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Introduction 

The purpose of this paper is to discuss 
chemical diffusion and interdiffusion and 
the relation between them and to clarify 
some badly defined and/or wrongly used 
concepts which occur in the literature. It 
seems that they occur so frequently be- 
cause diffusion is based on thermodynam- 
ics and the latter lends itself all too easily to 
drawing wrong conclusions from valid but 
very general formulae. 

Chemical diffusion is defined as diffusion 
in a chemical concentration gradient. It 
therefore includes interdiffusion of two ma- 
terials forming a solid solution as in Kirken- 
da11 experiments and in chemical doping of 
semiconductors as well as experiments in 
which the stoichiometry of a compound 
changes, such as oxidation/reduction of 
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cool+, to CoQ+y, with y # x. In this ar- 
ticle we shall use the term “chemical diffu- 
sion” in the restricted sense as applying 
only to experiments where the stoichiome- 
try changes and use the name “interdiffu- 
sion” for the other cases. 

An equation derived by Darken (1) to ex- 
plain the Kirkendall effect in interdiffusion 
experiments, has sometimes been applied 
to chemical diffusion processes. We shall 
show that this is not permitted. In order to 
do this we shall first review briefly the im- 
portant equations of interdiffusion. 

Interdiffusion and the Kirkendall Effect 

In a Kirkendall experiment one con- 
structs a diffusion couple made of two 
pieces of an alloy AB with different compo- 
sitions and measures as a function of time 
the distance between inert markers placed 
at the original boundary of the two pieces 
and the ends of the couple. A good discus- 
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sion of the principles involved is found in 
Manning (2). Here we shall not repeat the 
derivation of the equations, but would like 
to stress that an important and necessary 
assumption in the derivation is that the total 
number of atoms per unit volume is con- 
stant (1). Let us assume that the diffusion is 
by a vacancy mechanism, then the concen- 
tration of vacancies must be independent of 
x and t. 

Darken showed that the following equa- 
tion gives the rate at which the concentra- 
tion gradient of the diffusion couple tends 
to smooth out 

J; = -(NAD; + NBD:> e[A]lax. (1) 

The effective diffusion constant, which we 
shall call DDar, is therefore 

DDar = NADb + NBD: 

this is known as Darken’s equation. 

(2) 

In these equations J,!+, is the flux of com- 
ponent A measured with respect to the ends 
of the couple (because of the above as- 
sumption about atoms per unit volume the 
length of the couple does not change with 
time), [A] is the concentration of compo- 
nent A (measured in units of particles/m3), 
NA = LW([Al + WI), NB = WW + 
[B]), and Di is the so-called (2) intrinsic 
diffusion coefficient defined by 

JA = -0: a[A]l& (3) 

with a similar definition for Db . These D”s 
which are called “diffusivities” by Darken, 
depend on the composition, i.e., on the ra- 
tio [A]/[B]. J, in contrast to J’, is the flux 
density measured with respect to the lat- 
tice, i.e., operationally with respect to inert 
markers in the sample (1). 

Manning showed that Eq. (2) can be 
transformed as follows (his Eq. (5.87)) 

DDar = (NADF + NBDT) -$$ R (4) 
A 

with 

R=l+ 
(1 - f)NANB(Dp - Dz)’ 

~(NAD~ + NBDF)(NADF + NBDF)’ 

Here DF is the radioactive tracer diffusion 
coefficient of component i, measured at the 
composition of the alloy, which is of course 
a function of x. The aA is the activity of 
component A, defined through the chemical 
potential PA by PA = kT III aA. The f iS the 
correlation factor for tracer diffusion in the 
lattice considered, it relates the mechanical 
mobility bi (with dimensions m see-’ Nt-‘) 
toDTrbyDT’=AkTbi(lZfZi).R,which 
is a measure of the “vacancy flow” (2), 
usually differs from 1 by less than 10%. 
Equation (4), without the factor R, had al- 
ready been derived by Darken (see Appen- 
dix A). The expression d In aA/d In NA is 
known as the thermodynamic factor. If the 
solution of A in B is ideal (this implies that 
the entropy is configurational only), then 

,UA = kT In NA + const. (5) 

and the thermodynamic factor is 1. Since 
the vacancy concentration is constant it 
does not appear in Eq. (5). Compare also 
with Eq. (15), below. 

