BRIEF COMMUNICATION

Spinel, YbFe₂O₄, and Yb₂Fe₃O₇ Types of Structures for Compounds in the ln_2O_3 and $Sc_2O_3-A_2O_3-BO$ Systems [A: Fe, Ga, or AI; B: Mg, Mn, Fe, Ni, Cu, or Zn] at Temperatures over 1000°C

NOBORU KIMIZUKA* AND TAKAHIKO MOHRI

National Institute for Research in Inorganic Materials, 1-1, Namiki, Sakuramura, Niiharigun, Ibaraki-ken, Japan 305

Received April 3, 1985

In the Sc₂O₃-Ga₂O₃-CuO, Sc₂O₃-Ga₂O₃-ZnO, and Sc₂O₃-Al₂O₃-CuO systems, ScGaCuO₄, ScGaZnO₄, and ScAlCuO₄ with the YbFe₂O₄-type structure and Sc₂Ga₂CuO₇ with the Yb₂Fe₃O₇-type structure were obtained. In the In₂O₃-A₂O₃-BO systems (A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, or Zn), InGaFeO₄, InGaNiO₄, and InFe³⁺MgO₄ with the spinel structure, InGaZnO₄, InGaMgO₄, and InAl-CuO₄ with the YbFe₂O₄-type structure, and In₂Ga₂MnO₇ and In₂Ga₂ZnO₇ with the Yb₂Fe₃O₇-type structure were obtained. InGaMnO₄ and InFe₂O₄ had both the YbFe₂O₄-type and spinel-type structures. The revised classification for the crystal structures of AB₂O₄ compounds is presented, based upon the coordination numbers of constituent A and B cations. © 1985 Academic Press, Inc.

In both the In_2O_3 -Fe₂O₃-CuO system and the In₂O₃-Ga₂O₃-CuO system, there are $(InFeO_3)_n$ CuO (n = 1 and 2) and (In- GaO_3), CuO (n = 1, 2, and 3) which are isostructural with $(YbFeO_3)_nFeO_1(n = 1, 2, 2)$ and 3), and in the In₂O₃-Fe₂O₃-CoO system there is a spinel type of InFeCoO₄ (1-3). In the present paper, we report both the conditions of synthesis and the lattice constants of $ScAlCuO_4$, $ScGaCuO_4$, $ScGaZnO_4$, InGaMgO_4, InGaZnO_4, and InAlCuO₄ having the YbFe₂O₄-type structure, InGaFe²⁺O₄, InGaNiO₄, and InFe MgO₄ having the spinel structure, Sc₂Ga₂ CuO₇, In₂Ga₂MnO₇, and In₂Ga₂ZnO₇ having the Yb₂Fe₃O₇ structure, and InGaMnO₄ and InFe₂O₄ which have both YbFe₂O₄- and spinel-type structures. Finally, the revised

* To whom all correspondence should be addressed. 0022-4596/85 \$3.00

Copyright © 1985 by Academic Press, Inc. All rights of reproduction in any form reserved. 382

classification for crystal structures of AB_2O_4 compounds is presented, based upon the coordination numbers of the constituent A and B cations.

Experimental

Each of the starting compounds, Sc_2O_3 (99.9%), Al_2O_3 (99.99%), Ga_2O_3 (99.99%), CuO (guaranteed reagent grade), In_2O_3 (99.9%), Fe_2O_3 (99.9%), MgO (guaranteed reagent grade), ZnO (99.9%), and MnO₂ (99.9%) was heated at 1000°C for 1 day in air. NiO (99.9%) was heated at 1100°C for 15 hr and MnO was prepared at 1200°C in a mixture of $CO_2/H_2 = 1$ for 1 day.

 Sc_2O_3 (or In_2O_3): A_2O_3 : BO = 1:1:2 or 1:1:1 (mole ratio) were sealed in evacuated silica tubes, when mixtures were to be heated below 1200°C, and in Pt tubes above

TABLE	I
-------	---

The Conditions of Synthesis and the Lattice Constants (Å) of $InABO_4$, $ScABO_4$, $In_2A_2BO_7$, and $Sc_2A_2BO_7$ at room Temperature

Compound	Spinel (Fm3d)	YbFe ₂ O ₄ ($R\overline{3}m$) ^a	Yb ₂ Fe ₃ O ₇ (<i>P</i> 6 ₃ / <i>mmc</i>)
InGaMgO4		a = 3.3036(1)	
		c = 25.805(1)	
		1300°C, 6 days	
InGaMnO ₄	a = 8.5760 (4)	a = 3.3291 (1)	
	1500°C, 3 days	c = 26.521 (2)	
		1000°C, 14 days	
InGaFeO ₄	a = 8.3998(1)		
	1000°C, 10 days		
InGaNiO ₄	a = 8.5467(3)		
	1400°C, 7 days		
InGaZnO₄		a = 3.2948(1)	
		c = 26.071(1)	
		1450°C, 1 day	
InFeMgO₄	a = 8.6320(1)		
_	1300°C, 6 days		
InFe ₂ O ₄	a = 8.4483(1)	a = 3.3391(1)	
	1100°C, 7 days	c = 26.076(1)	
		1000°C, 1 day	
InAlCuO ₄		a = 3.3148(1)	
		c = 24.359 (6)	
		1150°C, 7 days	
ScGaCuO₄		a = 3.3126(1)	
		c = 24.645(1)	
		1150°C, 2 days	
ScGaZnO₄		a = 3.2593(1)	
		c = 25.912 (1)	
		1300°C, 8 days	
ScAlCuO ₄		a = 3.2773(1)	
		c = 24.173(1)	
		1150°C, 6 days	
$In_2Ga_2MnO_7$			a = 3.3327 (1)
			c = 29.691(1)
			1450°C, 2 days
$In_2Ga_2ZnO_7$			a = 3.3077(1)
			c = 29.484(1)
			1450°C, 6 days
$Sc_2Ga_2CuO_7$			a = 3.3026(1)
			c = 28.124(1)
			1150°C, 7 days

