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R. METSELAAR AND G. OVERSLUIZEN* 

Laboratory of Physical Chemistry, Eindhoven University of Technology, 
Eindhoven, The Netherlands 

Received January 31, 1984; in revised form June 5, 1984 

Two explanations are given for the Meyer-Neldel rule in inorganic semiconductors. First it is shown 
that the freezing-in of donor acceptor-type defects can lead to this rule both for band conductors and 
for small-polaron hopping conductors. Next it is shown that a Gaussian distribution of defect energy 
levels or a Gaussian distribution of hopping energies, under specific conditions of defect interactions, 
can also lead to this rule. As an example of a small-polaron hopping conductor experimental results are 
described of conductivity measurements on a vanadium garnet single crystal. The first-mentioned 
model leads to a freezing-in temperature which corresponds well with the value known from other 
experiments. 0 1984 Academic Press, Inc. 

1. Introduction In A = aE, + /3. (3) 

The temperature dependence of the elec- This relation is called the Meyer-Neldel 
trical conductivity of solids is given by the rule. 
formula The same phenomenon was found later 

u = A exp(-EJkT). 
(1) for BaTi03 and Sic (5) and for CUZO (6). 

Figure 1 gives a survey of the results ob- 
This equation is valid for broad-band con- tained by Busch. The measurements of 
ductors. In the case of small-polaron hop- Busch were obtained on polycrystalline 
ping conductors or ionic conducting solids samples, the measurements of Weichman 
one has to use and Kuzel on single crystals. The data 

crT = A exp(-E,IkT). (2) 
points for a given compound were obtained 
on samples which were prepared or an- 

The term A is called the preexponential fac- nealed under different conditions. It is seen 
tor. The use of this word is not quite justi- from the figure that for each of these com- 
fied, however, since A often contains an ex- pounds the so-called Meyer-Neldel rule 
ponential term itself. It was first pointed out holds. 
in a series of articles by Meyer (1-4) that In 1967 Gutmann and Lyons ( 7) made a 
for the semiconducting oxides U02, Fe20s, plot of log A versus E, for a large group of 
ZnO, and Ti02 a linear relationship holds of organic semiconductors and found the data 
the form to roughly follow Eq. (3). Soon hereafter 

Rosenberg et al. (8) reported that Eq. (3) 
* Present affiliation: Philips Research Laboratories, also applies for a single semiconducting or- 
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FIG. 1. Plot of the preexponential constant A as a 
function of the activation energy of the conductivity. 
(Data from Ref. (5).) 

dration and complex formation. Instead of 
Eq. (1) a three-constant equation holds 

u = A’ exp(E,/kT,J exp(-&lkT). (4) 

In this equation a characteristic tempera- 
ture To is introduced. Though in organic 
semiconductors this relation is often called 
the compensation rule, it is of course equiv- 
alent to the Meyer-Neldel rule as given in 
Eq. (3), with (kTo)-i = (Y and In A’ = p. 
Equation (4) has also been used to describe 
conductivity measurements in amorphous 
organic semiconductors by Roberts and 
Thomas (9). 

Since the measurements on CuZO in 1969 
no further examples of the Meyer-Neldel 
rule in inorganic semiconductors have been 
reported until 1977. Since that time several 
authors mentioned that this rule also ap- 
plies to hydrogenated amorphous silicon (a- 
Si : H), both in undoped samples (ZO), in 
doped samples (22) and in connection with 
light-induced conductivity changes (the 
Staebler-Wronski effect) (12-14). 

Further, it was shown by Dosdale and 
Brook (15-17) that the rule is valid likewise 
for many data on diffusion or conductivity 
in ionic conductors. In that case Eq. (2) has 
to be used or the equivalent expression for 
the diffusion coefficient, D = Do exp(-E,/ 
kT)- 

In this paper we will present some new 
results obtained on single crystals of the 
garnet Ca2NaMg2V30i2-,, where x is varied 
by a high-temperature annealing treatment 
under varying oxygen pressures. 

2. Explanations for the Meyer-Neldel 
Rule 

2.1. Inorganic Semiconductors 

The first explanation of the experimental 
data produced by Meyer was given by Gi- 
solf (18). However, it is fairly improbable 
that his explanation holds for the widely 
different compounds discussed by Meyer 
since the theory of Gisolf asks for very spe- 
cific restrictions on the acceptor and donor 
levels and on the mobility of the charge car- 
riers. A quite different theory was put for- 
ward by Busch (5). It is assumed that we 
are dealing with extrinsic, broad-band semi- 
conductors where the donor concentration 
is frozen-in during cooling after the sinter- 
ing procedure at high temperatures. Ac- 
cording to Busch the constant cx in Eq. (3) is 
related to the temperature 8 where the do- 
nor concentration is frozen-in: (Y = 1/(2k@. 
This equation is also used by Weichman 
and Kuzel (6) to explain the data obtained 
on a single crystal of CuZO. 

