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Metal-metal bonding may arise from a direct overlap of metal orbitals. However, an indirect interac- 
tion between metal atoms is also possible. It is shown that the presence of a highly polarizable medium 
around positively charged metal atoms leads to an effective metal-metal interaction. In insulating ionic 
compounds the anions serve as the polarizable medium. This leads to a clustering of metal atoms in 
layers or chains in compounds with highly polarizable anions. In compounds with metallic conduction 
the conduction electrons provide the polarizable medium. The instability of conduction electrons in 
linear-chain and layered compounds leads to charge density waves and the associated clustering of 
metal atoms. © 1985 Academic Press, Inc. 

1. Introduction 

In many inorganic solids the metal atoms 
form clusters of different shapes and sizes, 
such as infinite linear or zigzag chains (one- 
dimensional clusters, 1D), layers with a 
high concentration of metal atoms alternat- 
ing with layers without metal atoms (two- 
dimensional clustering, 2D), or isolated 
clusters (0D) such as pairs, triangles, tetra- 
hedra, or octahedra of metal atoms. In re- 
cent years a very large number of com- 
pounds with such metal clusters have been 
prepared and their interesting properties 
have been investigated (1-6). 

In the most naive pictures of chemical 
bonding one does not expect a close ap- 
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proach of metal atoms in compounds which 
contain metal as well as nonmetal atoms. 
For example, in a simple ionic model one 
expects the bonding to be mainly due to the 
Coulomb attraction between the positively 
charged metal atoms and the negatively 
charged nonmetal atoms. Also, in a cova- 
lent description of the chemical bonding 
one expects strong (polar) bonds, in partic- 
ular between metal and nonmetal atoms. As 
a consequence one expects a close ap- 
proach between metal and nonmetal atoms, 
and a spatial arrangement of the atoms in 
the molecule or the crystal such that the 
distance between the equally charged metal 
atoms is as large as possible. 

Nevertheless, as mentioned already, in 
many compounds short metal-metal dis- 
tances are observed, indicating some kind 
of metal-metal interaction. In this paper we 
will discuss the origin of this interaction. 
We will show that, in addition to direct 
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covalent bonding between metal atoms, 
also indirect interactions are possible which 
lead to an effective meta l -meta l  attraction. 
In general the indirect interaction between 
the metal atoms occurs via a strongly polar- 
izable medium consisting of  highly polariz- 
able anions or of conduct ion electrons for 
metals. 

2. Direct Metal-Metal Bonding 

(a) Heit ler-London vs molecular orbital 
approach. In this paragraph we review 
briefly the He i t l e r -London  (HL) and the 
molecular orbital (MO) model for the cova- 
lent bonding between two metal atoms. 
These two models are by no means equiva- 
lent. We will show from experiments on a 
particular binuclear transition metal com- 
plex that in that compound the wavefunc- 
tion is described much bet ter  by the H L  
model (7, 8). 

We consider  the simple case of  two at- 
oms A and B at a fairly large distance from 
each other,  each with one electron in a sim- 
ple nondegenerate  orbital; we disregard the 
overlap integral between the orbitals. The 
Hamiltonian of  the system (which is similar 
to that of  the H2 molecule) is 

H = E t~o'(CAo'CAo" + CBo'CBo') 
or 

+ ~ t(c~c.~ + c~cn~) 
~r 

+ U(nAtnA, + nBi, n B , )  (1) 

in which c ~  and CA. are creation and anni- 
hilation operators for  electrons with spin o- 
in the orbital ~A on atom A. The product  
nA~ = C~,~CA~ corresponds to the number of 
electrons with spin o- in orbital ~A, and can 
have the values nA~ = 0, 1. The first term in 
(1) represents  the orbital energy of  the elec- 
tron on one atom. The second term is the 
transfer contribution; the transfer integral 
is t = (~OAlhl~s), where h is the one-electron 
Hamiltonian operator.  The last term of  (1) 

represents  the electron correlat ion energy,  
and is an express ion for the electrostatic 
repulsion be tween the two electrons.  For  
this interaction we use the Hubbard  form: 
the e lec t ron-e lec t ron  repulsion is taken 
into account  only to the extent  that the 
electrons reside on the same atom. This so- 
called " o n  s i te"  Coulomb integral U is 

U---  (tpa(1)~OA(2)Jv(rl2)[~pA(1)tpA(2)). (2) 

In a simple system with only two 
electrons v,2 = e2/rn, in a more complex 
system the Coulomb repulsion is partly 
screened by other  electrons.  We disregard 
two-center  exchange integrals like 
(tpA(1)~pB(2)Iv(rI2)I~B(1)~pA(2)) (the so-called 
potential exchange);  this is justified for 
large distances be tween the two atoms. 

First we discuss the electronic states for 
the case without t ransfer  (t = 0). We then 
have a covalent  singlet state 

(#1 = [~pA(1)~pB(2) + tpB(1)tpA(2)]Xs/V2 (3) 

and a covalent  triplet state 

(#2 = [tpA(1)~pB(2) -- ~pB(1)tpA(2)]XTflk/2. (4) 

These two H L  states have one electron on 
each atom and have (for t = 0) the same 
energy El = E2 = 2e0. 

There  are also two ionic singlet states 
with energy E3 = E4 = 2e0 + U and wave- 
functions 

(#3 = ~pA(1)~pA(X)Xs (#4 = ~PB(1)~pB(2)Xs. (5) 

In these expressions Xs and XT are singlet 
and triplet spin functions ×s = (l/X/2) 
[ol(1)/3(2) - /3(1)a(2)] and XT = ~(1)a(2); 
/3(1)/3(2); (1/X/2)[a(1)/3(2) + /3(1)ot(2)], 
where ~(1) represents  electron 1 with spin 
up (ms = + 1/2), etc. 