^a The hexagonal lattice constants are given.

1200°C. For preparing $InGaFe^{2+}O_4$ and In $Fe^{3+}Fe^{2+}O_4$, we used both Fe_2O_3 and Fe powder (99.99%). All of the mixtures containing MnO were heated in Pt tubes. Each sample was rapidly cooled in water or air after each heat treatment. The weight of each sample

was carefully measured before and after the heat treatment. The absence of chemical reactions between samples and tubes were visually checked. X-Ray diffractometer powder-diffraction data for each sample thus obtained were taken at room tempera-

TABL	ΕI	Ι
------	----	---

Structure Types for AB_2O_4 Compounds versus Coordination Numbers (C.N.) of A and B Cations

C.N.:A	4	5	6	8	9 and/or 10
4	Phenacite		C.N.:B, Spinel	K ₂ WO ₄	β-K ₂ SO₄
6		YbFe ₂ O₄	Sr ₂ PbO ₄ , Ca ₂ Ir	O₄. etc.	K ₂ NiF₄
8			CaFe ₂ O ₄	.,	
			CaTi ₂ O ₄		

ture and the lattice constants were derived by means of least squares. (Si powder as a standard material, Mn-filtered Fe $K\alpha$ radiation, and a scintillation counter were employed.)

Results and Discussion

(1) In the $Sc_2O_3-Ga_2O_3-CuO$, $Sc_2O_3-Ga_2O_3-ZnO$, $Sc_2O_3-Al_2O_3-CuO$, and $In_2O_3-Al_2O_3-CuO$ systems, $ScGaCuO_4$, $ScGaZnO_4$, $ScAlCuO_4$, and $InAlCuO_4$, having the YbFe₂O₄-type of structure, and $Sc_2Ga_2CuO_7$ having the Yb₂Fe₃O₇-type structure, were obtained. The ScGaCuO₄, $ScAlCuO_4$, and $InAlCuO_4$, $ScAlCuO_4$, ScAlCu

(2) In the $In_2O_3-Ga_2O_3-BO$ systems [B: Mg, Mn, Fe, Ni, Cu, and Zn], the $In_2O_3-Fe_2O_3-FeO$ system, and the $In_2O_3-Fe_2O_3-MgO$ system, InGaMgO₄ and InGaZnO₄ having the YbFe₂O₄-type structure were obtained, and InGaFe²⁺O₄, InGaNiO₄, and InFe³⁺MgO₄ having the spinel structure were also obtained. The crystal structures of InGaCuO₄ and InGaCoO₄ have been reported (1). Both InGaMnO₄ and InFe₂O₄ had spinel- and YbFe₂O₄-type structures. They may have a phase transformation above 800°C. In₂Ga₂MnO₇ and In₂Ga₂ZnO₇ having the Yb₂Fe₃O₇-type structure were obtained. The synthesis conditions and the lattice constants of these compounds are summarized in Table I. Investigations for the details of the phase transformation between YbFe₂O₄ and spinel structures are in progress.

A. F. Well (4) classified AB_2O_4 -type compounds based upon the coordination numbers of the constituent A and B cations. More than about 60 compounds with Yb-Fe₂O₄ structure (Yb: coordination number 6, Fe: coordination number 5) and the related structures have been reported (1, 5). Table II shows a newly revised classification of AB_2O_4 -type compounds including the YbFe₂O₄-type structure.

References

- 1. N. KIMIZUKA AND E. TAKAYAMA, J. Solid State Chem. 53, 217 (1984).
- 2. K. KATO, I. KAWADA, N. KIMIZUKA, AND T. KAT-SURA, Z. Kristallogr. 141, 314 (1975).
- K. KATO, I. KAWADA, N. KIMIZUKA, I. SHINDO, AND T. KATSURA, Z. Kristallogr. 143, 278 (1976).
- A. F. WELLS, "Structural Inorganic Chemistry," p. 490, Oxford Univ. Press (Clarendon) (1975).
- N. KIMIZUKA AND T. KATSURA, J. Solid State Chem. 13, 176 (1975); N. KIMIZUKA AND T. KAT-SURA, *ibid.*, 15, 151 (1975); N. KIMIZUKA AND E. TAKAYAMA, *ibid.*, 41, 166 (1982).