Both for inorganic and organic semicon- 
ductors the Meyer-Neldel rule is observed 
in samples in which differences in concen- 
tration of charge carriers have been created 
by some chemical treatment. It can be ex- 
pected quite generally that the activation 
energy will change when the defect concen- 
tration increases. Miller and Abrahams (19) 
made calculations for homopolar broad- 
band semiconductors at low temperatures. 
At sufficiently high doping levels impurity 
conduction will play a role besides band 
conduction. Austin and Mott (20) applied 
this theory to polar materials. The activa- 
tion energy is found to decrease proportion- 
ally to the concentration x of the majority 
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centers: E, = E0 - Cx1j3. Bosman and van 
Daal (21) use this expression to describe 
the decrease of E, at T < 300 K for p-type 
NiO, COO, and MnO and for n-type (Y- 
Fez03. The fit of the experimental data with 
this equation is rather bad. Although impu- 
rity conduction does explain the decrease 
of E, with increase of x (increase of dope 
concentration), it does not lead to the 
Meyer-Neldel behavior. 

In the case of a-Si : H no general explana- 
tion has been given so far. 

2.2. Organic Semiconductors 

The Meyer-Neldel rule has been ob- 
served in quite different crystalline organic 
compounds like cholesterol/donor (or /ac- 
ceptor) complexes, hemoglobin in different 
hydration states, retinal complexes, nucleic 
acids (8), or the amorphous solid violan- 
threne-iodine complexes. In all cases we 
are dealing with low mobility materials. 

Kemeny and Rosenberg (22) derived an 
equation for the conductivity assuming 
electron tunneling through intermolecular 
barriers from the activated energy levels of 
the organic molecules. The characteristic 
temperature T,, in Eq. (4) is than directly 
related to the height of the barrier. In a fol- 
lowing publication these authors (23) show 
that also small-polaron band conduction 
can lead to Eq. (4), in which case 2T0 equals 
the Debye temperature TD. This means 
however, that this theory is only applicable 
in the temperature region T < T~l4. 

Roberts (24) points out that a rectifying 
layer at the electrode-solid interface can 
also lead to the Meyer-Neldel rule. A sec- 
ond mechanism discussed by Roberts is 
possible if the concentration of the majority 
carrier band states tail exponentially with 
energy. This case could apply to amor- 
phous solids (9). 

2.3. Zonic Conductors 

In ionic solids the decrease of the activa- 
tion energy with increasing conductivity is 

also well known. Lidiard (25) has ascribed 
this effect to defect-defect interactions and 
applied the Debye-Htickel approach as de- 
veloped for nonideal electrolyte solutions 
to ionic solids. Wapenaar et al. (26) were 
able to explain the Meyer-Neldel rule in 
Ba1-,LaXF2+x solid solutions assuming a 
Gaussian distribution of activation energies 
where the average value depends linearly 
on the lanthanum concentration x. This be- 
havior is found for concentrations x > 0.05, 
where due to the defect interactions clus- 
ters are formed which can explain the broad 
distribution of activation energies. A more 
general treatment is given by Dosdale and 
Brook (25-17); these authors give three 
possible explanations for the occurrence of 
the Meyer-Neldel rule in ionic conductors. 
A trivial reason is that there are errors in A 
and .5, due to wrong extrapolation of the log 
CT versus T-l plots. One has to be aware of 
this danger, but there are too many repro- 
ducible results to accept this as a general 
explanation. A second possibility is that 
data are obtained in the temperature region 
where a transition from extrinsic to intrin- 
sic behavior occurs. A third possibility is 
that there are two processes contributing 
simultaneously to u or D, the ratio of these 
two contributions being different in differ- 
ent samples. These arguments can be ex- 
tended to semiconductors. 