The introduction of t ransfer  results in a 
mixing of  covalent  and ionic states. The 
new singlet ground state is 

(#s = (#l cos 0 - ( l /V~)(sin 0)((#3 + ¢#4) 
(6) 

with tan 20 = 4t/U, and as energy 
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FIG. 1. Energy levels in a Hz-like system. 

Es = 2e0 + ½U - ½~/U 2 + 16t 2. (7) 

The triplet states thT = ~ 2  remain un- 
changed by the transfer, and have the 
energy 2e0. Thus we find that the singlet 
state has a lower energy than the triplet 
state. The energy difference AE -- ½ U - 
½~v/U 2 + 16t 2 can be regarded as the energy 
of the covalent bond between the two at- 
oms. We can also regard this energy as an 
effective exchange energy between the two 
electrons: the transfer t produces an effec- 
tive antiferromagnetic coupling between 
the spins of the two electrons. For  2it I ~ U 
we obtain the well-known result for kinetic 
exchange 2J  - 4tE/U (Anderson) (Fig. I). 

The ionicity of  the singlet ground state 
can be defined as r = sin z 0; for small t we 
find K -~ (Et/U) 2. Thus for small transfer 
(large distance between the atoms) the 
ionicity is small, and the Hei t le r -London 
description is appropriate. The electrons 
are nearly localized, and the contribution of 
ionic states in the wavefunction of the 
ground state is small. For  large transfer the 
electrons are delocalized, and the contribu- 
tion of  ionic states is large. In the limit 2[tl 
>> U (i.e., for large t and small U) the ionic- 
ity is r = 0.5 and we have the molecular- 
orbital-type description with the two 
ground-state electrons in a bonding orbital 
~Pg = (1/V~)(tPA + ~PB). 

An important question is whether a par- 
ticular system is best described by a local- 
ized (HL) or a delocalized (MO) picture. 
The MO model is more frequently used, 
presumably because it is easier to extend 
the MO method to larger systems with 

more electrons and atoms. However,  espe- 
cially for relatively weak bonds one expects 
the H L  model to be more realistic. This was 
shown to be the case for the binuclear com- 
plex (CIoHs) (CsHs)E TiECl2 (7, 8) (Fig. 2). 
This molecule has two identical Ti atoms, 
each with one 3d electron. Therefore the 
interaction between the two Ti atoms can 
be described with the HE-like model de- 
scribed above. 

The magnetic susceptibility X of the com- 
plex (Fig. 2) increases with temperature 
(T); this is due to the increased population 
of the triplet states ~bT which have a mag- 
netic moment  (spin S = I). The tempera- 
ture dependence of  X is then given by 

NgE~EaS(S + I) 
X = kT[3 + exp - (2J/kT)] (8) 

because the energy of  the triplet state is 
- E J  ~- 4rE~U, and its magnetic moment is 
gtzBV'S(S + 1). The observed curve of X 
versus T could be fitted quite well with this 
expression with - 2 J  = 0.06 eV (Fig. 2). 

The photoelectron spectrum of  the com, 
plex shows in the valence region two peaks 
with ionization energies of  5.82 and 6.17 eV 
(Fig. 3). As the two Ti(3d) electrons in the 
ground state are identical, we must attrib- 
ute the two peaks to two different final 

"~m 6 

% 

'o 
"6 
E 

2 

-2 
1~ ' 2~o T(k) 5~o 

FIG. 2. Molar susceptibility of (CIoHs)(CsHs)ETiEC12 
versus temperature. The full curve shows the theoreti- 
cal fit to the experimental points (dots). 
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FIG. 3. Photoelectron spectrum of (C]0Hs)(C5H5)2 
Ti,CI2 with Hel excitation. The two peaks at 5.82 and 
6.17 eV are due to ionization of a Ti(3d) electron, 
leading to two different final states with the remaining 
Ti(3d) electron in orbitals eg and Ca, respectively. 

states: the one at 5.82 eV with an electron 
in the bonding orbital ~0g = (1/V~)(~A + ~OB), 

the peak at 6.17 eV corresponding to an 
electron in the antibonding orbital ~u = 
(1/V2)(tpA -- ~Ps). The energy difference be- 
tween the two peaks is 2t = 0.35 eV. 

The intensity ratio of  the two peaks in the 
photoelectron spectrum is given by Iu/I 8 = 
1(1 + tan 0)/(1 - tan 0)[ 2, and is a direct 
measure of  the contribution of ionic states 
to the ground-state wavefunction.  For  a H L  
ground state (tan 0 = 0) we have Iu/Ig = 1; 
for a MO ground state (tan 0 = - 1), l u / l g  = 

0 and only a single main peak is observed.  
The large intensity lu of  the satellite peak 
(Fig. 3) shows directly that the ground state 
is mainly of the H L  type. 

F rom these data we calculate U = 2 eV 
and t = 0.175 eV and an ionicity K = 0.03. 
Thus,  the ionicity in the ground state is quite 
small; the contribution of ionic states is 
only 3%. Therefore,  a molecular orbital de- 
scription of  meta l -meta l  bonding in this 
complex is not allowed; the Ti(3d) elec- 
trons are highly localized and should be de- 
scribed with a H L  model. 

In discussions on bonding in metal clus- 
ters and complexes one frequently uses MO 
theory without thoroughly investigating 
first whether  H L  or MO theory is more ap- 
propriate.  This may lead to serious errors,  

as shown by the example discussed above.  
(b) Distortion o f  a linear chain o f  metal 

atoms. It is well known that meta l -meta l  
bonding in a crystal  can lead to a distortion 
of  the crystal  structure (9-11). We first dis- 
cuss the simple case of  a linear chain of 
equally spaced metal atoms, with spacing 
a. We assume that this chain of  metal  atoms 
is imbedded in a crystal (of nonmetal  at- 
oms), which determines the total length of  
the chain of  N + 1 atoms to be Na (Fig. 4). 
The interaction between two metal atoms is 
given by a function V(r), which represents  
the covalent  chemical bonding be tween the 
atoms and, at short distances, the repulsion 
(Fig. 5). In addition there will be an elastic 

~fu ,  required to displace an atom energy 1 2 
over  a distance u from the center  of  the site 
it occupies in the undistorted structure.  