From Eq. (4) we can calculate DDa* for 
any composition provided DF, Dp, f, and 
the factor d In aA/d In NA are all known for 
the composition of interest. 

Two special cases will help to understand 
the concepts involved: 

A. Measurement with radioactive trac- 
ers of the self-diffusion in an element. We 
can regard this as interdiffusion of the ra- 
dioactive and the nonradioactive isotope. 
In Eq. (4) the two diffusion coefficients are 
the same and the value of the thermody- 
namic factor is 1, since the solution is ideal. 
Also R = 1, as can be verified from Eq. (4). 
We get therefore DDw = DTr, as can be ex- 
pected. 

B. Diffusion doping of a semiconductor, 
e.g., boron diffusing into silicon. Here we 
have interdiffusion of a minor constituent 
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(the dopant, A) and a major constituent (the 
semiconductor, B). Therefore NA Q Na and 
R can be shown to be 1 in this case. Equa- 
tion (4) gives now 

d In aA DDar=gL---- 
dlnNA (6) 

and because of the low concentration we 
would expect d In aA = d In NA , i.e., DD” = 
Op. Since, however, dopants in semicon- 
ductors diffuse usually not as atoms, but as 
ions and electrons, the relation is more 
complicated. The value of the factor multi- 
plying DT;’ for this situation will be dis- 
cussed later. 

Non-Applicability of Darken’s Equation to 
Chemical Diffusion 

Let us now discuss a simple system, 
namely a hypothetical binary compound 
MX in which we have a low concentration 
of vacancies VM on the M sublattice. VM is a 
neutral vacancy and causes diffusion of the 
M atoms. We assume that the X atoms stay 
in place so that the X sublattice is com- 
pletely inert and can serve as reference lat- 
tice. 

We now make an experiment which 
looks like a Kirkendall experiment (but is 
not, see below). We construct a diffusion 
couple with a step in the concentration of 
M-atoms (see Fig. 1). It consists of a left 
part containing initially [V,] i vacancies 
and [ Mhl] l atoms and a right part containing 
[VM12 vacancies and [MM]~ atoms, and we 
have [MM] + [VM] = const. 

The couple will equilibrate with an effec- 
tive diffusion coefficient d, the vacancies 

p-j-q 

FIGURE 1 

and the atoms will eventually be distributed 
uniformly. We see that this fits our defini- 
tion of a chemical diffusion process so that 
6 is the chemical diffusion coefficient. fi 
can be measured as usual by comparing a 
measured concentration profile with a solu- 
tion of the diffusion equation 

a[&.il - = -g (By). at (7) 

We note here that b does not have an in- 
dex. One usually measures relative rather 
than absolute concentrations so that there 
is no way of telling from the equilibration 
experiment whether the M atoms or the X 
atoms are mobile. 

We now ask whether we can use Eq. (2), 
or the equivalent Eq. (4), to calculate 8, as 
was done for closely related equilibration 
experiments among others by Wagner (3) 
who discussed FeO, by Steele (4) (for 
CdS), and more recently by Breitung (5) 
(for UO2). 

If we do so, we get for fi 

D = NMDh + NxDt (8) 

and we have in our case Nu = Nx = t. 
Since we assumed that Dh = 0 we get that 
D = 4Db. However, Eq. (3) is for the M- 
atoms 

JM = -Dh t3[Mkl]/ik (9) 

Equation (7) implies that Jd = -B i3[M~]/ 
ax, but in our case J and J’ are the same 
since the X lattice, any plane of which can 
in principle be marked by radioactive X- 
atoms, does not move with respect to the 
ends of the couple. Therefore the effective 
diffusion coefficient characterizing the 
equilibration should be d = Dt , which ob- 
viously disagrees with Darken’s equation. 