3. Experimental Results for a Vanadium 
Garnet 

We have measured electrical transport 
properties of single crystals of the garnet 
CazNaMgzV301z-X (27) grown from PbO 
and V205 fluxes. In the crystals as grown all 
vanadium ions are present as Vs+ ions. Af- 
ter a reduction treatment at elevated tem- 
peratures in air or in CO/CO2 gas mixtures, 
part of the vanadium is present as V4+. By 
quenching to room temperature crystals 
were obtained with different concentrations 
of V4+ in the V5+ sublattice. Results of the 



MEYER-NELDEL RULE IN SEMICONDUCTORS 323 

electrical conductivity measurements are 
shown in Fig. 2. The maximum measure- 
ment temperature was restricted to about 
700 K to avoid slow reoxidation of the sam- 
ples. No differences were observed be- 
tween dc and ac measurements. The num- 
bers in the figure correspond to samples 
which were annealed or quenched in differ- 
ent ways; details are given in Ref. (27). It 
can be seen from Fig. 2 that the curves l-8 
intersect at a temperature around 900-1000 
K. That these samples obey the Meyer- 
Neldel rule can be seen more clearly from a 
plot of lolog c+T versus E, at a fixed temper- 
ature as shown in Fig. 3. The three curves 
drawn here for T = 400, 500 and 667 K are 
straight lines corresponding to 

lolog CT = (4.6 - 1/2.3kT)E, + 1.33 (5) 

or 

lolog A = 4.6E, + 1.33. (6) 

4. Discussion 

In this section we discuss two possible 
explanations for the Meyer-Neldel behav- 
ior in the garnets. At first we consider the 
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FIG. 2. Electrical conductivity vs reciprocal temper- 
ature for a single crystal CalNaMg,V301z-,. Numbers 
l-8 indicate crystals with different values of x, due to 
a different reduction treatment at temperatures be- 
tween 1100 and 1400 K. Dashed parts of the lines are 
extrapolated values into the temperature region where 
reoxidation occurs. 
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FIG. 3. lOLog UT values from Fig. 2 at three different 
temperatures, plotted as a function of the activation 
energy. Straight lines demonstrate the Meyer-Neldel 
rule. 

suggestion by Busch (5) that the factor (Y in 
Eq. (3) is a measure of the temperature 8 
where the defect concentration is frozen-in. 
However, the derivation given by Busch is 
not directly applicable in our case since 
Busch assumes that conduction takes place 
in a broad band, while charge transport in 
vanadium garnets takes place via adiabatic 
hopping of small polarons (27). Therefore, 
it is interesting to investigate whether the 
explanation of the Meyer-Neldel effect as 
given by Busch also holds for hopping con- 
ductors . 

This is especially of interest since the as- 
sumption of Busch (5) that the compounds 
UO2, Fez03, ZnO, TiOz, BaTi03, and Sic 
are broad-band conductors is probably not 
justified. For instance, for UO;! (28), Fez03 
(20, and BaTi (29) it has been assumed 
that the charge transport occurs via small- 
polaron hopping. Note also that Busch (5) 
and Weichman and Kuzel (6) write E, = 
&Ed, Ed being the donor ionization energy. 
This is only true when N, G II G Nd, N, 
being the acceptor concentration, ZVd the 
donor concentration and IZ the free electron 
concentration. This condition is only valid 
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when the degree of compensation is very 
low. In many practical cases we have n e 
(Nd - NJ and n + N,, in which case E, = 
Ed instead of E, = fEd. However, this does 
not seriously alter the arguments. 

At the temperatures where the measure- 
ments were performed, T > $TD, the mobil- 
ity can be written as (21) 

,u = (ea2flkT) exp(-E,lkT). (7) 

Here a is the intersite distance, f the jump 
frequency, E, the hopping energy, the other 
symbols having their usual meaning. This 
leads to 

UT = <ne2a2flkT) exp(-EJkT), (8) 

when n denotes the small-polaron concen- 
tration. At temperatures above the temper- 
ature 8 where equilibrium with the sur- 
rounding atmosphere is maintained defects 
are formed by oxydation-reduction. For 
the case of the vanadium garnet 

2vv + 00 * 402(g) + vco + 2v;. (9) 

Here the Kroger-Vink notation is used, Vv 
denoting V5+ ions, V; denoting V4+ ions, 
and Vco denoting doubly ionized oxygen 
vacancies. The equilibrium constant for 
this reaction can be written as 

K = Ps2[Vco][VG]2 = K,, exp(-EGlkT). 