The energy of  the undistorted structure 
with N equally spaced atoms is E0 = NV(a).  
In a dimerized chain (Fig. 5) there are alter- 
nating short strong chemical bonds (length 
a - u) and long weak bonds (length a + u). 
The energy of  the dimerized chain is 

Ed = ½NV(a - u) + ½NV(a + u) 
+ ½Nfu 2. (9) 

The undistorted chain becomes  unstable 
ifEd < Eo, which is the case if(82V/Sr2)r=a < 
--f. Then a spontaneous dimerization (pair 

a 

i I [ 

a-u a+u 

FIG. 4. Metal-metal bonding in a linear chain of  
metal atoms imbedded in a matrix of nonmetal atoms. 
(a) Undistorted, (b) dimerized. 
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FIG.  5. I n t e r a c t i o n  V(r) b e t w e e n  t w o  m e t a l  a t o m s .  

T h e  d i m e r i z e d  c h a i n  is s t a b l e  in the  r e g i o n  r~ < a < r , .  

formation) will occur. The reason for the 
dimerization is essentially that the sum of 
the energy of a short bond (a - u) and a 
long bond (a + u) is lower than the energy 
of two bonds of intermediate length. 

Many cases of dimerization in linear 
chains have been observed. We mention 
the case of VO2: below 340 K the V4+(3d 1) 
ions form covalently bonded pairs along the 
c-axis (12-14). Above 340 K the thermal 
motion destroys the long-range order of 
pairs and a tetragonal phase with higher 
symmetry is found, in which the average 
metal-metal distances along the chain are 
equal. Another example is that of NbS3 
(and many other Nb compounds), where 
pairs of Nb4+(4d 1) ions with very short Nb-  
Nb distances are found (15, 16). Many do- 
nor-acceptor complexes, such as those of 
TCNQ molecules, have a crystal structure 
with linear stacks of the flat TCNQ mole- 
cules. In several of these (metallic) com- 
pounds these stacks at low temperature un- 
dergo a phase transition in which a pairing 
of the TCNQ molecules takes place (17). In 
these cases the chemical bonding between 
the TCNQ molecules replaces the metal- 
metal bonding in linear chains of metal at- 
oms. 

In all these cases the dimerization occurs 
in metallic systems, and the distortion to a 
dimerized state is usually described as a 
Peierls distortion (18), related to the insta- 
bility of a 1D electron gas of conduction 
electrons. Although this may very well be 

the origin of the observed dimerization in 
most or all cases, the considerations given 
above show that dimerization is a very gen- 
eral phenomenon and that metallic conduc- 
tivity is not a necessary condition for the 
effect to occur. 

With the simple model of chemical bonds 
it is also possible to understand the occur- 
rence of incommensurate distortions in 
linear chains (19). Consider again a linear 
chain of atoms and take into account not 
only interactions between nearest, but also 
between next-nearest neighbors. The total 
energy is given by 

1 
E = ~ ~ [fl(//n - -  Un+l) 2 

+ f2(u, - U n + 2 ) 2 ] ,  (10) 

where u, is the (small) displacement of 
the nth atom, and fl = (8 2V/Sr2) . . . .  f2 = 
(82V[Sre)r=Za. The energy of a sinusoidal dis- 
tortion, characterized by a wave vector q 
and periodicity k = 2~ra/q, with atomic dis- 
placement u, = u cos qna, is 

E = ½NuZ[fl(l - cos qa) 

+~(1  - c o s 2 q a ) ] .  (I1) 

The lowest energy is obtained for a mod- 
ulation with a wave vector q0 given by 
cos qoa = - f l /4 f z ;  this modulation is stable 
forfl  > 0 , ~  < 0,fl < 413~1. A model of this 
type can be used to describe incommensur- 
ate distortions in insulating compounds, 
such as NaNOz (20), NazCO3 (21), K2SeO4 
(22), and RbzZnBr4 (23). 

Similar considerations have been used 
earlier to explain incommensurate magnetic 
structures, resulting from competing near 
neighbour and next nearest neighbour inter- 
actions (50). 

(c) Distortion in a hexagonal layer o f  
metal atoms. Next, we discuss distortions 
of a simple two-dimensional hexagonal lat- 
tice of metal atoms, as present in many 
transition metal chalcogenides with a lay- 
ered structure. We assume that the overall 
dimensions of the lattice are determined by 
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FIG. 6. Distortions of a 2D hexagonal lattice. (a) 
Undistorted; (b) MnP-type distortion, with qt = (0, 
1/2) and zigzag chains of atoms; (c) Low-temperature 
NbS-type distortion with triangles, a superposition of 
three zigzag chains. 

(repulsive) interactions between the larger 
nonmetal  atoms in the crystal. We will 
show that a simple, isotropic attractive in- 
teract ion between the metal atoms imbed- 
ded in such a structure of  nonmetal  atoms, 
can lead to quite complicated lattice distor- 
tions and clustering of  metal atoms (9, 10). 

In the model we consider an elastic inter- 
action ½fu 2, which binds each metal atom to 
a particular site, and a meta l -meta l  interac- 
tion V(r) of  the type shown in Fig. 5. An 
arbitrary distortion is characterized by dis- 
placements u,  = R,  - n of the metal atom 
from its site n = n~a + nzb in the undis- 
tor ted structure (a and h are the lattice vec- 
tors of  the hexagonal lattice). The total en- 
ergy is 

1 Z  fu~ E - - ~ ,  

1 
+ 2 2 R.I). (12) 

The second summation is taken over  all 
nearest-neighbors lattice sites of  n, i.e., s = 
--a, --b, --(a + b). 