We see that Darken’s equation is not ap- 
plicable here, it leads to the wrong result. 
The basic reason is that Darken’s equation 
applies to a system in which the total num- 
ber of atoms per unit volume is constant, so 
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that there is a concentration gradient of 
both M and X, rather than of M alone. Va- 
cancies are then created on one side of the 
interface and annihilated on the other, 
whereas in our case vacancies are con- 
served, only redistributed. 

Another way of looking at the same thing 
is the following: According to Darken (1) 
uk, the velocity at which the interface of the 
diffusion couple moves with respect to the 
ends of the couple, is given by 

uk = (of - &) d&/d& (10) 

where the gradient is evaluated at the inter- 
face. In our case uk is zero, since the X 
sublattice is immobile. Now A$, is con- 
nected with the concentrations by ZVu = 
[Mu]/([Mu] + [Xx]) so that &Vu/& is obvi- 
ously not zero. Therefore the factor (D’, - 
0:) should be zero, but we know it is not. 
Again we conclude that Darken’s analysis 
is not applicable to this case. 

We conclude that for our hypothetical 
experiment the correct expression is 

d=DL. (11) 

Equation (1 l), with the explicit form of D’ 
to be derived in the next section, was im- 
plicitly used by Steele (4) (see below) for 
CdS, but it should be clear that it is not a 
limiting case of Eq. (2) as claimed by 
Steele. Wagner (3) who discussed FeO, 
calculated fi according to both Eqs. (2) and 
(1 l), neither of which gave a very good fit to 
the experimental results. 

Relation between Chemical and Tracer 
Diffusion 

We shall now relate D’, and therefore d, 
which is measurable for instance by a ther- 
mogravimetric absorption/desorption ex- 
periment (Heyne (6)) to DTr of the mobile 
atoms. We shall do this for a compound 
MX in which, as in the previous section, 
the X sublattice stays fixed while the M at- 
oms are mobile. Usually in such a com- 

pound, as for instance in Co0 or CdS, the 
atoms move in a dissociated state, i.e., ions 
and electrons move independently. (Since 
diffusion always proceeds by a defect 
mechanism, it is, as we shall see, the ion- 
ization state of the defects which matters.) 
The two charged species try to move at dif- 
ferent velocities, but since this would lead 
to charge separation they cannot get away 
from each other and the effective motion is 
still that of neutral atoms. This is known as 
the ambipolar diffusion mechanism. One 
cannot in the present case use the deriva- 
tion leading from Eq. (2) to Eq. (4) because 
the effective mobility of the atoms is not 
related anymore to DTr, which is measured 
for moving ions. A different approach, tak- 
ing into account the electric field involved, 
is needed. The theory of this subject was 
originally worked out by Wagner in a num- 
ber of publications (7, 8). It has recently 
been treated by Heyne (6) and in a general 
form by Weppner and Huggins (9). We 
shall summarize the results of the latter au- 
thors, but shall assume from the outset that 
only the M ions and one type of electronic 
charge carriers (electrons or holes) are mo- 
bile in the compound. 

Weppner and Huggins showed (see Ap- 
pendix B) that d in this case is given by 

- DC d hl aM* 
D = x & d In [M*] * (12) 

In Eq. (12) t, is the transport fraction of the 
electronic charge carriers and M* refers to 
neutral M-atoms. It is important to realize 
that when M* appears as ‘a concentration it 
simply means that we can assemble out of 
the constituents of the sample (e.g., ions 
and electrons) [M*] atoms/mm3, and not 
that the lattice is actually made up of neu- 
tral atoms. The activity au* is defined 
through the change of Gibbs free energy on 
introduction of a neutral atom from rest at 
infinity into the lattice, when one calculates 
au* one has to take into account that the 
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introduction changes the number of defects 
in the lattice. This will become clearer in 
the examples. The UM: is of course also the 
activity of M-vapor which is in equilibrium 
with a sample of given defect concentra- 
tion. Note that no particular defect mecha- 
nism is assumed here, however both& and 
the value of the thermodynamic factor d In 
a&d In [M*] depend on the mechanism. 

Equation (12) with t, = 1 is the same as 
Eq. (A4) in Appendix A. The transition to 
Eq. (AS) cannot be made here since [Ml + 
[X] is not constant. 

