20800 cm⁻¹) beobachtet. Alle Werte fallen in die üblichen Bereiche für oktaedrische WO₆-Gruppen (5, 6). Bei RT ist die WO₆-Lumineszenz weitgehend thermisch gelöscht.

Die aktivierten Verbindungen SW:Ln emittieren mit Ln = Sm, Eu, Dy, Ho, Er, Tm bei RT im sichtbaren Gebiet; für Pr, Tb tritt keine nennenswerte Emission auf. Tabelle I zeigt die Lumineszenzfarben sowie die zugehörigen Emissions- und Anregungsmaxima. In den RT-Anregungsspektren der stärksten $4f \rightarrow 4f$ -Emission tritt neben $4f \rightarrow 4f$ -Übergängen, die in die üblichen Bereiche fallen (vgl. die diffusen Reflexionsspektren unter 3.2), das WO_6 -Anregungsmaximum als schwache bis sehr schwache Bande auf, woran eine geringe Energieübertragung WO₆ $\rightarrow Ln^{3+}$ erkennbar ist. Bei 77 K steigt die Intensität der WO₆-Bande und die Lumineszenzintensität nimmt bei WO6-Anregung gegenüber RT zu. Hieraus geht hervor, daß bei 77 K die Wahrscheinlichkeit eines Energietransfers größer als die der strahlungslosen Desaktivierung ist. Für SW:Eu haben bei 77 K alle von ${}^{7}F_{1}$ ausgehenden Übergänge gegenüber denjenigen von 7F_0 stark an Intensität verloren. Die Lage des charge transfers 0 \rightarrow Eu, der in der Gegend von etwa 30000 cm⁻¹ zu erwarten ist (6), läßt sich auch bei 77 K neben dem breiten WO₆-Anregungsmaximum nicht genau ermitteln.

Die in den RT-Emissionsspektren auftretenden $4f \rightarrow 4f$ -Übergänge fallen in die üblichen Bereiche. Für *f*-Anregung läßt sich bis zu 77 K praktisch keine Änderung der Lumineszenzintensität erkennen. Bei Einstrahlung in die WO₆-Gruppen tritt bei 77 K neben den $4f \rightarrow 4f$ -Emissionen die WO₆-Bande bei ~20800 cm⁻¹ auf. Die in diesen Energiebereich fallenden Ln^{3+} -Anregungsbanden lassen sich jeweils als schwache Absorptionen erkennen. Für Ho³⁺ ist die Bande besonders intensiv, da sein stärkstes Anregungsmaximum nahe bei 20800 cm⁻¹ liegt (Abb. 1). Das Auftreten von Ln^{3+} -Ab-

ABB. 1. Emissionsspektrum von SW:Ho (x = 0,15) bei Einstrahlung in ${}^{5}I_{8} \rightarrow {}^{5}G_{6}$, ${}^{3}K_{8}$ (---, RT; --, 77 K) bzw. in die Wo₆-Gruppe (\cdots , 77 K).

Ln ³⁺	Banden- lage	Zuordnung	Ln ³⁺	Banden- lage	Zuordnung
Nd	7320 9170	${}^{2}F_{3/2} \rightarrow {}^{4}I_{13/2} \rightarrow {}^{4}I_{11/2}$	Er	6430 9960	${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ ${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$
	108704	$\rightarrow {}^{4}I_{9/2}$		11330	${}^{4}S_{3/2} \rightarrow {}^{4}I_{13/2}$
Но	4740 } 5030 } 8450	${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$	Tm⁵	4970 5225 5570	$^{3}H_{4} \rightarrow ^{3}H_{6}$
	9600	${}^{5}S_{2} \rightarrow {}^{5}I_{6}$ ${}^{5}F_{5} \rightarrow {}^{5}I_{7}$	Yb ^a	6480) 6870∫ 9755)	${}^{3}F_{4} \rightarrow {}^{3}H_{4}$ ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$

TABELLE II IR-Emissionen (RT; Bandenlage (cm⁻¹))

" Aus den diffusen Reflexionsspektren.

^b Termbezeichnung nach (8, 9).

sorptionen im Bereich der WO₆-Emission zeigt einen strahlenden Energietransfer WO₆ $\rightarrow Ln^{3+}$ an. Starke Intensitätsänderungen innerhalb des 4*f*-Bereichs werden bei 77 K für SW:Er und SW:Ho (Abb. 1) beobachtet. In beiden Fällen geht die Emission bei RT von zwei jeweils eng benachbarten Termen ⁵F₄, ⁵S₂ (Ho) bzw. ²H_{11/2}, ⁴S_{3/2} (Er) aus. Bei 77 K ist das energetisch höher liegende Niveau thermisch nur noch teilweise (⁵F₄) bzw. praktisch nicht mehr besetzt (²H_{11/2}), so daß die energieärmeren Terme ⁵S₂ (Ho) bzw. ⁴S_{3/2} (Er) bevorzugt emittieren.