We now calculate the energy Eq = Aqlnql 2 
for  a small distortion of  the lattice with 
wave vector  q and atomic displacements u, 
= uqe iq'n. The distortion with the lowest en- 
ergy is obtained by minimizing the energy; 
we obtain as stable solutions the undis- 
tor ted state (u, = 0), and three equivalent 
distortions ql = (0, 1/2) with tO = 90°; 92 = 

(1/2, 0) with tO = - 3 0  °, and q3 = (I/2, I/2) 
with tO = +30 ° (tO is the angle between the 

atomic displacements un and the a axis). 
Each of  these solutions corresponds to a 
zigzag chain of  metal  atoms (Fig. 6). The  
relative stability depends on the interaction 
function V(r) and the average distance a; 
for a sufficiently large value of  a the dis- 
torted structure is stable. 

The energy of  a linear combination of  the 
equivalent zigzag chain solutions is the 
same as far as quadratic terms Aqluq[ 2 are 
concerned,  but  not for  higher-order terms. 
For  a solution with Uq~ = uy~, Uq2 = uy2, Uq3 
= uys, the third-order terms vanish, and 
the fourth-order  terms in the energy are 

E4 = Nu4[DI  + O2('y2"y2 2 

+ yzzy3 z + y]y~)]. (13) 

The coefficients D~ and Dz depend on the 
derivatives of  V(r). By minimizing the en- 
ergy with respect  to ym, y2, and y3, one finds 
that the zigzag chain solution (y~ = I, y2 = 
0, y3 = 0) is stable for  Dz > 0; for  D2 < 0 a 
linear combination with yl = yz = y3 = 
l / V 3  is more stable (24). This linear combi- 
nation consists of  isolated atoms and trian- 
gular clusters of  metal atoms with short 
bonds (Fig. 6). Indeed,  this type of  distor- 
tion has been observed as the structure of  
Nb atoms in the low-temperature (l.t.) form 
of  NbS (25, 26). If we take for the meta l -  
metal interaction a function V(r) = (l/12)A 
(r/ro) -Iz - (1/6)A (r/ro) -6, we find that the l.t. 
NbS-type structure is stable with respect  to 
the MnP-type structure with zigzag chains 
in the region a < 1.273 r0 (Fig. 7). 

V(r) 

\ 
\ i MoP-,yoe 

I '' 1 i NbS 'l 

u n d i s t o r t e d  ~ t 

r2 ~a 

FIG. 7. Stability of distortions of a hexagonal layer. 
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FIG. 8. Trigonal distortions of hexagonal layers, 
with clusters of metal atoms: (a) q = (2/3, 1/3) - FeS 
(27); (b) q = (1/2, 0) - low-temperature NbS (25); (c) q 
= (2/7, 1/7) - VSe2 (28); (d) q = (1/3, 0) - VSe2 (28), 
2H - TaSez, 2H - NbSe: (1); (e) q = (4/13, 1/13) - 1T 
- TaS2, 1T - TaSe2 (29, 30); (f) q = (2/19, 1/19) - 
NbTez, TaTe2 (31). 

tions be tween  neares t  neighbors.  I f  one 
takes into account  also interactions be- 
tween more  distant  metal  a toms in the hex- 
agonal layer  also one finds that more com- 
plicated distort ions can be stable. Among 
these are incommensurab le  distortions, 
i.e., distortions with a periodicity not com- 
patible with the hexagonal  lattice. The cal- 
culated distortions exhibit  clusters of  metal  
a toms,  with clusters  of  3, 7, 13, or  19 a toms 
(Fig. 8). In mos t  cases these complicated 
distortion pat terns  are attr ibuted to the 
charge density wave  mechanism,  to be dis- 
cussed in Sect ion 4. We have  shown in this 
section that these distortions can also be 
obtained with a simple model of  me t a l -  
metal  bonding, but that the more  compli- 
cated distortion pat terns (large clusters, in- 
commensura te  structures) are found only if 
more  long-range interactions are taken into 
account.  We will show later that the inter- 
action with conduct ion electrons in metals 
provides this type of  long-range interaction 
be tween the metal  a toms.  

These considerat ions show that  the dis- 
tortions with zigzag chains (MnP type) and 
triangular clusters  (1.t. NbS type) represent  
in a sense the natural  distortions of  a simple 
hexagonal  layer.  For  a linear chain the 
me ta l -me ta l  at tract ion be tween  nearest  
neighbors leads to dimers;  this is not so for  
a hexagonal  lattice. This explains in a very  
general way why  indeed distortions with a 
pairing of  a toms have  not been observed  for 
hexagonal  layers.  For  the format ion of the 
fairly compl ica ted distortion pat terns  as the 
MnP and 1.t. NbS  type it is not necessary  to 
invoke directed bonds or the like; an iso- 
tropic at tract ion be tween the metal  a toms is 
sufficient. The  zigzag-chain-type distortion 
of  a hexagonal  layer  has been observed  in 
many  compounds ,  such as VS, MnP, 
MnAs,  MoTe2, NbTe2, and TaTe2 (25, 26). 

The MnP and 1.t. NbS- type  distortions 
were  obtained by considering only interac- 

3. Metal Clusters in Ionic Crystals 

We discuss in this section the clustering 
of  metal  a toms based on a simple ionic 
model ,  in which the molecule or crystal  
consists of  polarizable ions. 

Consider  first, as an introductory exam- 
ple, the water  molecule.  In an ionic model 
each pro ton  has a charge +e ,  the oxygen 
ion a charge - 2 e .  In spite of  the electro- 
static repulsion be tween  the two protons,  
the molecule is not linear: it is as if there 
existed an effect ive attraction between the 
hydrogen a toms.  This attraction is due to 
the polarizat ion of  oxygen.  I f  the H - O - H  
angle is 20 (Fig. 9), the electric field at the 
oxygen ion is F = (2e/R2)cos O, and the po- 
larization energy is -½t~F 2 = -(2e2edR 4) 
cos 2 0 (a is the polarizability of  oxygen).  
Thus,  the total energy as a function of the 
H - H  distance r = 2R sin 0 can be written as 

V(r) = a + eZ/r + Br 2. (14) 
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FIG. 9. Ionic model of water molecule. 