The authors define now an “enhance- 
ment factor” for diffusion which they call 
W in honor of Carl Wagner 

d 1Il aM* 
w = ‘~9 d ln [M*] ’ 

This factor is the ratio of the chemical diffu- 
sion coefficient and the diffusion coefficient 
DTr/f calculated via the Einstein relation 
from the mobility of the ions. ’ 

DTr, t,, and the thermodynamic factor 
are often measurable by independent exper- 
iments and f can be calculated from the 
mechanism assumed. We can therefore test 
the validity of Eq. (12) for chemical ditfu- 
sion. 

Equation (12) with t, = 1 should be appli- 
cable to the electronic conductors FeO, 
COO, NiO, etc. This was done, as men- 
tioned by Wagner (3) as an alternative to 
using Darken’s equation and also by Chu et 
al. (20) who got better agreement. 

Some Examples of the Enhancement 
Factor 

The enhancement factor is easiest to un- 
derstand and calculate for a system with 
low defect concentration. We now evaluate 
Eq. (12) for a number of examples, includ- 

1 There is an important printing mistake in the more 
general Eq. (12) of Ref. (9). The derivative inside the 
summation should be with respect to In ci and not In c, . 

ing stabilized zirconia in which the defect 
concentration is high. 

1. coo 

Co0 contains holes and singly or doubly 
ionized cobalt vacancies, depending on the 
range of oxygen pressures (II). Introduc- 
tion of a neutral cobalt atom from rest at 
infinity corresponds to the reaction 

co (w) + Co& - Vi!, - zh’ 
(z = 1 or 2). (14) 

We use here the Kroeger-Vink notation in 
which x, ‘, and * indicative effective 
charges (relative to the perfect lattice) of 
zero, -4, and +q, respectively. The chemi- 
cal potential pcO* is therefore 

p&+ = const. - pv - zph . (15) 

This is of course also the chemical potential 
of cobalt vapor which is in equilibrium with 
a Co0 sample of given defect concentra- 
tion. In our defect model p = [h] = z[ V&l 
and because of the low concentration 

pv = kT ln[V&,] + const. (16) 

and 
ph = kT In p + COnSt. (17) 

Equations (1% 17) give 

pc,,* = kT In acO* 
= const. - kT ln[V&,] - zkT ln(z[V&]) 
= const. - (z + I)kT ln[V&,] - zkT In z. 

(18) 

We have also d[V&,] = -d[Co*], there- 
fore 
d In ucO* = d In UC,,* d W&l 
d ln[Co*] d[V&,] d ln[Co*l 

= (7. + 1) [vg,] 
[co*]. (19) 

Since in Co0 t, = 1, we get from Eq. (12) 
that 

[Co*1 
D = jmJ (z + 1) rv;,l. cm 
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We see that the enhancement factor equals 
the reciprocal of the relative vacancy con- 
centration times (z + 1). If diffusion was 
dominated by neutral vacancies we would 
have (z + 1) = 1. 

The result of Eq. (20) is more intuitive if 
one remembers that DTr = fDv[ V&]/[Co*]. 
It reads then 

b = (z + 1)D” (21) 

and means that fi equals Dy enhanced by a 
factor (z + l), depending on the ionization 
state of the vacancies. For neutral vacan- 
cies we would have d = Dv. 

This result can also be derived from the 
following modification of Eq. (12), which is 
valid for low defect and electron concentra- 
tions (6) 

d = Gel + [defectlz?d&& 
2 [elD, + [defeCtlZdef&ef ’ 

(22) 

If we define defect = vacancy and use [e] = 
zv[V], D, is> Dv, we get again Eq. (21). 
However, Eq. (22) is not very useful for 
slightly more complicated cases, such as 
CdS, which will be discussed below. 