(10) 

Here square brackets indicate concentra- 
tions of the defects characterized by the en- 
closed symbols; Ei is the reaction energy of 
reaction (9). To maintain electroneutrality 
we have [V;] = 2[V;j]. When the sample is 
cooled below a temperature T = 8 the de- 
fect concentrations are frozen-in and the 
V4+ ion concentration is given by [V;] = 
const. exp(-EJk), where E, = JEi. Ac- 
cording to Eq. (8) 

VT = C[V;l exp(-E,lkTh (11) 

where C is a constant. 
This equation can be brought into the 

Meyer-Neldel form by assuming that the 
sum of the hopping energy and formation 
energy is constant: U = E, + E,. This leads 
to 

UT = C exp[-(U - EJkO] exp(-E,/kT), 
(12) 

where the constants of Eq. (3) are given by 
(Y = (kfl-1 and p = In C - (U/k@. 

Comparison with the experimental data 
given in Eq. (6) gives a value 0 = 1100 K. 
Of course this value of 8 can also be in- 
ferred directly from the extrapolated curves 
in Fig. 2. From experiments performed on a 
sensitive thermobalance and from the con- 
ductivity measurements we know that 
reoxidation of the samples starts around 
1000 K. Although there is no direct physical 
justification for the assumption that U is 
a constant, the experiments therefore sup- 
port the calculated 0 value reasonably well. 

In spite of this correspondence it is dan- 
gerous to conclude that both in broad-band 
and in narrow-band oxidic semiconductors 
the freezing-in of defects can generally ex- 
plain the Meyer-Neldel behavior. Even for 
the vanadium garnet the actual situation is 
more complicated than suggested in Eq. 
(8). In Ref. (27) are presented results of 
conductivity measurements together with 
measurements of Seebeck coefficients of 
the garnets. A quantitative evaluation of 
these data indicates that interactions be- 
tween charge carriers occur. Due to these 
interactions the activation energy E, will 
decrease with increasing defect concentra- 
tion. Since a detailed defect model is lack- 
ing, we have to make simplifying assump- 
tions. Suppose that there are different 
pathways for the small-polarons, i.e., a po- 
laron i follows a path characterized by an 
effective hopping energy E;. Assuming that 
the jump energies have a Gaussian distribu- 

tion around the energy E,, cr = c WPi, 

I 

with 
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n; = (N/W7+‘*) l?Xp(-(Ei - E,)*/W*) (13a) 

pi = (ea*jYkT) exp(-EilkT). (13b) 

Replacing the summation over i by an inte- 
gration, we obtain 

aT = (Ne*a*f/k) exp(w/2kT)* 
exp(-EJkT). (14) 

Both w  and E, are functions of the defect 
concentration x and therefore are interde- 
pendent: w  = f(&). For instance, in the 
case of an ionic conductor with monopole- 
monopole interactions between the defects, 
it is shown in Ref. 26 that w  = Cxi* and E, 
= -Co - Bx, with A and B constants. 

Elimination of x gives 

In UT = ln(Ne2a2fk) + Q-& 

There will be a slight curvature in the In o T 
vs T-’ plot, but over a limited temperature 
range this curvature is difficult to see. 

An isothermal plot of In o T vs E, will 
yield a straight line with slope 

c 
1 + mT IkT. 

Similar arguments can be used for broad- 
band conductors when there is a Gaussian 
distribution of donor levels (or acceptor 
levels in case of p-type conductors) around 
the energy Ed. The activation energy E, in 
Eq. (12) is in this case equal to Ed or iEd. 

In a slightly different approach Dosdale 
and Brook (17) show that under conditions 
where two exponential processes contrib- 
ute and where one of the preexponential 
terms is constant, an approximately linear 
behavior is observed in a log A vs E, plot. 
These authors considered the case of dif- 
fusion (or ionic conduction) through poly- 
crystalline materials where contributions 
are expected from both the bulk phase 
and from the grain-boundary region but, 

their arguments can be extended to our 
case of a single crystal with contributions 
from different polaron pathways. 

5. Conclusions 

Two explanations for the Meyer-Neldel 
rule in inorganic semiconductors have been 
discussed. It is shown that a theory based 
on freezing-in of defects, first given by 
Busch, can be extended to small-polaron 
hopping conductors. For this theory the 
constant LY in the Meyer-Neldel relation 
(Eq. (3)) is directly related to the tempera- 
ture where the concentration of the donor 
(or acceptor) defects is frozen in. The freez- 
ing-in temperature corresponds well with 
the expected value. 

However, a Gaussian distribution of hop- 
ping energies or of donor or acceptor lev- 
els, together with specific defect interac- 
tions, can also lead to the Meyer-Neldel 
rule. Although such a distribution is ex- 
pected when defect interactions are impor- 
tant, it is doubtful whether the interaction is 
of the right functional form in our case. 
Therefore the first explanation is prefera- 
ble. 
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