We have kept the O - H  distance fixed (due 
to the strong covalent bond) at R0, and A -- 
-2e2cdR 4, B = e2a/2R6o. The minimum en- 
ergy is obtained for a distance r = REa -1/3. 
Of course, this simple model does not give 
an accurate description of the structure and 
the chemical bond of the water molecule, 
but it demonstrates at least qualitatively 
that polarization can lead to an effective at- 
traction between positive ions. The polar- 
ization energy tends to concentrate charge 
as much as possible, in order to make the 
polarization energy as large as possible. 

We now apply these simple concepts to 
ionic crystals and, in particular, to crystals 
with a layered structure (such as CdI2) (11, 
32-34). The layered structure of CdI2 can 
be considered as a 2D type of metal cluster- 
ing. In the hexagonal close packing of the 
anions the cations occupy the octahedral 
holes. However, the cations occupy the oc- 
tahedral sites in alternating layers, leaving 
other layers empty (van der Waals gap, see 
Fig. 10). Thus, the cations cluster in hexag- 
onal layers. The reason for this apparent 
clustering has been known for a very long 
time to be the polarization of the anions. 

We discuss ionic crystals MX2, with posi- 
tive ions of charge +2Ze, and negative ions 
with charge - Z e .  The total energy is given 
by 

NAZ2e 2 
E = + NBR -n 

R 
CNZ2e2a f ~1 + (15) 

R 4 R 3 ] • 

The first term is the Madelung energy: A 
is the Madelung constant, N is the number 

of cations in the crystal, and R is the char- 
acteristic (shortest) cation-anion distance. 
The second term is the Born repulsion be- 
tween the ions, with a parameter B; n 
is a number between 6 and 12. The last 
term is the polarization energy. In general 
there will be an electric field at the anion 
due to the charges of all ions in the crystal; 
this field produces a polarization of the an- 
ions with polarizability ot (for simplicity we 
disregard the polarizability of the cation). 
The factor [I + (Dry~R3)] -~ represents a cor- 
rection due to the contribution of the in- 
duced dipoles to the total electric field. A, 
C, and D are constants for the lattice sums 
of the fields of charges and dipoles, and de- 
pend on the crystal structure. In equilib- 
rium the total energy is a minimum; from 
the condition ~E/SR = 0 it is possible to 
eliminate B. The result is 

NAZ2e2( 1) NZ2e  2 
E =  R 1 - n  g 

x Cfl(l + Dfl) -I [1 4 + 3Dfl ] 
- ~ n(1 ~'TDfl)J (16) 

with fl = ~/R 3. 
A simple structure in which many MX2 

compounds crystallize is the fluorite struc- 
ture C1 (CaF2 structure). This is the struc- 
ture with the highest Madelung constant 
A(C1) -- 5.0388; therefore, this structure 
has the lowest energy of all MX2 structures 
if only the Madelung energy is considered. 
In this structure the electric field at the an- 
ion vanishes, so that the polarization en- 
ergy is zero (C = 0). In the layered struc- 
tures CdI2 (C6) and CdCI2 (C19) the anions 
have a strongly asymmetric coordination of 
three cations, which induces an electric di- 

C ~  ] -sandwich 

FIG. 10. CdI2-type layer structure: clustering of 
metal atoms in alternating layers. 
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T A B L E  I 

CRYSTAL STRUCTURES MS2, LISTED IN THE ORDER 

OF DECREASING RADIUS OF THE CATION (35) 

RM 
(A) F C1 Br I 

Ba 2+ 1.36 C1 C1, C23 C23 C23 
Pb 2÷ 1.18 C 1 C23 C23 C6" 
Sr 2÷ 1.16 CI  C1 C53 - -  

Ca 2÷ 1.00 C 1 C35 C35 C6" 

Cd 2÷ 0.95 C1 C 1 9 '  C19" C6" 
Mn 2÷ 0.82 C4 C19" C6" C6" 

V 2÷ 0.79 - -  C6" C6" C6" 
Fe 2÷ 0.77 C4 C19" C19" C6" 

Zn 2÷ 0.75 C4 C19" C19" C6" 

Co 2÷ 0.74 C4 C19" C19" C6" 
Mg 2÷ 0.72 C4 C19" C6" C6" 

Ni 2÷ 0.70 C4 C19" C19" C19" 

O S Se Te 

Th 4÷ 1.00 C 1 C23 C23 - -  
Zr  4÷ 0.72 C1 C6" C6" C6" 

Hf  4÷ 0.71 C1 C6" C6" C6" 
Sn 4÷ 0.69 C5 C6" C6" - -  
Pt 4+ 0.63 C6" C6" C6" C6" 

Ti 4÷ 0.61 C4 C6" C6" C6" 

Note.  Layered  structures are indicated by an aster- 
isk. 

pole at the anions. For the ideal CdI2 struc- 
ture C = 7.29 and D = 3.613, and if a is 
large the polarization energy can be appre- 
ciable. On the other hand, the Madelung 
constant of CdI2 is smaller, A(C6) = 4.3819. 
We find that the CdI2 structure is stable 
with respect to the CaF2 structure for/3 > 
0.2069 (for n = 9). Thus, the Cdlz structure 
is stable for large a and small R, as ex- 
pected. This is indeed what is observed. In 
Table I we have listed the metal dihalides 
and dichalcogenides in order of decreasing 
R, and we find that the layer structures C6 
and C 19 occur for compounds with small R. 
The stability region of the layer structures 
is larger for anions with large a. Layer 
structures are not found for the fluorides 
and the oxides, due to the small values of ot 
for F-  and 02-. Thus, with this simple 
model of polarizable ions, we can explain 
the stability of these layered structures. 