2. uo2 

In UO2 oxygen, which diffuses through 
vacancies, is the mobile ionic species and t, 
= 1. The relation between oxygen self and 
chemical diffusion in UOz+n (x 5 0.16) 
has recently been discussed by Breitung 
(5). Breitung mistakenly uses Darken’s 
equation and arrives at the result (his Eq. 
(17)) 

fi = DT’ 2 + x d A’3W 
’ 2RT dx ’ (23) 

where AG(02) = 2RT In ao . If one uses Eq. 
(12) of the present paper one gets that 

B = DE (2 + x)(3 + xl dWOz) 
fo 2RT dx 

(24) 

and since f. = 0.653 for the simple cubic 
oxygen sublattice it follows that d is larger 

by a factor -4.5 than the values calculated 
by Breitung. The mistake originates of 
course in the use of fi = NuDb = $Db by 
Breitung, instead of D = Dh, and his ne- 
glect of fo. One sees from Fig. 5 of 
Breitung’s paper that the bulk of the experi- 
mental results for fi lie indeed by a factor of 
3 to 4 above the theoretical curve he calcu- 
lated for x 5 0.01. If one uses the correct 
theory the agreement is obviously much 
better. 

3. CdS 

A variation of Eq. (12) can be applied to 
CdS. This was first mentioned by Steele 
(4), who realized that the kinetic argument 
used by Kumar and Kroeger (12) to explain 
their measurements is not really necessary. 
However, Steele’s argument is not quite 
consistent, since he starts mistakenly with 
Darken’s equation. Kumar and Kroeger 
measured Dpd and measured also 8 through 
the change of resistance with time when the 
sample was exposed to various Cd pres- 
sures. In the analysis of these measure- 
ments there is the complication that it is 
mainly the sulfur sublattice which changes 
during the chemical diffusion process. The 
diffusing defects are highly mobile Cd inter- 
stitials, but the dominant defects are sulfur 
vacancies, i.e., bCd[Cdjl @ bslVs’1, but 
[Cd;] e [Vi*]. The two defect species are 
related through 

Cdcd + Vs. + e’ @ Cd; (25) 

which leads to the chemical equilibrium 
equation 

[Vs’]nl[Cd;] = K(T). (26) 

Because of the neutrality condition 

[Cd;] + 2[Vi*] = n, (27) 

which implies in the present case that 

n = 2[VI;‘], (28) 

we get from Eq. (26) that 

2[Vb’12/[Cd;] = K(T). (29) 
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The concentration of sulfur vacancies 
therefore changes in parallel with that of Cd 
interstitials. 

If [S*] was constant the measurement of 
resistance would in effect be a measure- 
ment of a chemical diffusion coefficient de- 
fined by Eq. (3) 

Jcd* 
D = - d[Cd*]ldx 

and Eq. (12) would apply. Since [S*] is not 
constant the driving force of Cd* diffusion 
is the gradient of the relative concentration 
so that we really measure a fi defined oper- 
ationally by 

fi = -Jcd* [[s*] $ (=)I-’ (31) 

To a very good approximation [Cd*] = [S*] 
and because of [Cd;] -+ [VS.] we have 
[dS*]ldr s d[Cd*]/dx. Equation (31) is 
therefore equivalent to 

D = Jcd*/d[S*]/dx. (32) 

We use again [Cd*] = [S”] and transform 
Eq. (B7) as follows 

J,-d* = -tebcd - - 
d /-kd* W*l c33j 

d ln[S*] dx 

so that b becomes 

Lj = -t ~d1m-d:. 

e f& d h[S*] ’ 
(34) 

this is the form mentioned by Steele. 
To evaluate Eq. (34) we use an analog of 

Eq. (14) 

Cd(w) + Cd&j + Vg’ + 2e’ 

which gives 

(35) 

pCd* = const. + pv + 2pe (36) 

and get with the help of Eq. (28) that 

pCd’ = const. + kT ln[Vs”] 
+ 2kT In n = 3kT ln[ Vg] + const. (37) 

We have therefore 

d h aCd* = 
Ws-1 

3d MVb’l = 3 ivs.l (38) 

we use also d ln[S*] = -d[ Vg]/[S*] so that 

d In acd: 
d ln[S*] = -3 

WI 
[Vi’1 * (39) 