Die optimale Aktivatorkonzentration liegt für Ln = Sm, Dy, Ho, Er, Tm bei $x \sim$ 0,1 bis 0,2 und mit Eu zwischen $x \sim 0,5$ und 0,6. Für SW:Eu und SW:Er erreicht die Emissionsintensität bei *f*-Anregung (~25300 cm⁻¹ (Eu) bzw. ~26300 cm⁻¹ (Er)) die Größenordnung von Standard-Leuchtstoffen, mit SW:Tm ($\nu_A \sim 28000$ cm⁻¹) werden ähnliche Werte erhalten.

3.2 Lumineszenz und sensibilisierte Emission im nahen IR

Emissionen im nahen IR treten bei RT mit Ln = Nd, Ho, Er, Tm, Yb auf. Bandenlage und Zuordnung zeigt Tabelle II. Die intensivsten Emissionsmaxima liegen bei ~1,1 μ (Nd); ~2,0 μ (Ho); ~1,5 μ (Er); ~1,9 μ (Tm) und ~1,0 μ (Yb). Sie lassen sich mit der verwendeten Meßanordnung in den diffusen Reflexionsspektren neben den üblichen $4f \rightarrow 4f$ -Absorptionen als Emissionen erkennen (Abb. 2 und 3). Die optimale Aktivatorkonzentration liegt bei $x \sim$ 0,1 bis 0,2.

Die RT-Anregungsspektren der intensivsten IR-Emission zeigen allein $4f \rightarrow 4f$ -Übergänge; eine WO₆-Bande ist nicht erkennbar. Für SW:Ho stimmt das intensivste Anregungsmaximum mit demjenigen für die sichtbare Emission überein (${}^{5}I_{8} \rightarrow$ ${}^{5}G_{6}$, ${}^{3}K_{8}$). Bei SW : Er läßt sich die IR-Emission bei Einstrahlung in ${}^{4}I_{15/2} \rightarrow {}^{4}G_{11/2}$ (wie die Lumineszenz im sichtbaren Gebiet) oder mit praktisch unveränderter Stärke über die beiden etwa intensitätsgleichen Maxima im Roten (${}^{4}I_{15/2} \rightarrow {}^{4}I_{9/2}$ bzw. ${}^{4}F_{9/2}$) anregen (Abb. 4). Für SW:Tm ist die höchste Emissionsintensität bei Anregung in die ebenfalls im Roten liegenden Übergänge ${}^{3}H_{6} \rightarrow {}^{3}F_{4}$ bzw. ${}^{3}F_{3}$, ${}^{3}F_{2}$ (Termbezeichnung nach (8, 9)) zu erzielen (Abb. 4), während sie bei Einstrahlung in das intensivste Anregungsmaximum der blauen Lumines- $\operatorname{zenz} ({}^{3}H_{6} \rightarrow {}^{1}D_{2})$ stark zurückgeht. Die Nd-Emission läßt sich ebenfalls bevorzugt im Roten anregen (${}^{4}I_{9/2} \rightarrow {}^{4}F_{5/2}$, ${}^{2}H_{9/2}$ und ${}^{4}I_{9/2} \rightarrow$ ⁴F_{7/2}, ⁴S_{3/2}). In den 77 K-Anregungsspektren tritt zu den 4f - 4f-Übergängen für SW:Er ein intensiveres und bei SW:Ho und SW:Tm ein schwaches WO₆-Maximum hinzu (Abb. 4), während diese für SW:Nd nicht beobachtbar ist.

Bei 77 K hat sich die Emissionsintensität nach Einstrahlung in das intensivste Anregungsmaximum für Ln = Nd, Ho, Tm praktisch nicht geändert. Bei SW:Er ist sie dagegen um etwa den Faktor 5 gesunken, gleichzeitig läßt sich ein Intensitätsgewinn im Bereich der energiereicheren Emissionen ${}^{4}I_{9/2}$, ${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$ im Vergleich zu ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ erkennen. Hieraus geht hervor. daß sich bei 77 K für SW:Er die Energiekaskade zum Ausgangsniveau der inten-

ABB. 2. Diffuse Reflexionsspektren für SW:Er (Grundzustand ${}^{4}I_{15/2}$); SW:Er, Tm; SW:Tm (${}^{3}H_{6}$) und SW:Ho (${}^{5}I_{8}$); jeweils $x \approx 0,1$.

ABB. 3. Diffuse Reflexionsspektren für SW:Nd (${}^{4}I_{9/2}$); SW:Nd,Yb; und SW:Yb (${}^{5}F_{7/2}$); jeweils x = 0,1.