We now consider briefly a number of 
cases with short metal distances (cluster- 
ing) and investigate whether the polarizabil- 
ity could be responsible for, or at least con- 
tribute, to the clustering. 

The polarization of the anions is caused 
by an asymmetric coordination of anions by 
cations. Therefore it is possible to gain fur- 
ther polarization energy in a hexagonal 
layer by distorting the hexagonal symme- 
try, for example, as in the zigzag chains 
(MnP-type structure) and triangles of cat- 
ions (l.t. NbS-type structure) (Fig. 6). A 
simple calculation (9) shows that these dis- 
tortions indeed lead to a further increase of 
the polarization energy, and that they are 
expected to be stable if (a/R 3) is larger than 
a critical value. This suggests that large dis- 
tortions of hexagonal layers will be ob- 
served in compounds with small cations 
and highly polarizable anions. Indeed, es- 
pecially the ditellurides, with the highly po- 
larizable Te 2- ion, exhibit these distortions: 
MoTe2, WTe2, NbTe2, TaTe2 (25, 26), and 
VTe2 (36). We remark that one would not 
expect this result if direct metal-metal 
bonding were the origin of the distortion: in 
that case the distortions would be weakest 
in the ditellurides, because of the larger 
metal-metal distances. 

The polarization also explains some 
structural aspects of the transition metal 
chalcogenides MX3 and MX4. The crystals 
NbX3 and TaX3 (X = S, Se) (25, 26, 37) 
contain linear chains of metal atoms; each 
metal atom is surrounded by a trigonal 
prism of two X 2- and two X 2- anions (Fig. 
11). In TaTe4 and NbTe4 (25, 26, 38) there 
are also linear chains of metal atoms, and 
each metal atom is coordinated by eight Te 
in the form of a tetragonal antiprism. In all 
these crystals the metal-metal distances in 
the chain are much shorter than between 
metal atoms in different chains. The coordi- 
nation of the highly polarizable anions is 
strongly asymmetric, providing a large po- 
larization energy. The average metal-metal 
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FI6.11. Structure of MX3(a) and MTe4(b), with M = 
Nb, Ta; X = S, Se. The average metal-metal distances 
along the chain are about 3.40/~ (distances in the pure 
metals Nb and Ta are about 2.90/~). 

distances in the chain are fairly short as in 
the MX2 compounds, but by no means as 
short as in the pure metals. Several of these 
linear-chain compounds show further (of- 
ten incommensurate) distortions, leading to 
short and long metal-metal distances along 
the chain (15, 16, 36). 

In the polarizable ion model the crystal 
structure is a compromise between Made- 
lung energy favoring large cation-cation 
distances, and the polarization energy fa- 
voting an asymmetric coordination of po- 
larizable anions. This principle can be used 
to understand the crystal structures of 
many inorganic solids (32, 39). The metal 
trihalides FeCl3, CrCl3, BiI3, etc. crystal- 
lize in layered structures derived from the 
CdI2 or CdCl2 structures. In the partly oc- 
cupied layers the metal atoms form an or- 
dered array in which the repulsive energy 
between the cations is a minimum. In the 
intercalated materials AxMX2 (A = Na, Cu, 
Ag; X = S, Se) (40) the structure is usually 
such that the cations with the highest charge 
(M) occupy alternate layers, as in CdI2. 
The remaining cations of lower charge, A, 
occupy sites in the van der Waals gap. In 
this manner the anion coordination by cat- 
ion charges is as asymmetric as is compati- 
ble with the composition of the crystal. Ex- 
amples of this rule a r e  Cr3S4 (fully occupied 
Cr 3+ layers alternate with half-occupied 

Cr 2+ layers), Cr283 (fully occupied Cr 3+ lay- 
ers alternate with one-third-occupied Cr 3+ 
layers), NaxTiS2, AgxCrS2, etc. (fully occu- 
pied Ti, Cr layers, Na ÷ and Ag + in the van 
der Waals gap). 

Thus, the simple polarizable ion model 
can explain a considerable amount of struc- 
tural data of inorganic compounds. The 
model also explains the observed strong an- 
isotropy of the polar lattice vibrations of 
layered crystals, and the fact, related to 
this, that the softening of the perpendicular 
modes serves as a precursor to the distor- 
tion of hexagonal layers (34). However, we 
remark that anion polarization is certainly 
not the only mechanism which drives the 
lattice distortions in layered materials. An 
example is TiSe2, which at low temperature 
has a distorted structure with a unit cell 2a 
× 2a × 2c (41), the same unit cell as l.t. 
NbS, but with atomic displacements quite 
different from those of the l.t. NbS struc- 
ture. A calculation shows that the atomic 
displacements in TiSe2 are of a type which 
is not favored by anion polarization. Calcu- 
lations in which the distortions in TiSe2 are 
attributed to a band Jahn-Teller effect 
(metal d-nonmetal p hybridization) are in 
excellent agreement with experimental data 
(42). This mechanism is related with the 
charge density wave mechanism and with 
the contribution of charge transfer transi- 
tions (metal-nonmetal hybridization) to the 
polarizability. 

4. Charge Density Waves 

Several metallic crystals undergo phase 
transitions which are attributed to instabili- 
ties of the conduction electrons (1). The 
possibility of such an electron-gas instabil- 
ity and the resulting lattice distortion was 
recognized for the first time by Peierls (18), 
who showed that a ID crystal with a half- 
filled band is unstable with respect to a dis- 
tortion which leads to a doubling of the unit 
cell. 
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FIG. 12. Energy band for a linear chain of  atoms. (a) 
Undis tor ted (drawn line), (b) dimerized (dotted line). 

We begin with the discussion of  a Peierls 
distortion (a charge density wave,  CDW) of  
a linear chain of  atoms at positions na, each 
with one electron in a nondegenerate  or- 
bital ~o. In the tight-binding approximation 
(which corresponds to the MO model,  with 
large transfer t, and U = 0), the wavefunc- 
tion tO is a molecular  orbital (or Bloch wave) 
extending over  the entire chain of  atoms, 
character ized by a wave vector  k. 