Finally, since t, = 1 and fed = 1 for the 
interstitial mechanism we get 

@*I D=D$+q (40) 

which is the result derived by Kumar and 
Kroeger. The enhancement factor is there- 
fore 3[S*]/[Vg], it resembles the one for 
Co0 (see Eq. (21)). The ratio D$XS*]l 
[Vs.], gives simply an effective diffusion 
coefficient for sulfur vacancies transporting 
Cd, which they do in a way, see the paper 
by Kumar and Kroeger. The factor “3” re- 
flects again the fact that a neutral Cd atom 
is incorporated as three charged defects ac- 
cording to Eq. (35) rather than as one defect 
via 

Cd(gas) f, Vi + Cd&. (41) 

One can derive Eq. (34) in a more direct, 
but less rigorous way. In Eq. (B7) we can 
interpret [M*] as moles of M per mole of 
MX, at least for low defect concentrations. 
If we do so then for CdS d[Cd*l = -d[S*l. 
We use again [S*] = [Cd*] and get directly 
from Eq. (B7) that 

&cd* d[Cd*l 
JCd* = t,bcd ~ - 

d ln[S*] dx ’ (42) 

With Eq. (9) and b = D’ we get again Eq. 
(34). 

4. Stabilized Zirconia 

This material, with a representative com- 
position Zr0.~Y0.101,95 is an oxygen ion con- 
ductor with a high concentration of oxygen 
vacancies (24% in the above example) and 
t, 4 1 (6). Equation (12), which reads for 
oxygen ions 
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can then be rewritten 

a, d In (IO* 
w = x d ln[O*] = 

d In ao* 
4[02’iboq2 d ln[O*] 

a, d In ao: =-- 
4boq2 d[O*] 
crefokT d In ao* =- 
4Dgq2 d [0*] ’ (44) 

where we have used [0*-l = [O*]. The 
chemical diffusion coefficient is therefore 

DT; uekT d In ao* 
D=wfo= +I2 -d[O*l’ (45) 

To evaluate this expression we note that cr, 
is determined by holes near Po2 = 1 atm, 
but by electrons at very low oxygen pres- 
sures . The incorporation reaction 

O@) + o”o - vb’ + 2h’ 

then leads to 

(or -2e’) 
(46) 

In ao* = const. - In aV + 2 In ah 
(or -2 In a,) (47) 

and because of the high [ VG], In aV is prac- 
tically constant. Therefore near PO2 = 1 
atm 

d In ao* 2 d In ah -= - 
dW*l d[O*l 

2 d ln ah dp 
= 

dpd[O*l’ (48) 

Because of p 4 1 we have In ah = In p. 
From Eq. (46) we have dp = -2d[VG] = 
2d[O*] so that 

(49) 

Equation (45) gives therefore 

DC u,kT pb/,q2kT 
2= P4 Pq2 

= b,,kT = Dh (50) 

and it can be shown similarly that at low 
pressures 6 = D,. 

We see that in stabilized zirconia (and 
similarly in any conductor with t, + 1) D is 
determined only by the diffusion coefficient 
of the electronic charge carriers and has 
nothing to do with the tracer diffusion coef- 
ficient of the ions. This result, while not 
new, is very often overlooked, most re- 
cently for instance by Manasevit et al. (23). 
In zirconia there are complications due to 
trapping, these are discussed by Heyne (6). 

5. Diffusion Doping of Semiconductors 

Boron and similar dopants diffuse into 
silicon substitutionally. This, as mentioned 
before, is a case of interdiffusion. Since bo- 
ron is incorporated not as atoms, but as Bkj 
+ h’ we have ambipolar diffusion of the 
boron. As far as we know, the combination 
of ambipolar and interdiffusion has not 
been treated in the literature, though the 
related problem of KCl-RbCl interdiffusion 
has been discussed (14). In the treatment of 
diffusion doping the interdiffusion aspect is 
usually neglected, i.e., the problem is 
treated as a case of ambipolar diffusion, as 
follows: 

The incorporation reaction 

B(m) * Bgi + h’ 

leads to 

(51) 

kh3’ = WE%’ + ph. (52) 