ABB. 4. Anregungsspektren von SW:Er in ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ (--, RT; ..., 77 K); SW:Tm in ${}^{3}H_4 \rightarrow {}^{3}H_6$ (--, RT) sowie von SW:Er, Tm (--, RT); jeweils x = 0,1.

sivsten IR-Lumineszenz (${}^{4}I_{13/2}$) verlangsamt und die energetisch höher liegenden Terme ${}^{4}I_{9/2}$, ${}^{4}I_{11/2}$ stärker zur Emission beitragen können.

Entsprechend der unter (9) angeführten Energietransferschemata wird die Emission von Tm³⁺ (${}^{3}H_{4} \rightarrow {}^{3}H_{6}$) durch Er³⁺ und von Yb³⁺ (${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$) durch Nd³⁺ sensibilisieren (Abb. 2 und 3). Gegenüber SW:Tm und SW:Yb mit x = 0,1 steigt die Emissionsintensität bei Einbau der Sensibilisatoren Er³⁺ bzw. Nd³⁺ (jeweils x = 0,1) um etwa 50% (Tm, Er) bzw. 150% (Yb, Nd). Die diffusen Reflexionsspektren der sensibilisierten Verbindungen SW:Tm,Er und SW:Yb, Nd stellen Überlagerungen der beiden individuellen Absorptionsspektren dar, Anzeichen für die Bildung von Ionenpaaren werden nicht gefunden (Abb. 2 und 3).

Für die Energieübertragung Nd \rightarrow Yb bzw. Er \rightarrow Tm ist ein Resonanzaustausch auszuschließen, da die Sensibilisatorterme ⁴F_{3/2} (Nd) bzw. ⁴I_{13/2} (Er) etwa 1000 cm⁻¹ über dem Emissionsausgangsniveau ²F_{5/2} (Yb) bzw. ³H₄ (Tm) liegen. Der Energietransfer-Prozess erfordert die Abgabe von Phononen. Die Energiedifferenz zwischen Transferausgangs- und -endterm kann leicht vom Wirtsgitter aufgenommen werden. Die WO₆-Valenzschwingungen liegen in Sr₃La₂W₂O₁₂ bei ~810 cm⁻¹ (ν_1 -Gebiet) und ~580 cm⁻¹ (ν_3 -Gebiet); Deformationen: ~350 cm⁻¹ (ν_4) bzw. ~440 cm⁻¹ (ν_5). Im Anregungsspektrum der Tm-Emission ${}^{3}H_4 \rightarrow {}^{3}H_6$ treten für SW:Tm,Er die Anregungsmaxima von Tm und Er nebeneinander auf (Abb. 4). Die Energieübertragung Er \rightarrow Tm geht weiterhin daraus hervor, daß sich in SW:Tm,Er selbst die intensivste Er-Emission ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ praktisch nicht mehr anregen läßt. Im roten Spektralbereich liegen insbesondere die Terme von Er (${}^{4}I_{9/2}$ bzw. ${}^{4}F_{9/2}$) und Tm (${}^{3}F_4$ bzw. ${}^{3}F_2$) eng benachbart, so daß ein Resonanzaustausch in diesem Gebiet nicht auszuschließen ist.

Dank

Wir danken dem Bundesministerium für Forschung und Technologie für die Unterstützung der Arbeit. Der Firma Riedel de Haën gilt unser Dank für die Überlassung des SrCO₃. Herrn Professor Dr. E. Lindner und Herrn G. Farag danken wir für die Messung der FIRund Raman-Spektren sowie Herrn Dr. W. Wischert, Frau R. Hüpper und Frau A. Ehmann für ihre Hilfe. Die Untersuchung wurde von der deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie unterstützt.

Literatur

- 1. S. KEMMLER-SACK, Z. Anorg. Allg. Chem. 483, 126 (1981).
- 2. S. KEMMLER-SACK, Z. Anorg. Allg. Chem. 489, 55 (1982).
- 3. K. K. CLOB UND S. KEMMLER-SACK, J. Solid State Chem. 48, 295 (1983).
- R. BRAUN UND S. KEMMLER-SACK, Naturwissenschaften 70, 463 (1983).
- 5. G. BLASSE UND S. KEMMLER-SACK, Ber. Bunsenges. Phys. Chem. 87, 352 (1983).
- G. BLASSE UND S. KEMMLER-SACK, Ber. Bunsenges. Phys. Chem. 87, 698 (1983).
- 7. J. M. LONGO, L. KATZ, UND R. WARD, Inorg. Chem. 4, 235 (1965).
- M. J. WEBER, *in* "Lanthanide and Actinide Chemistry and Spectroscopy" (N. M. Edelstein, Ed.), p. 275, ACS Symposium Series 131, American Chemical Society, Washington, D.C. (1980).
- A. A. KAMINSKII, "Laser Crystals," Springer Series in Optical Sciences, Springer-Verlag, Berlin/ Heidelberg/New York (1981).