1 
Ok(r) = V ~  ~-', e ik"~(r - na), (17) 

where ~o(r - na) is the atomic orbital of  
atom n at position ha. The transfer integral 
be tween nearest-neighbor sites is t = 
(~(r)[H[~(r - a)), and we disregard the 
overlap integrals (~(r)[~(r - a)) = 0. The 
eigenvalues for  the energy ek = e0 - 2t cos 
ka form an energy band (Fig. 12). If  there is 
one electron per atom, this band is half- 
filled, up to the Fermi energy eF = g0 and 
the Fermi wave vector  kF = ~r/2a; the crys- 
tal will exhibit metallic conductivity.  

Next  we study the effect of  a displace- 
ment  of  the atoms on the electronic energy 
levels. A periodic distortion with atomic 
displacements u, -- u0 exp iqna, character- 
ized by a wave vector  q, will lead to an 
extra  potential  energy 8V(r) = 8Vq exp iqr 
which perturbs the electrons. This pertur- 
bation has matrix elements 8Vq between 
wave functions tOk+q and ~k, and this leads 

to the formation of  energy gaps in the band 
structure at k = -+½q. For  a distortion with 
q0 = 2kF the energy gaps occur  just  at the 
Fermi energy eF. Because in that case the 
states occupied by  electrons are lowered in 
energy, the distortion q0 = 2kF will produce 
a lowering of  the total energy of  the crystal 
(Fig. 12). Due to excitations of  electrons 
and vibrations of  the atoms, the energy 
gaps will gradually disappear with increas- 
ing temperature  and vanish at a certain crit- 
ical temperature To. Thus, at To, the crystal 
with the distorted structure transforms to 
an undistorted state. Due to the gaps in the 
energy band, the crystal in the distorted 
state is semiconducting. Therefore,  the 
phase transition at To for a linear chain cor- 
responds to a metal- to-semiconductor  tran- 
sition (43). 

For  a 1D crystal  with one electron per 
atom kF = ~r/2a, and therefore the wave 
vector  of  the distortion is q = 2kF = 7r/a. 
This corresponds to a displacement of the 
atoms by un = (-1)"u0, i.e., to a dimerized 
chain (Fig. 12). 

The formation of  a CDW can be consid- 
ered also from a different point of  view 
(44). A CDW can be defined as a static peri- 
odic change of  electron density coupled 
with a periodic lattice distortion. We dis- 
cuss again the 1D model with positive ions 
at equal distances a, imbedded now in a 
uniform electron charge density p0 (Fig. 
13). The CDW corresponds to a periodic 
change of  the conduct ion electron density 

% 

~,= 2~/q 
i ~ 

a. r 

FIG. 13. Charge densi ty wave and periodic lattice 
distortion of  a linear chain of  atoms. 
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Ap(r) = A cos qr. This partial localization of 
electronic charge in space will cost intere- 
lectronic repulsion energy and electron ki- 
netic energy. However, the positive ions 
will move in response to the new charge 
distribution. This effect will lower the total 
energy; it corresponds to a clustering of 
metal atoms in the crystal at places with a 
higher negative electron charge density. If 
this electron-phonon interaction is suffi- 
ciently strong it is possible that the ground 
state of the crystal is a distorted state 
(COW). 

The distortion of the lattice produces a 
change of the effective potential for the l 
electron aV(r) = aVq exp iqr and this in- 
duces a change of the electron density pro- 
portional to aV(r): 

Ap(r) = x(q)aVqe iqr. (18) 

The proportionality factor x(q) is the re- 
sponse function of the electron gas. For 
large values of ×(q) a small perturbation 
with wave vector q will already produce an 
appreciable change of the electron density 
and, as a consequence, a large distortion. 
For X(qo) --+ ~ the crystal is unstable against 
distortion q0, and will distort spontane- 
ously. For a free-electron gas the response 
function is 

xo(q) = ~ fk(1 - fk+q), (19) 
k 8 k + q  ~ ~'k 

where ek is the energy of an electron state k, 
andfk is the Fermi distribution functionfk = 
[I + exp(ek - eF)/kT] -1. For an electron gas 
with interactions we can write 

Xo(q) 
x(q) = 1 - W(q)xo(q)' (20) 

where W(q) takes account of electron-elec- 
tron and electron-phonon interactions. 

The response function Xo(q) depends 
strongly on the dimensionality of the elec- 
tron gas (Fig. 14). For a 1D electron gas X0 
diverges at q0 = 2kF; therefore a 1D metal 
will distort spontaneously with a periodic- 

-Xo(q ) ~ / ~ l ~  

I II ID 

! 
2K F ---,',- q 

FIO. 14. Response function Xo(q) for a flee-electron 
gas in one, two, and three dimensions (ID, 2D, 3D). 

ity characterized by a wave vector q0 = 2kF 
(Peierls distortion; CDW). 

For a free-electron gas in two or three 
dimensions the singularity of Xo(q) at q = 
2kF is much weaker. However, in a real 
crystal it is possible that certain parts of the 
Fermi surface have 1D or 2D character. 
Generally, a large value of x(q0) is obtained 
if the Fermi surface contains large areas 
connected by q0 with parallel tangent 
planes. This is the so-called "nesting" 
which is responsible for the strong CDWs 
in layered compounds (1). 