Because of the low concentrations involved 
we have 

pa’ = kT ln[B’], ph = kT ln p. (53) 

We now have to differentiate between two 
cases: 

(a) If boron diffuses into intrinsic silicon 
thenp = [B’]. Since [B’] = [B*] we have in 
this case In aa* = 2 ln[B*] and get from Eq. 
(12) with t, = 1 that 

b = 2D$VfB. (54) 
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(b) If boron diffuses into silicon with a 
high concentration of holes then p = const. 
and In aa* = ln[B*] + const. In this case we 
get 

6 = D?/~B, (55) 
The simple ambipolar diffusion approach 
gives therefore an enhancement factor of 2 
or 1, depending on the case. We note that in 
contrast to the case of Co0 there is no va- 
cancy concentration in the enhancement 
factor, the reason being of course that in 
interdiffusion we do not have a vacancy 
flow. 

The factorfa in Eqs. (54) and (55) is not 
really justified since, as mentioned, we 
have here an interdiffusion mechanism. 

Appendix A: Proof of Eq. (4) 

The flux density JA of A-atoms is related 
to the gradient of their chemical potential, 
,..&A, by the relation 

JA = -[A]bA d&/ax. (Al) 

It is well known that the mobility bA is 
related to D? by the Einstein relation 

bA = DFlkT. 6421 

we ignore here the COITelatiOn faCtOr fA 

which depends on the details of the diffu- 
sion mechanism. For a treatment which in- 
cludes fA see Manning (2). 

Eq. (Al) becomes therefore 

DT aPA 
JA = - @Al= 

02 &A a[Al (A3) = --~ 
kT d ln[Al ax 

and we get with the help of Eq. (3) and ,..&A = 
RT ln aA that 

D x 
Tr d ln aA -. 

= DA d ln[A] 

Since for [A] + [B] = const. we have d 
ln[Al = d ln NA, this equation can also be 
written 

Da = D+!?&. (AS) 
A 

Use is now made of the Gibbs-Duhem 
equation which is valid for a binary system 

NA &A + NBdpB = 0 W) 

and which together with dhrA = -dNB leads 
to 

d In aA d In aa -=- 
dlnNA dh&’ (A7) 

From Eqs. (A5), (A7), and (2) we get Eq. 
(4), but with R = 1. 

Because of Eq. (A7) only one factor of 
the form d In aA/d In NA appears in Eq. (4), 
even though both components diffuse. We 
note also the use of full rather than partial 
derivatives with respect to the composi- 
tion, in a binary alloy there is only one com- 
position variable. 

Appendix B: Proof of Eq. (12) 

To derive Eq. (12) for the case of mobile 
M-ions and electronic charge carriers e 
(holes or electrons), we start with the parti- 
cle currents 

JM = -[Mz+]bM F 

- zMq[MZ+]bM $ (Bl) 

J, = -[e]b, 2 - z,q[elb, 2, VQ) 

where ze = 1 for holes, -1 for electrons. 
We introduce electrical conductivities de- 
fined by 

UM = .&q2[hfZ+]bM (B3) 

u, = q2[e]be (B4) 

and note that the total electrical current has 
to be zero, i.e., zu JM + ze J, = 0. This leads 
to the following expression for the electric 
field 
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1 0, a/& + CM a/&Z+ --- -- 

a+ ze 4 ax 

ax= 
qzM ax . (B5) 

CM + (+e 

Introducing this into Eq. (Bl) gives after 
some algebra 

JM = - CMU, 

&q*bM + qe) 
apMz+ ZM we ---- 

ax ze ax * 
0-36) 

Because of Matom ++ Mz+ - (zM/ze)e we 
have ,.‘MZ+ - (ZM/Ze)pe = PM*. This, to- 
gether with CFe/(flM + u,) = t, allows us to 
transform Eq. (B6) to 

JM = -te[MZ+]bM c (B7) 

US@ UOW [MZ+] = [M*], ,.&* = kT In aM*, 
bM = Dc/fMkT this becomes 

so that we get with JM = -b a[M*]lax, Eq. 
(12). 
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