Many examples of CDW distortions in 
layered crystals have been detected with 
electron or X-ray diffraction. A particularly 
well-studied case is that of 1T-TaS2, a com- 
pound for which not only the symmetry and 
the periodicity of the distortion were deter- 
mined, but also the actual atomic displace- 
ments (29, 30). The commensurate distor- 
tion in the layers in 1T-TaS2, stable below 
200 K, corresponds to a superposition of 
CDWs characterized by the wave vectors 
ql = (4/13, 1/13), q2 = (-1/13, 3/13), and q3 
= (-3/13, -4/13). In this structure the Ta 
atoms form clusters of 13 atoms (see Fig. 
8). In other layered compounds compli- 
cated distortion patterns have also been 
observed, but in most cases the actual 
positions of the atoms in the distorted 
structure have not been determined. Some 
examples with the postulated metal clusters 
compatible with the translational symmetry 
are shown in Fig. 8. 
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A detailed discussion of the theory of 
commensurate and incommensurate CDW 
distortions in terms of the Landau theory of 
phase transitions has been given by W. L. 
McMillan (51-53). 

5. Direct and Indirect Metal-Metal 
Interactions 

In the preceding sections we described 
several mechanisms which lead to short 
metal-metal distances and to metal cluster- 
ing. First there is the direct interaction be- 
tween the metal atoms, due to the forma- 
tion of a chemical bond. However, we have 
shown that short metal-metal distances can 
also be obtained by interaction with a polar- 
izable medium, consisting of polarizable an- 
ions (Section 3) or conduction electrons 
(Section 4). In this section we show that the 
interaction via a polarizable medium can be 
expressed in terms of an effective indirect 
interaction between the metal atoms (45, 
46). 

We first show that the (Peierls) instability 
of an electron gas in combination with an 
electron-phonon interaction leads to an ef- 
fective metal-metal interaction which is 
of long range and oscillating. For the vi- 
bronic part of the Hamiltonian we write 

1 
H =  l ~q p2 + 2 ~'q Jo(q)UZq 

+ ~ g(q)uqe iqr. (21) 
q 

The first term is the kinetic energy, the 
second term, the potential energy of the lat- 
tice vibrations with amplitude Uq, wave 
vector q, and frequency (in the absence of 
coupling with the electron) to0(q). If the dis- 
placement of atom n is Un, then Uq is defined 
as Uq = ~nttn eiqn. The last term in (21) is the 
electron-phonon interaction, with a coup- 
ling constant g(q). We now calculate with 
perturbation theory the change of the elec- 
tron energy due to electron-phonon coup- 
ling; the result for a free-electron gas is 
given by 

mEel. = E Z A(1 -- A+q) gZ(q)u2 
q k 8k --  ~'k+q 

= - ~ gZ(q)xo(q)u2. (22) 
q 

Therefore, the Hamiltonian for the lattice 
vibrations in the presence of the electron 
gas is 

Hvibr. = ~ P q  

1 ~q {to02(q) _ 2gZ(q)Xo(q)}UZq, (23) +5 

i.e., the interaction with the electron gas 
induces a change of the vibration frequen- 
cies given by 

t o 2 ( q )  = to02(q) _ 2g2(q)xo(q). (24) 

This lowering of the phonon frequencies 
(phonon softening) is the so-called Kohn 
anomaly (43, 47). The strong decrease of 
to(q) at q = 2kv, i.e., where Xo(q) has a max- 
imum, has been observed quite clearly in 
1D metals such as K2Pt(CN)4Br03(H20)3 
(this compound contains linear chains of Pt 
atoms, with metallic conductivity along the 
chains) (48). 

We now transform Eel. into an interaction 
between the metal atoms by substituting Uq 
= ~ n  ldn eiqn: 

I 
AEe,. = -~ ~ ~, f,,,UnU,, (25) 

withf~,, = - 2  ~ gZ(q)xo(q)eiq("-n') 
q 

For small displacements u, this is equiva- 
lent to an effective interaction V(R) be- 
tween metal atoms at a distance R = n - n' 
+ Un - u,,, if (~2V/~R2)R=n_ n, = --fnn'.  There- 
fore, the electron-phonon interaction en- 
ergy AEel. can be represented by an effec- 
tive metal-metal interaction 

2g2(q)x°(q) e iqR. (26) V(R) = - ~q q2 

In a 1D metal xo(q) is very large at q0 = 
--2kF, and we obtain a large contribution to 
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FIG. 15. Contributions of electronic excitations to 
the response function x(q) of electrons for insulators 
(left-hand side: only interband transitions) and metals 
(right-hand side: inter- and intraband transitions). 

V(R) from the electrons near the Fermi en- 
ergy. This contribution is of the form 

2gZ(2kF)Xo(2kF) 
44 cos 2kvR. (27) 

lence band) contribute, and the contribu- 
tion to the metal-metal interaction is large 
if the polarizability is large. 

If the polarizability of the crystal is given 
by a sum of ionic polarizabilities, the cor- 
responding x(q) has only a weak q depen- 
dence and the interaction is relatively short 
range. The metal-metal interactions caused 
by virtual charge transfer excitations are 
equivalent with the so-called band Jahn- 
Teller effect used to explain the distortion 
in TiSe2 (38). 

In a metal the mechanism due to virtual 
interband transitions will also operate, but 
there is an additional contribution from in- 
traband transitions of electrons near the 
Fermi energy. This contribution gives rise 
to a pronounced peak in x(q) near q = 2kF, 
and it produces a long-range oscillating 
metal-metal interaction responsible for the 
complicated CDW distortions. 

It is long range and oscillating, and it is, 
of course, precisely this contribution to the 
metal-metal interaction which induces the 
periodic lattice distortion of the CDW. We 
remark that the long-range oscillating inter- 
action due to electrons near eF is well 
known for the interaction between charged 
impurities in metals (49). 

The derivation given for the effective 
metal-metal interaction is also valid for in- 
sulators and semiconductors. In that case, 
however, the electron susceptibility does 
not diverge because there is a finite gap be- 
tween occupied and unoccupied states. 

As we have seen, there is close relation 
between the polarization mechanism and 
the CDW mechanism for effective metal- 
metal interaction. In an insulator the inter- 
action is due to virtual excitations from the 
valence band to the conduction band over a 
finite gap; these excitations are excitations 
on the atoms (atomic or ionic polarizability) 
or charge transfer excitations. A large num- 
ber of electron states (all states in the va- 
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